Lise Meitner's Life and Synopsis of Nuclear Physics

Total Page:16

File Type:pdf, Size:1020Kb

Lise Meitner's Life and Synopsis of Nuclear Physics LISE MEITNER’S LIFE AND SYNOPSIS OF NUCLEAR PHYSICS day of Birth in Vienna ___________________ 7.11.1878 finishes compulsory _____________________ 1892 school for girls finishes training as ______________________ 1895 __________ Wilhelm Conrad Röntgen primary school teacher incidentally discovers X-rays in for French Würzburg 1896 __________ Henri Becquerel discovers radiation of Uranium in Paris 1897 __________ J.J. Thomson detects the electron as first elementary particle 1898 __________ Marie and Pierre Curie discover radium in Paris 1900 __________ Max Planck introduces his concept of the Wirkungsquantum (quantum of action) successfully completes final ______________ 1901 __________ first Nobel Prize of Physics to exams as an external; begins W.C. Röntgen studies of physics at the University of Vienna 1903 __________ Ernest Rutherford classifies radiation as α-, β- and γ-rays 1905 __________ Albert Einstein’s 3 essential papers published, among them the spezielle Relativitätstheorie (special theory of relativity) graduation in Vienna ___________________ 1906 moves to Berlin, begins advanced _______ 1907 studies at Planck’s institute; collaboration with Otto Hahn begins discovery of the radioactive _____________ 1909 recoil (radioaktiver Rückstoß) with Hahn 1911 __________ First Solvay-conference in Brussels 1913 __________ Ernest Rutherford and Niels Bohr develop the „planetary model of atoms“, having a heavy nucleus in its centre begins working in the ___________________ 1912 Kaiser-Wilhelm-Institute Berlin, at first as unpaid guest regular employment ________________ 1913 1915 __________ Einstein publishes the general theory of relativity takes part at WW I as nurse and __________ 1915/16 radiologist at the Austro-Russian eastern front head of radio-physical __________________ 1917 Department at the Kaiser-Wilhelm-Institute discovery of the element ________________ 1918 Protactinium (with Hahn) professor at the Institute ________________ 1919 __________ Rutherford succeeds in the first transformation of one element into another (nitrogen – oxygen) habilitation at the Friedrich- _____________ 1922 __________ Wolfgang Pauli detects Wilhelm- University, Berlin the electron spin external professorship __________________ 1923 1926 __________ establishment of wave-mechanics and quantum-mechanics by Erwin Schrödinger, Werner Heisenberg and Paul Dirac 1932 James Chadwick discovers the Neutron removal from University, ________________ 1933 remains in the Institute begin of the experiments on the _________ 1934 __________ Enrico Fermi succeeds in Transuranic elements with Hahn bombarding heavy nuclei with neutrons and hence establishes the Transuranium-Hypothesis due to the Anschluss of Austria, __________ 1938 __________ Otto Hahn and Fritz Straßmann she loses Austrian citizenship; discover nuclear fission in Berlin escape to Netherlands, exile in Sweden, begins to work at the Nobel Institute in Stockholm theoretical interpretation of ______________ 1938/39 fission (with her nephew Otto Robert Frisch) 1939 __________ Hahn and Straßmann publish their experiments and results; __________ Foundation of the Uranverein, Berlin __________ Einstein’s letter to Roosevelt 1941 __________ Fermi builds first Uranium reactor in Chicago __________ Manhattan Project established travels to USA __________________________ 1946 teaching activity at the Catholic University, Washington Woman of the year 1946 professor at the Royal ___________________ 1947 Technical University, Stockholm Swedish citizenship _____________________ 1948 Medal Pour le Mérite ___________________ 1957 in Germany opening of the Hahn-Meitner- ___________ 1959 Institut in Berlin moves to Cambridge/UK ________________ 1960 dies in Cambridge, shortly after __________ 27.10.1968 Otto Hahn 1997 __________ Element 109 baptized Meitnerium .
Recommended publications
  • 1 the Equation of a Light Leptonic Magnetic Monopole and Its
    The equation of a Light Leptonic Magnetic Monopole and its Experimental Aspects Georges Lochak Fondation Louis de Broglie 23, rue Marsoulan F-75012 Paris [email protected] Abstract. The present theory is closely related to Dirac’s equation of the electron, but not to his magnetic monopole theory, except for his relation between electric and magnetic charge. The theory is based on the fact, that the massless Dirac equation admits a second electromagnetic coupling, deduced from a pseudo-scalar gauge invariance. The equation thus obtained has the symmetry laws of a massless leptonic, magnetic monopole, able to interact weakly. We give a more precise form of the Dirac relation between electric and magnetic charges and a quantum form of the Poincaré first integral. In the Weyl representation our equation splits into P-conjugated monopole and antimonopole equations with the correct electromagnetic coupling and opposite chiralities, predicted by P. Curie. Charge conjugated monopoles are symmetric in space and not in time (contrary to the electric particles) : an important fact for the vacuum polarization. Our monopole is a magnetically excited neutrino, which leads to experimental consequences. These monopoles are assumed to be produced by electromagnetic pulses or arcs, leading to nuclear transmutations and, for beta radioactive elements, a shortening of the life time and the emission of monopoles instead of neutrinos in a magnetic field. A corresponding discussion is given in section 15. 1. Introduction. The hypothesis of separated magnetic poles is very old. In the 2nd volume of his famous Treatise of Electricity and Magnetism [1], devoted to Magnetism, Maxwell considered the existence of free magnetic charges as an evidence, just as the evidence of electric charges.
    [Show full text]
  • Hitler and Heisenberg
    The Wall Street Journal December 27-28, 2014 Book Review “Serving the Reich” by Philip Ball, Chicago, $30, 303 pages Hitler and Heisenberg Werner Heisenberg thought that once Germany had won, the ‘good Germans’ would get rid of the Nazis. Fizzing The museum inside the former basement tavern where in early 1945 German scientists built a small nuclear reactor. Associated Press by Jeremy Bernstein The German scientists who remained in Germany throughout the Nazi period can be divided into three main groups. At one end were the anti-Nazis—people who not only despised the regime but tried to do something about it. They were very few. Two that come to mind were Fritz Strassmann and Max von Laue. Strassmann was a radiochemist—a specialist in radioactive materials—who was blacklisted from university jobs by the Society of German Chemists in 1933 for his anti-Nazi views. He was fortunate to get a half-pay job at the Kaiser Wilhelm Institute for Chemistry, which got some of its funding from industry. He and his wife (they had a 3-year-old son) hid a Jewish friend in their apartment for months. With the radiochemist Otto Hahn, he performed the 1938 experiment in which fission was observed for the first time. Von Laue won the Nobel Prize in physics in 1914. Soon after Einstein published his 1905 paper on relativity, von Laue went to Switzerland to see him. They remained friends for life. Under the Nazis, Einstein’s work was denounced as “Jewish science.” When a number of von Laue’s colleagues agreed to use relativity but attribute it to some Aryan, he refused.
    [Show full text]
  • Unerring in Her Scientific Enquiry and Not Afraid of Hard Work, Marie Curie Set a Shining Example for Generations of Scientists
    Historical profile Elements of inspiration Unerring in her scientific enquiry and not afraid of hard work, Marie Curie set a shining example for generations of scientists. Bill Griffiths explores the life of a chemical heroine SCIENCE SOURCE / SCIENCE PHOTO LIBRARY LIBRARY PHOTO SCIENCE / SOURCE SCIENCE 42 | Chemistry World | January 2011 www.chemistryworld.org On 10 December 1911, Marie Curie only elements then known to or ammonia, having a water- In short was awarded the Nobel prize exhibit radioactivity. Her samples insoluble carbonate akin to BaCO3 in chemistry for ‘services to the were placed on a condenser plate It is 100 years since and a chloride slightly less soluble advancement of chemistry by the charged to 100 Volts and attached Marie Curie became the than BaCl2 which acted as a carrier discovery of the elements radium to one of Pierre’s electrometers, and first person ever to win for it. This they named radium, and polonium’. She was the first thereby she measured quantitatively two Nobel prizes publishing their results on Boxing female recipient of any Nobel prize their radioactivity. She found the Marie and her husband day 1898;2 French spectroscopist and the first person ever to be minerals pitchblende (UO2) and Pierre pioneered the Eugène-Anatole Demarçay found awarded two (she, Pierre Curie and chalcolite (Cu(UO2)2(PO4)2.12H2O) study of radiactivity a new atomic spectral line from Henri Becquerel had shared the to be more radioactive than pure and discovered two new the element, helping to confirm 1903 physics prize for their work on uranium, so reasoned that they must elements, radium and its status.
    [Show full text]
  • The Transuranium Elements: from Neptunium and Plutonium to Element 112
    UCRL-JC- 124728 The Transuranium Elements: From Neptunium and Plutonium to Element 112 Professor Darleane C. Hoffman Lawrence Livermore National Laboratory G. Seaborg Institute for Transactinium Science RECEIVED T. Isotope Sciences Division sEp23 ?9g6 This paper was prepared for submittal to the Conference Proceedings NATO Advanced Study Institute on "Actinides and the Environment" Chania, Crete, Greece July 7-19, 1996 July 26, 1996 DISCWMER This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best avaiiable original document. c THE TRANSURANIUM ELEMENTS: FROM NEPTUNIUM AM) PLUTONIUM TO ELEMENT112 DarIeane C. Hoffman Nuclear Science Division & Chemistry Department, University of California, Berkeley, CA 94720 & G. T. Seaborg Institute for ' Transactinium Science, MS-L23 1, LLNL, Livermore, CA 94550.
    [Show full text]
  • A Century of X-Ray Crystallography and 2014 International Year of X-Ray Crystallography
    Macedonian Journal of Chemistry and Chemical Engineering, Vol. 34, No. 1, pp. 19–32 (2015) MJCCA9 – 658 ISSN 1857-5552 Received: January 15, 2015 UDC: 631.416.865(497.7:282) Accepted: February 13, 2015 Review A CENTURY OF X-RAY CRYSTALLOGRAPHY AND 2014 INTERNATIONAL YEAR OF X-RAY CRYSTALLOGRAPHY Biserka Kojić-Prodić Rudjer Bošković Institute, Bijenička c. 54, Zagreb, Croatia [email protected] The 100th anniversary of the Nobel prize awarded to Max von Laue in 1914 for his discovery of diffraction of X-rays on a crystal marked the beginning of a new branch of science - X-ray crystallog- raphy. The experimental evidence of von Laue's discovery was provided by physicists W. Friedrich and P. Knipping in 1912. In the same year, W. L. Bragg described the analogy between X-rays and visible light and formulated the Bragg's law, a fundamental relation that connected the wave nature of X-rays and fine structure of a crystal at atomic level. In 1913 the first simple diffractometer was constructed and structure determination started by the Braggs, father and son. In 1915 their discoveries were acknowl- edged by a Nobel Prize in physics. Since then, X-ray diffraction has been the basic method for determina- tion of three-dimensional structures of synthetic and natural compounds. The three-dimensional structure of a substances defines its physical, chemical, and biological properties. Over the past century the signifi- cance of X-ray crystallography has been recognized by about forty Nobel prizes. X-ray structure analysis of simple crystals of rock salt, diamond and graphite, and later of complex biomolecules such as B12- vitamin, penicillin, haemoglobin/myoglobin, DNA, and biomolecular complexes such as viruses, chroma- tin, ribozyme, and other molecular machines have illustrated the development of the method.
    [Show full text]
  • Nobel Prizes Social Network
    Nobel prizes social network Marie Skłodowska Curie (Phys.1903, Chem.1911) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Irène Joliot-Curie (Chem.1935) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Irène Joliot-Curie (Chem.1935) = Frédéric Joliot-Curie (Chem.1935) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Paul Langevin Irène Joliot-Curie (Chem.1935) = Frédéric Joliot-Curie (Chem.1935) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Paul Langevin Maurice de Broglie Louis de Broglie (Phys.1929) Irène Joliot-Curie (Chem.1935) = Frédéric Joliot-Curie (Chem.1935) Nobel prizes social network Sir J. J. Thomson (Phys.1906) Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Paul Langevin Maurice de Broglie Louis de Broglie (Phys.1929) Irène Joliot-Curie (Chem.1935) = Frédéric Joliot-Curie (Chem.1935) Nobel prizes social network (more) Sir J. J. Thomson (Phys.1906) Nobel prizes social network (more) Sir J. J. Thomson (Phys.1906) Owen Richardson (Phys.1928) Nobel prizes social network (more) Sir J. J. Thomson (Phys.1906) Owen Richardson (Phys.1928) Clinton Davisson (Phys.1937) Nobel prizes social network (more) Sir J. J. Thomson (Phys.1906) Owen Richardson (Phys.1928) Charlotte Richardson = Clinton Davisson (Phys.1937) Nobel prizes social network (more) Sir J.
    [Show full text]
  • ARIE SKLODOWSKA CURIE Opened up the Science of Radioactivity
    ARIE SKLODOWSKA CURIE opened up the science of radioactivity. She is best known as the discoverer of the radioactive elements polonium and radium and as the first person to win two Nobel prizes. For scientists and the public, her radium was a key to a basic change in our understanding of matter and energy. Her work not only influenced the development of fundamental science but also ushered in a new era in medical research and treatment. This file contains most of the text of the Web exhibit “Marie Curie and the Science of Radioactivity” at http://www.aip.org/history/curie/contents.htm. You must visit the Web exhibit to explore hyperlinks within the exhibit and to other exhibits. Material in this document is copyright © American Institute of Physics and Naomi Pasachoff and is based on the book Marie Curie and the Science of Radioactivity by Naomi Pasachoff, Oxford University Press, copyright © 1996 by Naomi Pasachoff. Site created 2000, revised May 2005 http://www.aip.org/history/curie/contents.htm Page 1 of 79 Table of Contents Polish Girlhood (1867-1891) 3 Nation and Family 3 The Floating University 6 The Governess 6 The Periodic Table of Elements 10 Dmitri Ivanovich Mendeleev (1834-1907) 10 Elements and Their Properties 10 Classifying the Elements 12 A Student in Paris (1891-1897) 13 Years of Study 13 Love and Marriage 15 Working Wife and Mother 18 Work and Family 20 Pierre Curie (1859-1906) 21 Radioactivity: The Unstable Nucleus and its Uses 23 Uses of Radioactivity 25 Radium and Radioactivity 26 On a New, Strongly Radio-active Substance
    [Show full text]
  • Foundation Document Manhattan Project National Historical Park Tennessee, New Mexico, Washington January 2017 Foundation Document
    NATIONAL PARK SERVICE • U.S. DEPARTMENT OF THE INTERIOR Foundation Document Manhattan Project National Historical Park Tennessee, New Mexico, Washington January 2017 Foundation Document MANHATTAN PROJECT NATIONAL HISTORICAL PARK Hanford Washington ! Los Alamos Oak Ridge New Mexico Tennessee ! ! North 0 700 Kilometers 0 700 Miles More detailed maps of each park location are provided in Appendix E. Manhattan Project National Historical Park Contents Mission of the National Park Service 1 Mission of the Department of Energy 2 Introduction 3 Part 1: Core Components 4 Brief Description of the Park. 4 Oak Ridge, Tennessee. 5 Los Alamos, New Mexico . 6 Hanford, Washington. 7 Park Management . 8 Visitor Access. 8 Brief History of the Manhattan Project . 8 Introduction . 8 Neutrons, Fission, and Chain Reactions . 8 The Atomic Bomb and the Manhattan Project . 9 Bomb Design . 11 The Trinity Test . 11 Hiroshima and Nagasaki, Japan . 12 From the Second World War to the Cold War. 13 Legacy . 14 Park Purpose . 15 Park Signifcance . 16 Fundamental Resources and Values . 18 Related Resources . 22 Interpretive Themes . 26 Part 2: Dynamic Components 27 Special Mandates and Administrative Commitments . 27 Special Mandates . 27 Administrative Commitments . 27 Assessment of Planning and Data Needs . 28 Analysis of Fundamental Resources and Values . 28 Identifcation of Key Issues and Associated Planning and Data Needs . 28 Planning and Data Needs . 31 Part 3: Contributors 36 Appendixes 38 Appendix A: Enabling Legislation for Manhattan Project National Historical Park. 38 Appendix B: Inventory of Administrative Commitments . 43 Appendix C: Fundamental Resources and Values Analysis Tables. 48 Appendix D: Traditionally Associated Tribes . 87 Appendix E: Department of Energy Sites within Manhattan Project National Historical Park .
    [Show full text]
  • Otto Stern Annalen 4.11.11
    (To be published by Annalen der Physik in December 2011) Otto Stern (1888-1969): The founding father of experimental atomic physics J. Peter Toennies,1 Horst Schmidt-Böcking,2 Bretislav Friedrich,3 Julian C.A. Lower2 1Max-Planck-Institut für Dynamik und Selbstorganisation Bunsenstrasse 10, 37073 Göttingen 2Institut für Kernphysik, Goethe Universität Frankfurt Max-von-Laue-Strasse 1, 60438 Frankfurt 3Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, 14195 Berlin Keywords History of Science, Atomic Physics, Quantum Physics, Stern- Gerlach experiment, molecular beams, space quantization, magnetic dipole moments of nucleons, diffraction of matter waves, Nobel Prizes, University of Zurich, University of Frankfurt, University of Rostock, University of Hamburg, Carnegie Institute. We review the work and life of Otto Stern who developed the molecular beam technique and with its aid laid the foundations of experimental atomic physics. Among the key results of his research are: the experimental test of the Maxwell-Boltzmann distribution of molecular velocities (1920), experimental demonstration of space quantization of angular momentum (1922), diffraction of matter waves comprised of atoms and molecules by crystals (1931) and the determination of the magnetic dipole moments of the proton and deuteron (1933). 1 Introduction Short lists of the pioneers of quantum mechanics featured in textbooks and historical accounts alike typically include the names of Max Planck, Albert Einstein, Arnold Sommerfeld, Niels Bohr, Max von Laue, Werner Heisenberg, Erwin Schrödinger, Paul Dirac, Max Born, and Wolfgang Pauli on the theory side, and of Wilhelm Conrad Röntgen, Ernest Rutherford, Arthur Compton, and James Franck on the experimental side. However, the records in the Archive of the Nobel Foundation as well as scientific correspondence, oral-history accounts and scientometric evidence suggest that at least one more name should be added to the list: that of the “experimenting theorist” Otto Stern.
    [Show full text]
  • The Beginning of the Nuclear Age the Einstein Szilard Letter to Roosevelt Aug
    Questions 1. Otto Hahn received the 1945 Nobel prize for the experimental discovery of fission. His former colleague Lise Meitner, who explained the phenomenon did not. Do you consider that a fair decision of the Nobel prize committee? 2. What is the difference between a radiative capture reaction, a scattering reaction, and a nuclear reaction? 3. The allied bomb war against the civilian population did not bring the anticipated results, instead of weakening the will for resistance it strengthened it since it provided strong propaganda material to the German and Japanese leadership. Why did the bomb raids continue? The Beginning of the Nuclear Age The Einstein Szilard letter to Roosevelt Aug. 2, 1939 "Because of the danger that Hitler might be the first to have the bomb, I signed a letter to the President which had been drafted by Szilard. Had I known that the fear was not justified, I would not have participated in opening this Pandora's box, nor would Szilard. For my distrust of governments was not limited to Germany." Rumors or Reality? American and British nuclear physicists felt they needed to start a A-bomb project to avoid falling behind their German counterparts. They feared Hitler's forces would be the first to have use of atomic arms. This evaluation was based on a number of considerations: • The pre-war stop of uranium export • The high caliber of German theoretical and experimental physicists like Otto Hahn, Paul Harteck, Werner Heisenberg, Fritz Strassmann, and Carl-Friedrich von Weizsäcker; • German control of Europe's only uranium mine after the conquest of Czechoslovakia; • German capture of the world's largest supply of imported uranium with the fall of Belgium; • German possession of Europe's only cyclotron with the fall of France in 1940; • German control of the world's only commercial source of heavy water after its occupation of Norway.
    [Show full text]
  • Lise Meitner 1878 – 1968
    Discoveries that changed the world: 1932 – 1942 James Chadwick 1891 – 1974 Lise Meitner 1878 – 1968 I „The road to the neutron“ Staff and research students at the Cavendish Laboratory, Cambridge, 1923. (Names from left to right. Front row: J. Chadwick, G. Stead, F.W. Aston, Prof. Sir J. J. Thomson, Prof. Sir E. Rutherford, J.A. Crowther, Miss B. Trevelyan, G.I. Taylor, Second row: P. Kapitza, H. de W. Smyth, T. Alty, J.E. Crackston, H. Robinson, L.F. Curtiss, E.S. Bieler, A.G.D. West, P. Mercier. Back row: P.M.S. Blackett, R.E. Clay, H.W.B. Skinner, H.D. Griffith, A.W. Barton, L.F. Bates, J.S. Rogers, K.G. Emeleus.) The room which Rutherford and Chadwick used for their scattering experiments in the 1920s. The work was carried out in the dark, often to the accompaniment of Rutherford singing „Onward Christian Soldiers“. Rutherford had already proposed the neutron in 1920 in his Bakerian Lecture at the Royal Society. He talked about a “neutral doublet” (at that time considered a proton and electron) that could be difficult to detect and move easily through matter. Curie & Joliot published (incorrectly) in Jan. 1932 the observation: 9Be + 4He → 12C + 1n I. Curie and F. Joliot, C. R. Acad. Sci. Paris 194, 273 (1932) When the radiation was passed through wax the ionisation increased! This increase was due to knock-on protons. To explain this the Curie’s suggested that the emission was of a 55 MeV γ ray, an energy much greater than anything yet seen! Moreover, the radiation also passed through lead This experiment was first performed in 1930 by Walter Bothe and Herbet Becker at U.
    [Show full text]
  • Heisenberg and the Nazi Atomic Bomb Project, 1939-1945: a Study in German Culture
    Heisenberg and the Nazi Atomic Bomb Project http://content.cdlib.org/xtf/view?docId=ft838nb56t&chunk.id=0&doc.v... Preferred Citation: Rose, Paul Lawrence. Heisenberg and the Nazi Atomic Bomb Project, 1939-1945: A Study in German Culture. Berkeley: University of California Press, c1998 1998. http://ark.cdlib.org/ark:/13030/ft838nb56t/ Heisenberg and the Nazi Atomic Bomb Project A Study in German Culture Paul Lawrence Rose UNIVERSITY OF CALIFORNIA PRESS Berkeley · Los Angeles · Oxford © 1998 The Regents of the University of California In affectionate memory of Brian Dalton (1924–1996), Scholar, gentleman, leader, friend And in honor of my father's 80th birthday Preferred Citation: Rose, Paul Lawrence. Heisenberg and the Nazi Atomic Bomb Project, 1939-1945: A Study in German Culture. Berkeley: University of California Press, c1998 1998. http://ark.cdlib.org/ark:/13030/ft838nb56t/ In affectionate memory of Brian Dalton (1924–1996), Scholar, gentleman, leader, friend And in honor of my father's 80th birthday ― ix ― ACKNOWLEDGMENTS For hospitality during various phases of work on this book I am grateful to Aryeh Dvoretzky, Director of the Institute of Advanced Studies of the Hebrew University of Jerusalem, whose invitation there allowed me to begin work on the book while on sabbatical leave from James Cook University of North Queensland, Australia, in 1983; and to those colleagues whose good offices made it possible for me to resume research on the subject while a visiting professor at York University and the University of Toronto, Canada, in 1990–92. Grants from the College of the Liberal Arts and the Institute for the Arts and Humanistic Studies of The Pennsylvania State University enabled me to complete the research and writing of the book.
    [Show full text]