Pharmacological Approaches for the Modulation of the Potassium Channel KV4.X and Kchips

Total Page:16

File Type:pdf, Size:1020Kb

Pharmacological Approaches for the Modulation of the Potassium Channel KV4.X and Kchips International Journal of Molecular Sciences Review Pharmacological Approaches for the Modulation of the Potassium Channel KV4.x and KChIPs Pilar Cercós 1, Diego A. Peraza 2,3 , Angela de Benito-Bueno 2,3 , Paula G. Socuéllamos 2,3, Abdoul Aziz-Nignan 4, Dariel Arrechaga-Estévez 4, Escarle Beato 4, Emilio Peña-Acevedo 4, Armando Albert 5 , Juan A. González-Vera 6 , Yoel Rodríguez 4 , Mercedes Martín-Martínez 1 , Carmen Valenzuela 2,3,* and Marta Gutiérrez-Rodríguez 1,* 1 Instituto de Química Médica (IQM-CSIC), 28006 Madrid, Spain; [email protected] (P.C.); [email protected] (M.M.-M.) 2 Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, 28029 Madrid, Spain; [email protected] (D.A.P.); [email protected] (A.d.B.-B.); [email protected] (P.G.S.) 3 Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain 4 Department of Natural Sciences, Hostos Community College of CUNY, New York, NY 10451, USA; [email protected] (A.A.-N.); [email protected] (D.A.-E.); [email protected] (E.B.); [email protected] (E.P.-A.); [email protected] (Y.R.) 5 Instituto de Química Física Rocasolano (IQFR-CSIC), 28006 Madrid, Spain; [email protected] 6 Departamento de Físicoquímica, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain; [email protected] * Correspondence: [email protected]; (C.V.); [email protected] (M.G.-R.); Tel.: +34-91-585-4493 (C.V.); +34-91-258-7493 (M.-G.R.) Citation: Cercós, P.; Peraza, D.A.; Abstract: Ion channels are macromolecular complexes present in the plasma membrane and in- Benito-Bueno, A.d.; Socuéllamos, P.G.; tracellular organelles of cells. Dysfunction of ion channels results in a group of disorders named Aziz-Nignan, A.; Arrechaga-Estévez, channelopathies, which represent an extraordinary challenge for study and treatment. In this review, D.; Beato, E.; Peña-Acevedo, E.; we will focus on voltage-gated potassium channels (KV), specifically on the KV4-family. The activa- Albert, A.; González-Vera, J.A.; et al. tion of these channels generates outward currents operating at subthreshold membrane potentials as Pharmacological Approaches for the recorded from myocardial cells (ITO, transient outward current) and from the somata of hippocampal Modulation of the Potassium Channel neurons (ISA). In the heart, KV4 dysfunctions are related to Brugada syndrome, atrial fibrillation, KV4.x and KChIPs. Int. J. Mol. Sci. hypertrophy, and heart failure. In hippocampus, K 4.x channelopathies are linked to schizophrenia, 2021, 22, 1419. https://doi.org/ V 10.3390/ijms22031419 epilepsy, and Alzheimer’s disease. KV4.x channels need to assemble with other accessory subunits (β) to fully reproduce the ITO and ISA currents. β Subunits affect channel gating and/or the traffic to Academic Editor: the plasma membrane, and their dysfunctions may influence channel pharmacology. Among KV4 Antonio Ferrer-Montiel regulatory subunits, this review aims to analyze the KV4/KChIPs interaction and the effect of small Received: 16 January 2021 molecule KChIP ligands in the A-type currents generated by the modulation of the KV4/KChIP Accepted: 28 January 2021 channel complex. Knowledge gained from structural and functional studies using activators or Published: 31 January 2021 inhibitors of the potassium current mediated by KV4/KChIPs will better help understand the under- lying mechanism involving KV4-mediated-channelopathies, establishing the foundations for drug Publisher’s Note: MDPI stays neutral discovery, and hence their treatments. with regard to jurisdictional claims in published maps and institutional affil- Keywords: voltage-gated potassium channels KV4; transient outward current; A-type current; potas- iations. sium channel interacting proteins (KChIPs); protein–protein interactions; KV4/KChIPs modulators Copyright: © 2021 by the authors. 1. Introduction Licensee MDPI, Basel, Switzerland. Ion channels are macromolecular complexes present in the plasma membrane and in- This article is an open access article tracellular organelles of all cells. They play an important role in the maintenance of cellular distributed under the terms and integrity, smooth muscle contraction, secretion of hormones, and neurotransmitters, among conditions of the Creative Commons Attribution (CC BY) license (https:// others. Dysfunction of ion channels results in a group of disorders named channelopathies, creativecommons.org/licenses/by/ which represent an extraordinary challenge for study and treatment [1]. 4.0/). Int. J. Mol. Sci. 2021, 22, 1419. https://doi.org/10.3390/ijms22031419 https://www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 2 of 21 cellular integrity, smooth muscle contraction, secretion of hormones, and neurotransmit- Int. J. Mol. Sci. 2021,ters,22, 1419 among others. Dysfunction of ion channels results in a group of disorders named 2 of 21 channelopathies, which represent an extraordinary challenge for study and treatment [1]. In this review, we will focus on voltage-gated potassium channels (KV), specifically on the KV4-family or Shal-related subfamily. Four members compose this family: KV4.1 In this review, we will focus on voltage-gated potassium channels (KV), specifically (KCND1), KV4.2 (KCND2), and two splice variants of KV4.3 (KCND3), which have an over- on the KV4-family or Shal-related subfamily. Four members compose this family: KV4.1 all sequence identity of 60% [2,3]. As with other eukaryotic KV channels, KV4.x are sym- (KCND1), K 4.2 (KCND2), and two splice variants of K 4.3 (KCND3), which have an metrically assembled as homoV - or heterotetramers of pore-forming subunitsV (α subunits) over-all sequence identity of 60% [2,3]. As with other eukaryotic K channels, K 4.x around a central pore [4,5]. Each of these α subunits have six transmembrane helices V(S1– V are symmetrically assembled as homo- or heterotetramers of pore-forming subunits (α S6), with its N- and C-terminus pointing to the cytoplasm. At the N-terminus, the princi- subunits) around a central pore [4,5]. Each of these α subunits have six transmembrane pal motif is the so-called T1 domain, which governs the specificity of assembly and is helices (S1–S6), with its N- and C-terminus pointing to the cytoplasm. At the N-terminus, involved in channel tetramerization and its gating. The first four helices (S1–S4) form the the principal motif is the so-called T1 domain, which governs the specificity of assembly voltage-sensing domain, whereas S5, S6, and the P-loop that link them, form the pore do- and is involved in channel tetramerization and its gating. The first four helices (S1–S4) main. There is homogeneity within the KV4.x transmembrane region, except in the S6- form the voltage-sensing domain, whereas S5, S6, and the P-loop that link them, form the proximal cytosolic C-terminus, where KV4.3 isoform 1 has an additional exon that encodes pore domain. There is homogeneity within the KV4.x transmembrane region, except in 19 amino acids (residues 488–506) (Figure 1). Owing to alternative splicing of this addi- the S6-proximal cytosolic C-terminus, where KV4.3 isoform 1 has an additional exon that tional exon, KVencodes4.3 has two 19 amino variants acids in human (residues tissues: 488–506) KV4.3L (Figure (long1). form) Owing and to K alternativeV4.3S (short splicing of this form). Both splice variants are identical except for the additional sequence of 19 amino additional exon, KV4.3 has two variants in human tissues: KV4.3L (long form) and KV4.3S acids present in(short the long form). form Both KV4.3L splice [6,7]. variants are identical except for the additional sequence of 19 KV4 channels are highly expressed in smooth muscles, heart, and brain. The activa- amino acids present in the long form KV4.3L [6,7]. tion of these channels generates outward currents operating at subthreshold membrane KV4 channels are highly expressed in smooth muscles, heart, and brain. The activa- potentials, as tionrecorded of these from channels myocardial generates cells (I outwardTO, transient currents outward operating current) at subthreshold and from membrane the somata of hippocampal neurons (ISA, somato-dendritic subthreshold-activating A-type potentials, as recorded from myocardial cells (ITO, transient outward current) and from the + V V V + K current) [3,8,9]somata. Among of hippocampal K 4 channels, neurons K 4.2 (IandSA, K somato-dendritic4.3 are the most subthreshold-activatingthoroughly studied A-type K members of thecurrent) family. [ 3Concerning,8,9]. Among the K Vmyocardium,4 channels, K KVV4.24.2 and and K KVV4.34.3 arepresent the most a comple- thoroughly studied mentary expression,members with of K theV4.2 family. being Concerningmore abundant the myocardium,in the ventricle K Vand4.2 andKV4.3 K Vin4.3 the present a com- atria [8,9]. In theplementary heart, KV4 expression, dysfunctions with are K involvedV4.2 being in moreBrugada abundant syndrome, in the atrial ventricle fibri- and KV4.3 in llation, hypertrophythe atria, and [8, 9heart]. In failure the heart, [10]. K V4 dysfunctions are involved in Brugada syndrome, atrial In the brain,fibri-llation, the KV4 channel hypertrophy, expression and heartdepends failure on the [10 ].neuron type and region, and continuous efforts areIn themade brain, to unravel the KV4 the channel organization expression of these depends channels on the in neuron different type sub- and region, and cellular compartmentscontinuous and efforts neuron are madetypes to [11,12]. unravel In the hippocampus, organization of K theseV4 channelopathies channels in different subcellu- are linked to schizophrenia,lar compartments epilepsy and neuron, and Alzheimer’s types [11,12]. disease In hippocampus, [13–15]. Hence, KV4 channelopathies the phar- are linked macological modulationto schizophrenia, of ITO and epilepsy, ISA may and have Alzheimer’s therapeutic disease value in [13 the–15 treatment].
Recommended publications
  • Spatially Heterogeneous Choroid Plexus Transcriptomes Encode Positional Identity and Contribute to Regional CSF Production
    The Journal of Neuroscience, March 25, 2015 • 35(12):4903–4916 • 4903 Development/Plasticity/Repair Spatially Heterogeneous Choroid Plexus Transcriptomes Encode Positional Identity and Contribute to Regional CSF Production Melody P. Lun,1,3 XMatthew B. Johnson,2 Kevin G. Broadbelt,1 Momoko Watanabe,4 Young-jin Kang,4 Kevin F. Chau,1 Mark W. Springel,1 Alexandra Malesz,1 Andre´ M.M. Sousa,5 XMihovil Pletikos,5 XTais Adelita,1,6 Monica L. Calicchio,1 Yong Zhang,7 Michael J. Holtzman,7 Hart G.W. Lidov,1 XNenad Sestan,5 Hanno Steen,1 XEdwin S. Monuki,4 and Maria K. Lehtinen1 1Department of Pathology, and 2Division of Genetics, Boston Children’s Hospital, Boston, Massachusetts 02115, 3Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, 4Department of Pathology and Laboratory Medicine, University of California Irvine School of Medicine, Irvine, California 92697, 5Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut 06510, 6Department of Biochemistry, Federal University of Sa˜o Paulo, Sa˜o Paulo 04039, Brazil, and 7Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St Louis, Missouri 63110 A sheet of choroid plexus epithelial cells extends into each cerebral ventricle and secretes signaling factors into the CSF. To evaluate whether differences in the CSF proteome across ventricles arise, in part, from regional differences in choroid plexus gene expression, we defined the transcriptome of lateral ventricle (telencephalic) versus fourth ventricle (hindbrain) choroid plexus. We find that positional identitiesofmouse,macaque,andhumanchoroidplexiderivefromgeneexpressiondomainsthatparalleltheiraxialtissuesoforigin.We thenshowthatmolecularheterogeneitybetweentelencephalicandhindbrainchoroidplexicontributestoregion-specific,age-dependent protein secretion in vitro.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Genome-Wide Screening Identifies a KCNIP1 Copy Number Variant As a Genetic Predictor for Atrial Fibrillation
    ARTICLE Received 21 Oct 2014 | Accepted 16 Nov 2015 | Published 2 Feb 2016 DOI: 10.1038/ncomms10190 OPEN Genome-wide screening identifies a KCNIP1 copy number variant as a genetic predictor for atrial fibrillation Chia-Ti Tsai1,2,3, Chia-Shan Hsieh4,5, Sheng-Nan Chang2,3, Eric Y. Chuang4,5, Kwo-Chang Ueng6,7, Chin-Feng Tsai6,7, Tsung-Hsien Lin8, Cho-Kai Wu1, Jen-Kuang Lee1, Lian-Yu Lin1, Yi-Chih Wang1, Chih-Chieh Yu1, Ling-Ping Lai1, Chuen-Den Tseng1, Juey-Jen Hwang1, Fu-Tien Chiang1,9 & Jiunn-Lee Lin1 Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Previous genome- wide association studies had identified single-nucleotide polymorphisms in several genomic regions to be associated with AF. In human genome, copy number variations (CNVs) are known to contribute to disease susceptibility. Using a genome-wide multistage approach to identify AF susceptibility CNVs, we here show a common 4,470-bp diallelic CNV in the first intron of potassium interacting channel 1 gene (KCNIP1) is strongly associated with AF in Taiwanese populations (odds ratio ¼ 2.27 for insertion allele; P ¼ 6.23 Â 10 À 24). KCNIP1 insertion is associated with higher KCNIP1 mRNA expression. KCNIP1-encoded protein potassium interacting channel 1 (KCHIP1) is physically associated with potassium Kv channels and modulates atrial transient outward current in cardiac myocytes. Overexpression of KCNIP1 results in inducible AF in zebrafish. In conclusions, a common CNV in KCNIP1 gene is a genetic predictor of AF risk possibly pointing to a functional pathway. 1 Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, No.
    [Show full text]
  • Emerging Roles for Multifunctional Ion Channel Auxiliary Subunits in Cancer T ⁎ Alexander S
    Cell Calcium 80 (2019) 125–140 Contents lists available at ScienceDirect Cell Calcium journal homepage: www.elsevier.com/locate/ceca Emerging roles for multifunctional ion channel auxiliary subunits in cancer T ⁎ Alexander S. Hawortha,b, William J. Brackenburya,b, a Department of Biology, University of York, Heslington, York, YO10 5DD, UK b York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK ARTICLE INFO ABSTRACT Keywords: Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been Auxiliary subunit shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are Cancer typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Calcium channel Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further Chloride channel expanding the repertoire of cellular processes governed by ion channel complexes to processes such as trans- Potassium channel cellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it Sodium channel is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will − focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+,K+,Na+ and Cl channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregu- lated (e.g. Cavβ,Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1,Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • DNA Methylation Associated with Postpartum Depressive Symptoms Overlaps Findings from a Genome-Wide Association Meta-Analysis of Depression Dana M
    Lapato et al. Clinical Epigenetics (2019) 11:169 https://doi.org/10.1186/s13148-019-0769-z RESEARCH Open Access DNA methylation associated with postpartum depressive symptoms overlaps findings from a genome-wide association meta-analysis of depression Dana M. Lapato1,2* , Roxann Roberson-Nay2,3, Robert M. Kirkpatrick2,3, Bradley T. Webb2,3, Timothy P. York1,2,4† and Patricia A. Kinser5† Abstract Background: Perinatal depressive symptoms have been linked to adverse maternal and infant health outcomes. The etiology associated with perinatal depressive psychopathology is poorly understood, but accumulating evidence suggests that understanding inter-individual differences in DNA methylation (DNAm) patterning may provide insight regarding the genomic regions salient to the risk liability of perinatal depressive psychopathology. Results: Genome-wide DNAm was measured in maternal peripheral blood using the Infinium MethylationEPIC microarray. Ninety-two participants (46% African-American) had DNAm samples that passed all quality control metrics, and all participants were within 7 months of delivery. Linear models were constructed to identify differentially methylated sites and regions, and permutation testing was utilized to assess significance. Differentially methylated regions (DMRs) were defined as genomic regions of consistent DNAm change with at least two probes within 1 kb of each other. Maternal age, current smoking status, estimated cell-type proportions, ancestry-relevant principal components, days since delivery, and chip position served as covariates to adjust for technical and biological factors. Current postpartum depressive symptoms were measured using the Edinburgh Postnatal Depression Scale. Ninety-eight DMRs were significant (false discovery rate < 5%) and overlapped 92 genes. Three of the regions overlap loci from the latest Psychiatric Genomics Consortium meta-analysis of depression.
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]
  • Modulation of Neuronal Ryanodine Receptor-Mediated Calcium
    MODULATION OF NEURONAL RYANODINE RECEPTOR-MEDIATED CALCIUM SIGNALING BY CALSENILIN A DISSERTATION IN Cell Biology and Biophysics and Molecular Biology and Biochemistry Presented to the Faculty of the University of Missouri-Kansas City in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY by MICHAEL ANTHONY GRILLO M.S., University of Missouri-Kansas City, Kansas City, MO 2010 B.S., Texas Wesleyan University, TX, 2000 Kansas City, MO 2013 2013 MICHAEL ANTHONY GRILLO ALL RIGHTS RESERVED MODULATION OF NEURONAL RYANODINE RECEPTOR-MEDIATED CALCIUM SIGNALING BY CALSENILIN Michael Anthony Grillo, Candidate for the Doctor of Philosophy Degree University of Missouri-Kansas City, 2013 ABSTRACT Calsenilin is calcium (Ca2+) ion Ca2+ binding protein found in the nucleus, plasma membrane, and endoplasmic reticulum of neuronal cells. Calsenilin was first found to interact with two proteins involved in early-onset familial Alzheimer disease (AD), presenilin 1 and presenilin 2. Several studies have shown overexpression of calsenilin to alter Ca2+ signaling and cell viability in several neuronal cell models of AD. In this study, we show that calsenilin directly interacts with the ryanodine receptor (RyR) modulating Ca2+ release from this intracellular Ca2+-activated Ca2+ release channel. Co-expression, co-localization, and protein-protein interaction of calsenilin and RyR in primary neurons and in central nervous system tissue were determined using immunoblotting, immunohistochemistry and co-immunoprecipitation. Mechanisms of intracellular Ca2+- signaling controlled by the interaction of calsenilin and RyR, including changes in the release of Ca2+ from intracellular stores, were measured with single channel electrophysiology and live-cell optical imaging techniques. Immunohistochemical studies showed a high degree of co-localization between calsenilin and the RyR in neurons of the central nervous system.
    [Show full text]
  • Dimethylation of Histone 3 Lysine 9 Is Sensitive to the Epileptic Activity
    1368 MOLECULAR MEDICINE REPORTS 17: 1368-1374, 2018 Dimethylation of Histone 3 Lysine 9 is sensitive to the epileptic activity, and affects the transcriptional regulation of the potassium channel Kcnj10 gene in epileptic rats SHAO-PING ZHANG1,2*, MAN ZHANG1*, HONG TAO1, YAN LUO1, TAO HE3, CHUN-HUI WANG3, XIAO-CHENG LI3, LING CHEN1,3, LIN-NA ZHANG1, TAO SUN2 and QI-KUAN HU1-3 1Department of Physiology; 2Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Ningxia Medical University; 3General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China Received February 18, 2017; Accepted September 13, 2017 DOI: 10.3892/mmr.2017.7942 Abstract. Potassium channels can be affected by epileptic G9a by 2-(Hexahydro-4-methyl-1H-1,4-diazepin-1-yl)-6,7-di- seizures and serve a crucial role in the pathophysiology of methoxy-N-(1-(phenyl-methyl)-4-piperidinyl)-4-quinazolinamine epilepsy. Dimethylation of histone 3 lysine 9 (H3K9me2) and tri-hydrochloride hydrate (bix01294) resulted in upregulation its enzyme euchromatic histone-lysine N-methyltransferase 2 of the expression of Kir4.1 proteins. The present study demon- (G9a) are the major epigenetic modulators and are associated strated that H3K9me2 and G9a are sensitive to epileptic seizure with gene silencing. Insight into whether H3K9me2 and G9a activity during the acute phase of epilepsy and can affect the can respond to epileptic seizures and regulate expression of transcriptional regulation of the Kcnj10 channel. genes encoding potassium channels is the main purpose of the present study. A total of 16 subtypes of potassium channel Introduction genes in pilocarpine-modelled epileptic rats were screened by reverse transcription-quantitative polymerase chain reac- Epilepsies are disorders of neuronal excitability, characterized tion, and it was determined that the expression ATP-sensitive by spontaneous and recurrent seizures.
    [Show full text]
  • Pflugers Final
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Serveur académique lausannois A comprehensive analysis of gene expression profiles in distal parts of the mouse renal tubule. Sylvain Pradervand2, Annie Mercier Zuber1, Gabriel Centeno1, Olivier Bonny1,3,4 and Dmitri Firsov1,4 1 - Department of Pharmacology and Toxicology, University of Lausanne, 1005 Lausanne, Switzerland 2 - DNA Array Facility, University of Lausanne, 1015 Lausanne, Switzerland 3 - Service of Nephrology, Lausanne University Hospital, 1005 Lausanne, Switzerland 4 – these two authors have equally contributed to the study to whom correspondence should be addressed: Dmitri FIRSOV Department of Pharmacology and Toxicology, University of Lausanne, 27 rue du Bugnon, 1005 Lausanne, Switzerland Phone: ++ 41-216925406 Fax: ++ 41-216925355 e-mail: [email protected] and Olivier BONNY Department of Pharmacology and Toxicology, University of Lausanne, 27 rue du Bugnon, 1005 Lausanne, Switzerland Phone: ++ 41-216925417 Fax: ++ 41-216925355 e-mail: [email protected] 1 Abstract The distal parts of the renal tubule play a critical role in maintaining homeostasis of extracellular fluids. In this review, we present an in-depth analysis of microarray-based gene expression profiles available for microdissected mouse distal nephron segments, i.e., the distal convoluted tubule (DCT) and the connecting tubule (CNT), and for the cortical portion of the collecting duct (CCD) (Zuber et al., 2009). Classification of expressed transcripts in 14 major functional gene categories demonstrated that all principal proteins involved in maintaining of salt and water balance are represented by highly abundant transcripts. However, a significant number of transcripts belonging, for instance, to categories of G protein-coupled receptors (GPCR) or serine-threonine kinases exhibit high expression levels but remain unassigned to a specific renal function.
    [Show full text]
  • Spatial RNA Sequencing Identifies Robust Markers Of
    fnmol-14-699562 July 2, 2021 Time: 17:11 # 1 ORIGINAL RESEARCH published: 08 July 2021 doi: 10.3389/fnmol.2021.699562 Spatial RNA Sequencing Identifies Robust Markers of Vulnerable and Resistant Human Midbrain Dopamine Neurons and Their Expression in Parkinson’s Disease Julio Aguila1†, Shangli Cheng2,3†, Nigel Kee1,4,5, Ming Cao1, Menghan Wang2,3, Qiaolin Deng2,3*† and Eva Hedlund1,4,5*† 1 Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden, 2 Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden, 3 Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden, 4 Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden, 5 Department Edited by: of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden Ildikó Rácz, University Hospital Bonn, Germany Reviewed by: Defining transcriptional profiles of substantia nigra pars compacta (SNc) and ventral Sandra Blaess, tegmental area (VTA) dopamine neurons is critical to understanding their differential University of Bonn, Germany Kelvin C. Luk, vulnerability in Parkinson’s Disease (PD). Here, we determine transcriptomes of human University of Pennsylvania, SNc and VTA dopamine neurons using LCM-seq on a large sample cohort. We United States apply a bootstrapping strategy as sample input to DESeq2 and identify 33 stably *Correspondence: differentially expressed genes (DEGs) between these two subpopulations. We also Qiaolin Deng [email protected] compute a minimal sample size for identification of
    [Show full text]
  • Target Gene Gene Description Validation Diana Miranda
    Supplemental Table S1. Mmu-miR-183-5p in silico predicted targets. TARGET GENE GENE DESCRIPTION VALIDATION DIANA MIRANDA MIRBRIDGE PICTAR PITA RNA22 TARGETSCAN TOTAL_HIT AP3M1 adaptor-related protein complex 3, mu 1 subunit V V V V V V V 7 BTG1 B-cell translocation gene 1, anti-proliferative V V V V V V V 7 CLCN3 chloride channel, voltage-sensitive 3 V V V V V V V 7 CTDSPL CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase-like V V V V V V V 7 DUSP10 dual specificity phosphatase 10 V V V V V V V 7 MAP3K4 mitogen-activated protein kinase kinase kinase 4 V V V V V V V 7 PDCD4 programmed cell death 4 (neoplastic transformation inhibitor) V V V V V V V 7 PPP2R5C protein phosphatase 2, regulatory subunit B', gamma V V V V V V V 7 PTPN4 protein tyrosine phosphatase, non-receptor type 4 (megakaryocyte) V V V V V V V 7 EZR ezrin V V V V V V 6 FOXO1 forkhead box O1 V V V V V V 6 ANKRD13C ankyrin repeat domain 13C V V V V V V 6 ARHGAP6 Rho GTPase activating protein 6 V V V V V V 6 BACH2 BTB and CNC homology 1, basic leucine zipper transcription factor 2 V V V V V V 6 BNIP3L BCL2/adenovirus E1B 19kDa interacting protein 3-like V V V V V V 6 BRMS1L breast cancer metastasis-suppressor 1-like V V V V V V 6 CDK5R1 cyclin-dependent kinase 5, regulatory subunit 1 (p35) V V V V V V 6 CTDSP1 CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase 1 V V V V V V 6 DCX doublecortin V V V V V V 6 ENAH enabled homolog (Drosophila) V V V V V V 6 EPHA4 EPH receptor A4 V V V V V V 6 FOXP1 forkhead box P1 V
    [Show full text]