Chapter 11: the Mole
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Tutorial 2 FORMULAS, PERCENTAGE COMPOSITION
T-6 Tutorial 2 FORMULAS, PERCENTAGE COMPOSITION, AND THE MOLE FORMULAS: A chemical formula shows the elemental composition of a substance: the chemical symbols show what elements are present and the numerical subscripts show how many atoms of each element there are in a formula unit. Examples: NaCl: one sodium atom, one chlorine atom in a formula unit CaCl2: one calcium atom, two chlorine atoms in a formula unit Mg3N2: three magnesium atoms, two nitrogen atoms in a formula unit The presence of a metal in a chemical formula indicates an ionic compound, which is composed of positive ions (cations) and negative ions (anions). A formula with only nonmetals indicates a + molecular compound (unless it is an ammonium, NH4 , compound). Only ionic compounds are considered in this Tutorial. There are tables of common ions in your lecture text, p 56 (cations) and p 57 (anions). A combined table of these same ions can be found on the inside back cover of the lecture text. A similar list is on the next page; all formulas needed in this and subsequent Tutorial problems can be written with ions from this list. Writing formulas for ionic compounds is very straightforward: TOTAL POSITIVE CHARGES MUST BE THE SAME AS TOTAL NEGATIVE CHARGES. The formula must be neutral. The positive ion is written first in the formula and the name of the compound is the two ion names. EXAMPLE: Write the formula for potassium chloride. The name tells you there are potassium, K+, and chloride, Cl–, ions. Each potassium ion is +1 and each chloride ion is -1: one of each is needed, and the formula for potassium chloride is KCl. -
2 Amount and Concentration: Making and Diluting Solutions 2 Amount and Concentration; Making and Diluting Solutions
Essential Maths for Medics and Vets Reference Materials Module 2. Amount and Concentration. 2 Amount and concentration: making and diluting solutions 2 Amount and concentration; making and diluting solutions.........................................................1 2A Rationale.............................................................................................................................1 2B Distinguishing between amount and concentration, g and %w/v..........................................1 2C Distinguishing between amount and concentration, moles and molar...................................2 2D Practice converting g/L to M and vice versa........................................................................3 2E Diluting Solutions ...............................................................................................................5 2F Practice calculating dilutions ...............................................................................................6 Summary of learning objectives................................................................................................7 2A Rationale Biological and biochemical investigations rely completely upon being able to detect the concentration of a variety of substances. For example, in diabetics it is important to know the concentration of glucose in the blood and you may also need to be able to calculate how much insulin would need to be dissolved in a certain volume of saline so as to give the right amount in a 1ml injection volume. It is also vitally -
2•Stoichiometry: Chemical Arithmetic Formula Conventions (1 Of
Superscripts used to show the charges on ions Mg2+ the 2 means a 2+ charge (lost 2 electrons) Subscripts 2•Stoichiometry: Chemical Arithmetic used to show numbers of atoms in a formula unit Formula Conventions H2SO4 two H’s, one S, and 4 O’s (1 of 24) Coefficients used to show the number of formula units 2Br– the 2 means two individual bromide ions Hydrates CuSO4 • 5 H2O some compounds have water molecules included stoichiometry study of the quantitative relationships in chemical formulas and equations. atomic mass weighted average mass of an atom, found on the periodic table 2•Stoichiometry: Chemical Arithmetic formula mass sum of the atomic masses of the Stoichiometry Terms atoms in a formula molecular mass sum of the atomic masses of the (2 of 24) atoms in a molecular formula gram molecular mass molecular mass written in grams molar mass same as gram molecular mass empirical formula formula reduced to lowest terms Formula or molecular mass is found by simply summing the atomic masses (on the periodic table) of each atom in a formula. H2SO4 2•Stoichiometry: Chemical Arithmetic 1.01 + 1.01 + 32.06 + 16.0 + 16.0 + 16.0 + 16.0 = 98.08 u Calculating Formula Mass 2(1.01) + 32.06 + 4(16.0) = 98.06 u or 98.06 g/mole (3 of 24) Generally, round off your answers to the hundredths or tenths place. Don’t round off too much (98.06 g/mol or 98.1 g/mol is OK, but don’t round off to 98 g/mol) Units Use u or amu if you are referring to one atom or molecule A mole (abbreviated mol) is a certain number of things. -
Solute Concentration: Molality
5/25/2012 Colligative Properties of Solutions . Colligative Properties: • Solution properties that depend on concentration of solute particles, not the identity of particles. Previous example: vapor pressure lowering. Consequences: change in b.p. and f.p. of solution. © 2012 by W. W. Norton & Company Solute Concentration: Molality . Changes in boiling point/freezing point of solutions depends on molality: moles of solute m kg of solvent • Preferred concentration unit for properties involving temperature changes because it is independent of temperature. © 2012 by W. W. Norton & Company 1 5/25/2012 Calculating Molality Starting with: a) Mass of solute and solvent. b) Mass of solute/ volume of solvent. c) Volume of solution. © 2012 by W. W. Norton & Company Sample Exercise 11.8 How many grams of Na2SO4 should be added to 275 mL of water to prepare a 0.750 m solution of Na2SO4? Assume the density of water is 1.000 g/mL. © 2012 by W. W. Norton & Company 2 5/25/2012 Boiling-Point Elevation and Freezing-Point Depression . Boiling Point Elevation (ΔTb): • ΔTb = Kb∙m • Kb = boiling point elevation constant of solvent; m = molality. Freezing Point Depression (ΔTf): • ΔTf = Kf∙m • Kf = freezing-point depression constant; m = molality. © 2012 by W. W. Norton & Company Sample Exercise 11.9 What is the boiling point of seawater if the concentration of ions in seawater is 1.15 m? © 2012 by W. W. Norton & Company 3 5/25/2012 Sample Exercise 11.10 What is the freezing point of radiator fluid prepared by mixing 1.00 L of ethylene glycol (HOCH2CH2OH, density 1.114 g/mL) with 1.00 L of water (density 1.000 g/mL)? The freezing-point-depression constant of water, Kf, is 1.86°C/m. -
Guide for the Use of the International System of Units (SI)
Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S. -
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions. -
16.4 Calculations Involving Colligative Properties 16.4
chem_TE_ch16.fm Page 491 Tuesday, April 18, 2006 11:27 AM 16.4 Calculations Involving Colligative Properties 16.4 1 FOCUS Connecting to Your World Cooking instructions for a wide Guide for Reading variety of foods, from dried pasta to packaged beans to frozen fruits to Objectives fresh vegetables, often call for the addition of a small amount of salt to the Key Concepts • What are two ways of 16.4.1 Solve problems related to the cooking water. Most people like the flavor of expressing the concentration food cooked with salt. But adding salt can of a solution? molality and mole fraction of a have another effect on the cooking pro- • How are freezing-point solution cess. Recall that dissolved salt elevates depression and boiling-point elevation related to molality? 16.4.2 Describe how freezing-point the boiling point of water. Suppose you Vocabulary depression and boiling-point added a teaspoon of salt to two liters of molality (m) elevation are related to water. A teaspoon of salt has a mass of mole fraction molality. about 20 g. Would the resulting boiling molal freezing-point depression K point increase be enough to shorten constant ( f) the time required for cooking? In this molal boiling-point elevation Guide to Reading constant (K ) section, you will learn how to calculate the b amount the boiling point of the cooking Reading Strategy Build Vocabulary L2 water would rise. Before you read, make a list of the vocabulary terms above. As you Graphic Organizers Use a chart to read, write the symbols or formu- las that apply to each term and organize the definitions and the math- Molality and Mole Fraction describe the symbols or formulas ematical formulas associated with each using words. -
A General Introduction on Metrology and Traceability
A general introduction on metrology and traceability Paul Brewer LNG metrology workshop 15th June 2016 National Physical Laboratory • Develop and disseminate UK’s measurement standards, ensure international acceptance • Knowledge transfer and advice between industry, government and academia • Support Industry, trade, regulation, legislation, quality of life, science and innovation industrial environment energy Gas and Particle particles Metrology The Fundamentals of Metrology • What is metrology and what is it for? • What is an NMI and what is it for? • What is the mole and what is it for? What is ‘Metrology’? . Metrology is “the science of measurement, embracing both experimental and theoretical determinations at any level of uncertainty in any field of science and technology.” . Almost all of science and industry involves making and interpreting measurement – why is metrology special? The Proclamation Regarding Weights and Measures, 1556 by Ford Madox Brown (1889) The electrochemical characteristics of platinum phthalocyanine . Quantitative conclusions inferred; but what was the accuracy, repeatability, reproducibility and uncertainty of these measurements? . Would this have affected the conclusions? Metrology’s main activities . The definition of internationally accepted units of measurement, e.g. the kilogram . The realisation of units of measurement by scientific methods . The establishment of (metrological) traceability chains by disseminating and documenting the value and accuracy of a measurement . Traceability implies the calculation of an associated measurement uncertainty . These activities may be fundamental (scientific) or applied (practical, industrial, legal) International vocabulary of metrology The Results of Metrology . Generates systems and frameworks for quantification and through these underpins consistency and assurance in all measurement . Gives a quantified level of confidence in the measurement through an uncertainty statement . -
Conversion Factors
Conversion Factors Conversion factors are ratios of one object to another object. A ratio is a way of comparing two quantities. The quantities can be compared in three different ways: a to b, a:b, or a/b. At the local grocery store, a case of soda contains 24 cans. We can express the ratio in three forms: (a to b) 24 cans of soda to each case of soda (a:b) 24 cans of soda: 1 case of soda (a/b) 24 cans of soda/1 case of soda This chapter uses conversion factors frequently to solve problems. Conversion factors are ratios written in the fraction form (a/b). In this chapter, there are three major conversion factors we will learn to use: A universal conversion factor: 1 mole of chemical contains 6.02 x 1023 molecules (or atoms) A molar mass conversion factor: 1 mole of chemical weighs the molar mass of the chemical A chemical formula conversion factor: 1 mole of chemical contains some number of moles of atoms If the chemical in the three conversion factors was CuCl2, then the three conversion factors would be: 23 1 mole of CuCl2 contains 6.02 x 10 molecules of CuCl2 1 mole of CuCl2 weighs 134.6 grams CuCl2 (the molar mass) 1 mole of CuCl2 contains 2 moles of chlorine atoms 1 The most common way that chemists represent ratios is in a fraction form. The three conversion factors would look like this in the fraction form: 1 mole CuCl2 1 mole CuCl2 1 mole CuCl2 23 6.02 x 10 molecule CuCl2 134.6 g CuCl2 2 mole Cl atoms Each of these conversion factors can be written in the inverse form. -
Zumdahl Chapter 5 Gases
5 Gases Contents 5.1 Pressure • Units of Pressure 5.2 The Gas Laws of Boyle, Charles, and Avogadro • Boyle’s Law • Charles’s Law • Avogadro’s Law 5.3 The Ideal Gas Law 5.4 Gas Stoichiometry • Molar Mass of a Gas 5.5 Dalton’s Law of Partial Pressures • Collecting a Gas over Water 5.6 The Kinetic Molecular Theory of Gases • Pressure and Volume (Boyle’s Law) • Pressure and Temperature • Volume and Temperature (Charles’s Law) • Volume and Number of Moles (Avogadro’s Law) • Mixture of Gases (Dalton’s Law) • Deriving the Ideal Gas Law • The Meaning of Temperature • Root Mean Square Velocity 5.7 Effusion and Diffusion • Effusion • Diffusion 5.8 Real Gases 5.9 Characteristics of Several Real Gases 5.10 Chemistry in the Atmosphere The steaming fumaroles located in Bjarnarflag, Iceland release a variety of gases. 178 Matter exists in three distinct physical states: gas, liquid, and solid. Although rel- atively few substances exist in the gaseous state under typical conditions, gases are very important. For example, we live immersed in a gaseous solution. The earth’s atmosphere is a mixture of gases that consists mainly of elemental nitrogen (N2) and oxygen (O2). The atmosphere both supports life and acts as a waste receptacle for the exhaust gases that accompany many industrial processes. The chemical reactions of these waste gases in the atmosphere lead to various types of pollution, including smog and acid rain. The gases in the atmosphere also shield us from harmful radiation from the sun and keep the earth warm by reflecting heat radiation back toward the earth. -
Mc2 " Mc2 , E = K + Mc2 = ! Mc2 for Particle of Charge Q and Mass M Moving in B Field : P = ! Mu = Qbr E2 = ( Pc)2 + (Mc2 )2
Department of Physics Modern Physics (2D) University of California Prof. V. Sharma San Diego Quiz # 3 (Jan 28, 2005) Some Relevant Formulae, Constants and Identities p = ! mu, K = ! mc2 " mc2 , E = K + mc2 = ! mc2 For particle of charge q and mass m moving in B field : p = ! mu = qBR E2 = ( pc)2 + (mc2 )2 In Photoelectric Effect E= hf = Kmax + # 23 Avagadro's Number NA = 6.022 $ 10 particles/mole Planck's Constant h=6.626 $ 10-34J.s=4.136 $ 10-15eV.s 1 eV = 1.602 $ 10-19 J -14 2 Electron rest mass = 8.2 $ 10 J = 0.511 MeV/c Proton rest mass = 1.673$ 10-27Kg = 938.3MeV/c2 Speed of Light in vaccum c = 2.998 $ 108m/s Electron charge = 1.602 $ 10-19 C Atomic mass unit u = 1.6605 $ 10-27kg = 931.49 MeV/c2 Please write your scratch work in pencil and write your answer in indelible ink in your Blue book. Please write your code number clearly on each page. Please plug in numbers only at the very end of your calculations. Department of Physics Modern Physics (2D) University of California Prof. V. Sharma San Diego Quiz # 3 (Jan 28, 2005) Problem 1: Weapons of Mass Destruction [10 pts] (a) How much energy is released in the explosion of a fission bomb containing 3.0kg of fissionable material? Assume that 0.10% of the rest mass is converted to released energy? (b) What mass of TNT would have to explode to provide the same energy release? Assume that each mole of TNT liberates 3.4MJ of energy on exploding. -
Supplementary Description.Pdf
MEASURING HYDROPEROXIDE CHAIN-BRANCHING AGENTS DURING N-PENTANE LOW-TEMPERATURE OXIDATION 1 1 2 2 3 Anne Rodriguez, Olivier Herbinet, Zhandong Wang , Fei Qi , Christa Fittschen , Phillip R. Westmoreland4,Frédérique Battin-Leclerc,1* 1 Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, ENSIC, 1, rue Grandville, BP 20451, 54001 Nancy Cedex, France 2 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China 3PhysicoChimie des Processus de Combustion et de l’Atmosphère, CNRS, Université de Lille 1, 59650 Villeneuve d’Ascq, France 4Department of Chemical & Biomolecular Engineering - NC State University, USA SUPPLEMENTARY DESCRIPTION * To whom correspondence should be addressed. E-mail : [email protected] 1/ Additional details about the used experimental devices and methods 1a/ Schemes of the apparatuses coupling JSR to time-of-flight mass spectrometers combined with synchrotron and laser photoionization I: the differential pumped chamber with molecular-beam sampling system and II the photoionization chamber with the mass spectrometer: 1, VUV light; 2, to turbo molecular pumps; 3, molecular beam; 4, RTOF mass spectrometer; 5, ion trajectory; 6, microchannel plate detector; 7, quartz cone-like nozzle; 8, heated quartz jet-stirred reactor Schematic diagram of the instruments including the jet-stirred reactor and in (a) the synchrotron VUV photoionization mass spectrometer and in (b) the laser photoionization mass spectrometer. 1b/