PŘÍRODOVĚDECKÁ FAKULTA

Morfologická diverzifikace afrických bezocasých obojživelníků na úrovni různých taxonomických kategorií

Diplomová práce

Tadeáš Nečas

Vedoucí práce: RNDr. Václav Gvoždík Ph.D.

Ústav botaniky a zoologie

Brno 2019

Bibliografický záznam

Autor: Tadeáš Nečas Přírodovědecká fakulta, Masarykova univerzita Ústav botaniky a zoologie Název práce: Morfologická diverzifikace afrických bezocasých obojživelníků na úrovni různých taxonomických kate- gorií Studijní program: Zoologie

Studijní obor: Ekologická a evoluční biologie

Vedoucí práce: RNDr. Václav Gvoždík Ph.D.

Akademický rok: 2018/2019

Počet stran: 140

Klíčová slova: Afrika; afroskokan; Amphibia; Anura; ; mor- fologie; Kamerun; Kamerunské hory; Kongo; obojživel- nící; Phrynobatrachus; rákosnička; systematika; taxono- mie; žáby.

Bibliographic Entry

Author Tadeáš Nečas Faculty of Science, Masaryk University Department of Botany And Zoology Title of Thesis: Morphological diversification of African anurans from different taxonomic ranks Degree programme: Zoology

Field of Study: Ecological and Evolutionary Biology

Supervisor: RNDr. Václav Gvoždík Ph.D.

Academic Year: 2018/2019

Number of Pages: 140

Keywords: Africa; Amphibia; ; Anura; Cameroon; Cam- eroon Volcanic Line; Congo; ; Hyperolius; mor- phology; Phrynobatrachus; puddle ; reed frog; sys- tematics; .

Abstrakt

Skrytá diverzita žab (Amphibia: Anura) je již řadu desetiletí předmětem studia mnoha evolučních biologů a taxonomů, jejichž práce se ve velkém zjednodušila se začátkem používání molekulárních metod. Tato práce je zaměřena na dva nepříbuzné taxony žab střední Afriky, které spojuje právě jejich kryptický charakter. Hlavní náplní této práce je zhodnocení jejich morfologických a případně i fylogenetických vztahů v rámci druhového komplexu, či rodu. Prvním studovaným taxonem je druhový kom- plex Phrynobatrachus steindachneri (Phrynobatrachidae). Tento druhový komplex za- hrnující morfologicky velice podobné endemity Kamerunských hor v současnosti za- hrnuje tři druhy popsané a jeden druh kandidátní, jehož popis se připravuje. Cílem první části je za pomoci mnohorozměrných statistických metod zhodnotit morfologic- kou variabilitu, či konzervativnost, v rámci tohoto druhového komplexu. Analýzy 14 morfometrických parametrů odhalily malou, ale signifikantní variabilitu odlišující zejména nejsevernější populace/taxon. Druhá část práce se věnuje druhu Hyperolius robustus, který je v současnosti znám pouze z několika málo jedinců a lokalit v De- mokratické republice Kongo. Jeho zařazení do rodu Hyperolius na základě celkového vzhledu vnější morfologie se zdá být jednoznačné, ale fylogenetické analýzy mito- chondriální a jaderné DNA poukazují na vazbu k rodům Morerella a Cryptothylax. Detailní zhodnocení vnější morfologie za využití mnohorozměrných statistických me- tod a vnitřní morfologie (osteologie) za využití μCT podpořilo výsledky fylogenetic- kých analýz a odlišnost tohoto taxonu od rodu Hyperolius. Práce na těchto dvou pří- kladech ukazuje dva odlišné evoluční modely kryptických druhů žab. První předsta- vuje případ morfologické konzervativnosti, pravděpodobně vlivem konzervativnosti ekologické niky, zatímco druhý představuje případ konvergence.

Abstract

The cryptic diversity of the order Anura (Amphibia) has been in the focus of evo- lutionary biologists and taxonomists since the expansion of the use of molecular meth- ods in biological sciences. The main objective of this study is to evaluate morpholog- ically and eventually phylogenetically two representatives of Central African frogs that have in common their cryptic character. Though, on two different systematic lev- els. The first studied model is the Phrynobatrachus steindachneri species complex (Phrynobatrachidae). This morphologically very conservative complex contains three nominal species of medium-sized frogs, endemics of the Cameroon Volcanic Line. A description of a fourth species is under a preparation. The main objective of the first part was to assess the morphological variation within this species complex using mul- tivariate statistical analyses. The multivariate analyses of 14 morphometric parameters revealed limited variation, although significantly distinguishing the northern popula- tion/taxon. The second part of this study focused on Hyperolius robustus, an endemic species of the Democratic Republic of the Congo known from only a few specimens and localities. Based on the superficial characters, Hyperolius robustus resembles spe- cies from the Hyperolius. On the contrary, phylogenetic analyses of mitochon- drial and nuclear DNA place Hyperolius robustus in a relationship with the genera Morerella and Cryptothylax, which form a sister clade to the genus Hyperolius. De- tailed assessment of the external morphology, using multivariate statistical analyses, and the internal morphology (osteology), using the μCT, supported results of the phy- logenetic analyses and differentiate H. robustus from the genus Hyperolius. This study shows two different evolutionary models of anuran cryptic species. The first represents a case of the morphological conservatism, probably caused by the conservation of eco- logical niche. While the second represents a case of the convergence.

Masarykova univerzita

Přírodovědecká fakulta

ZADÁNÍ DIPLOMOVÉ PRÁCE

Student: Bc. Tadeáš Nečas Studijní program: Ekologická a evoluční biologie Studijní obor: Zoologie

Ředitel Ústavu botaniky a zoologie PřF MU Vám ve smyslu Studijního a zku- šebního řádu MU určuje diplomovou práci s tématem: Morfologická diverzifikace afrických bezocasých obojživelníků na úrovni různých taxonomických kategorií Morphological diversification of African anurans from different taxonomic ranks

Oficiální zadání: Stupeň morfologické diverzifikace se liší na různých taxonomických úrovních jak vlivem genotypu, tak vnitrodruhová variabilita může být často ovlivněna vnějšími faktory. V rámci projektu budou studovány vybrané taxony afrických oboj- živelníků z různých taxonomických kategorií s cílem zjistit rozsah morfologické di- verzifikace vs. konzervativnosti na vnitrodruhové/mezipopulační úrovni (popř. u blízce příbuzných druhů) a na mezidruhové úrovni v rámci rodu (popř. mezi blízce příbuznými rody). Morfologie je tradiční klasifikační nástroj v systematice a taxono- mii, nicméně ne vždy je morfologie hodnocena v kontextu možné fenotypové variabi- lity či plasticity. Cílem práce bude (i) morfologicky zhodnotit variabilitu vnitrodruho- vou (či blízce příbuzných druhů), (ii) zhodnotit morfologickou diverzifikaci odlišující druhy geneticky více vzdálené (či blízké rody), a (iii) provést porovnání ve fylogene- tickém a taxonomickém kontextu. Jako modelové skupiny budou sloužit vybrané ta- xony bezocasých obojživelníků z rodu Phrynobatrachus a Hyperolius.

Literatura:

Gvoždík V., Moravec J., Kratochvíl L. (2008). Geographic morphological variation in parapatric Western Palearctic tree frogs, Hyla arborea and Hyla savignyi: are rela- ted species similarly affected by climatic conditions? Biological Journal of the Lin- nean Society 95: 539–556.

Laurent R. F. (1979). Description de deux Hyperolius nouveaux du Sankuru (Zaïre) (Amphibia, ). Revue de Zoologie et de Botanique Africaines 93: 779– 791.

Rödel M.-O., Kosuch J., Grafe T. U., Boistel R., Assemian N. G. E., Kouamé N. G. G., Tohé B., Gourène G., Perret J.-L., Henle K., Taffoureau P., Pollet N., Veith M. (2009). A new tree-frog genus and species from Ivory Coast, West Africa (Amphi- bia: Anura: Hyperoliidae). Zootaxa 2044: 23–45.

Zimkus B. M. & Gvoždík V. (2013). Sky Islands of the Cameroon Volcanic Line: a diversification hotspot for puddle frogs (Phrynobatrachidae: Phrynobatrachus). Zoo- logical Scripta 42: 591–611.

Jazyk závěrečné práce: angličtina Vedoucí diplomové práce: RNDr. Václav Gvoždík, PhD. Podpis vedoucího práce: Konzultant: Mgr. et Mgr. Josef Bryja, Ph.D. Vedoucí pracovní skupiny: doc. Mgr. Tomáš Bartonička, PhD. Podpis vedoucího pracovní skupiny: Datum zadání diplomové práce: 18. 2. 2019

V Brně dne

prof. RNDr. Milan Chytrý, Ph.D ředitel Ústavu botaniky a zoologie

Zadání diplomové práce převzal dne:

Podpis studenta

Poděkování

Rád bych poděkoval rodině za podporu a trpělivost, kterou mi věnovali během mého studia. Dále bych rád poděkoval panu doktorovi Václavu Gvoždíkovi za věcné připomínky a rady při přípravě této práce, a především za možnost pracovat pod jeho vedením na této zajímavé problematice. Současně bych rád poděkoval kolegům panu magistru Mateji Dolinay a paní magistře Alexandře Hánové za rady a pomoc při labo- ratorní práci, a panu docentovi Michalu Vopálenskému z Laboratoře rentgenové radi- oskopie Ústavu teoretické a aplikované mechaniky AV ČR v Telči, s jehož pomocí probíhalo μCT snímkování.

Prohlášení

Prohlašuji, že jsem svoji diplomovou práci vypracoval samostatně s využitím in- formačních zdrojů, které jsou v práci citovány.

Brno 23. dubna 2019 ……………………………… Jméno Příjmení

Obsah 1 Introduction ...... 11 1.1 Objectives ...... 11 1.2 Cryptic species ...... 11 1.3 Genus Phrynobatrachus – the first objective ...... 12 1.3.1 Systematic position of the genus Phrynobatrachus ...... 12 1.3.2 Relationships within Phrynobatrachus ...... 13 1.3.3 Cameroon radiation ...... 15 1.3.4 Phrynobatrachus steindachneri complex ...... 16 1.3.4.1 Morphological characteristics ...... 17 1.3.4.2 Phrynobatrachus steindachneri Nieden, 1910 ...... 17 1.3.4.3 Phrynobatrachus jimzimkusi Zimkus, Gvoždík & Gonwouo, 2013 ..... 19 1.3.4.4 Phrynobatrachus njiomock Zimkus & Gvoždík, 2013 ...... 20 1.4 Family Hyperoliidae – the second objective ...... 21 1.4.1 Hyperolius robustus Laurent, 1979 ...... 23 1.4.2 Hyperolius Rapp, 1842 ...... 28 1.4.2.1 Hyperolius balfouri (Werneri, 1908) ...... 30 1.4.2.2 Hyperolius cinnamomeoventris Bocage, 1866 species complex ...... 31 1.4.2.3 Hyperolius hutsebauti Laurent, 1956 ...... 33 1.4.2.4 Hyperolius phantasticus (Boulenger, 1899) ...... 34 1.4.2.5 Hyperolius sankuruensis Laurent, 1979 ...... 35 1.4.3 Cryptothylax greshoffii (Schilthuis, 1889) ...... 37 1.4.4 Morerella cyanophthalma Rödel, Assemian, Kouamé, Tohé & Perrét, 2009 ...... 40 1.4.5 Callixalus pictus Laurent, 1950 ...... 42 1.4.6 Chrysobatrachus cupreonitens Laurent, 1951 ...... 44 2 Material ...... 48 2.1 P. steindachneri species complex ...... 48 2.2 Family Hyperoliidae ...... 49 3 Methods ...... 52 3.1 Genetics ...... 52 3.1.1 DNA extraction ...... 52 3.1.2 Polymerase chain reactions ...... 53 3.1.3 Alignment and phylogenetic analyses ...... 53

9 3.2 Morphology ...... 54 3.2.1 External morphology ...... 54 3.2.1.1 Phrynobatrachus steindachneri species complex ...... 54 3.2.1.2 Genus Hyperolius ...... 56 3.2.2 Internal morphology – family Hyperoliidae ...... 57 3.3 Statistical analyses ...... 59 3.4 Graphics ...... 59 4 Results ...... 60 4.1 Morphological variation of P. steindachneri species complex ...... 60 4.1.1 P. steindachneri species complex ...... 60 4.1.1.1 Principal component analysis ...... 63 4.1.1.2 Discriminant analysis ...... 66 4.1.2 P. steindachneri and candidate species P. sp. Mbam ...... 69 4.1.2.1 Principal component analysis ...... 69 4.1.2.2 Discriminant analysis ...... 71 4.2 Morphological variability in the family Hyperoliidae ...... 72 4.2.1 External morphology ...... 72 4.2.2 Internal morphology ...... 78 4.3 Phylogenetic position of H. robustus ...... 84 4.3.1 Mitochondrial DNA ...... 84 4.3.2 Nuclear DNA ...... 84 5 Discussion ...... 89 5.1 Morphological variation in the P. steindachneri species complex ...... 89 5.2 Relationship of the genus Hyperolius and “Hyperolius” robustus ...... 94 6 Conclusions ...... 100 7 Literature ...... 101 Supplemets ...... 113

10 1 Introduction 1.1 Objectives The first objective of this study is to prepare an assessment of intraspecific (or closely related taxa) morphological variability. This objective is focused on the Phrynobatrachus steindachneri species complex, where are currently three morphologically very similar species recognized (Zimkus & Gvoždík 2013). However, based on a robust phylogenomic evaluation of the species complex, it has been shown that the complex contains four spe- cies, a description of the newly recognized species is in preparation (M. Dolinay & V. Gvoždík, unpublished data).

The second objective is to evaluate morphological diversification (or conserva- tion) among more distant species (or close genera). The main object of interest is Hypero- lius robustus Laurent, 1979 whose external appearance is very similar to other species in the genus Hyperolius, but preliminary phylogenetic analyses suggested its position out- side this genus.

The third objective is to evaluate acquired results in the phylogenetic and the tax- onomic context that is available in the published literature, and partly yet unpublished (V. Gvoždík et al., own data).

1.2 Cryptic species Before we delve into the introduction of the individual taxa, we should first explain a term that is being used more and more since the first use of genetic methods in taxonomy. The term is a cryptic species. There is actually more than one definition to this term, but in general, cryptic species is a taxon that cannot be readily distinguished morphologically.

Similar and sometimes synonymized is the term sibling species. Sibling species are sympatric forms that are morphologically very similar, but which possess specific bio- logical characteristics and are reproductively isolated (Mayr 1942). Or similarly, that they are two species, which are the closest relative of each other and have not been distin- guished from one another taxonomically (Bickford et al. 2007), even if there is a clear evidence of their genetic distinctiveness (Struck et al. 2018). Or more simply said: cryptic (= sibling) species are two or more distinct species that are mistakenly classified (and hidden) under one species name (Bickford et al. 2007).

11 Fišer et al. (2018) mention three non-mutually exclusive mechanisms that explain the lack of distinct morphological characters. The first is the hypothesis of recent diver- gence where did not pass enough time since divergence of two lineages to accumulate significant morphological differences (Egea et al. 2016). According to this model, cryptic species should be relatively young (Zúñiga-Reinoso & Benítez 2015). While this model has been proved in some recently diverged taxa (Sáez & Lozano 2005), this phenomenon can be also observed in much older groups (Rocha-Olivares et al. 2001), which challenges verity of this hypothesis.

The second model is the niche conservatism. Where closely related lineages within clade share ancestral traits through decent. When these lineages start diverging, their traits within clade will be more similar than between clades (Crisp & Cook 2012). This has been shown by simulation study in which a trait is evolved under the Brownian motion using a drift model. The trait is more similar between closely related taxa than between taxa randomly selected (Blomberg & Garland 2002; Blomberg et al. 2003). It follows that evolution of morphological characters, and therefore niche evolution too, is constrained by several biological mechanism like stabilizing selection, gene flow between lineages preventing local adaptations, pleiotropic effects restricting adaptation, low genetic varia- tion underlying the traits, and genetic drift (Bravo et al. 2014; Losos 2008; Wiens & Gra- ham 2005).

The last, third mechanism, is the morphological convergence, where the similar selection pressure in distant species can cause independent development of similar struc- tures (Bravo et al. 2014)

1.3 Genus Phrynobatrachus – the first objective

1.3.1 Systematic position of the genus Phrynobatrachus The genus Phrynobatrachus is the only genus in the family Phrynobatrachidae Laurent, 1941 (Frost 2019). Bossuyt et al. (2006) placed Phrynobatrachidae in the sister position to families Petropedetidae Noble, 1931 and Pyxicephalidae Bonaparte, 1850. Frost et al. (2006) had same results and named a clade, which contained the aforementioned families, Africanura. Africanura is in the sister position to Saukrobatrachia (e.g. Dicroglossidae Anderson 1871, Rhacophoridae Hofman, 1932, Ranidae Batsch, 1796, etc.) and together form Ametrobatrachia (Frost et al. 2006). Wiens et al. (2009) and Wiens & Pyron (2011)

12 placed Phrynobatrachidae together with Conrauidae Dubois, 1992, Micrixalidae Dubois, Ohler & Biju, 2001 and Ptychadenidae Dubois, 1987 in the basal position of Natatanura, whose sister clade Allodapanura include the family Microhylidae Günther, 1858 and Afrobatrachia (e.g. Brevicipitidae Bonaparte, 1850 and Hyperoliidae Laurent, 1943, etc.). Yuan et al. (2019) placed Phrynobatrachidae as the sister taxon to Ptychadenidae and both in the sister position to Odontobatrachidae Barej, Schmitz, Günther, Loader, Mahlow & Rödel, 2014. This clade lies in the sister position to a clade formed by Con- rauidae, Petropedetidae and Pyxicephalidae (Yuan et al. 2019).

1.3.2 Relationships within Phrynobatrachus To date, 92 species from the genus Phrynobatrachus is recognized (Frost 2019). This number will in the future eventually change, because Phrynobatrachus still contains a number of unresolved species complexes that may include even up to five cryptic species (V. Gvoždík et al., unpublished data). Species of this genus occur only in sub-Saharan Africa. Three major clades can be recognized inside the present genus (see Figure 1, Zim- kus et al. 2010). Genetic distances among these three clades suggest a possible future split into three separate genera (Zimkus et al. 2010). Morphological and cytological differ- ences have to be further investigated (Scott 2005). Type species for the smallest (in term of the number of species) of the three candidate genera (marked as the clade A in Fig. 1) would be Phrynobatrachus sandersoni (Parker, 1935), originally classified into the genus Phrynodon (Parker, 1935). Type species for the second (marked as the clade B in Fig. 1) candidate genus would be Phrynobatrachus calcaratus (Peters, 1863) with original des- ignation as Hemimantis calcaratus (Peters, 1863). The third possible genus (marked as the clade C in Fig. 1) type species would be Phrynobatrachus natalensis (Smith, 1849) with the original description as Stenorhynchus natalensis (Smith, 1849), but this genus name was preoccupied by Sternorhynchus Hemprich, 1820, and thus, later renamed as Phrynobatrachus by Günther (1862).

13

Figure 1. Phylogenetic tree (12S rRNA, tRNA-Val, 16S rRNA = 12-16S) of the genus Phrynobatra- chus (Zimkus et al. 2010, modified). Added red rectangle marks the Cameroon radiation and red circle the approximate area of occurrence for the species from this radiation.

14 1.3.3 Cameroon radiation The so-called “Cameroon radiation” (marked by red rectangle in Fig. 1) is a relatively large monophyletic group (inside the clade C in Zimkus et al. 2010) that includes 12 to 13 described species. Most of the species in this group are montane endemics of the Cam- eroon Volcanic Line (later CVL), but there are also three to four (phylogenetic position of P. hylaios Perret, 1959 is uncertain) lowland species occurring to the southeast of CVL as far as southwestern Republic of the Congo (Rödel et al. 2015). Zimkus & Gvoždík (2013) proposed a scenario in which the ancestor of the Cameroon radiation was an en- demic of higher elevations that descended into lower elevations. Then happened at least two recolonization events of higher elevations were followed by rapid intra- and inter- specific diversification during the Pliocene and the Pleistocene (P. chukuchuku was for its uncertain position within the radiation excluded) (Zimkus & Gvoždík 2013).

Five smaller groups can be distinguished inside the Cameroon radiation. The group represented by a single species, P. chukuchuku Zimkus, 2009, an endemic species of Mt. Oku (Zimkus 2009) with an uncertain position within the Cameroon radiation (Zimkus 2009; Blackburn 2010; Zimkus & Gvoždík 2013). The P. werneri group comprises four small-sized (sub)montane species P. werneri (Nieden, 1910), P. manengoubensis (Angel, 1940), P. schioetzi Blackburn & Rödel, 2011, P. danko Blackburn, 2010, and a lowland species P. batesi (Boulenger, 1906). The P. horsti group, that includes the lowland species P. horsti Rödel, Burger, Zassi-Boulou, Emmrich, Penner & Barej, 2015, P. ruthbeateae Rödel, Doherty-Bone, Kouete, Janzen, Garrett, Browne, Gonwouo, Barej & Sandberger, 2012, and possibly P. hylaios Perret, 1959, which is morphologically similar, but genetic material for the assessment of its phylogenetic position is not available. Next is the group of two minute undescribed species from the north of CVL. One from Gotel Mts. and one from neighbouring Tchabal Mbabo (V. Gvoždík et al., in prep.). The last group contains species complex of P. steindachneri Nieden, 1910 (comprising currently three closely related species) and P. cricogaster Perret, 1957 (see Fig. 2 for phylogenetic tree of the Cameroon radiation; for more details on montane species from the Cameroon radiation see Nečas 2017).

15

Figure 2. Phylogenetic tree (12-16S) of the Cameroon radiation (Nečas 2017).

1.3.4 Phrynobatrachus steindachneri complex The species group of P. steindachneri includes P. cricogaster Perret, 1957, which is rel- atively distant from other species, which are forming the P. steindachneri species com- plex: P. steindachneri (Nieden 1910), P. jimzimkusi Zimkus, Gvoždík & Gonwouo, 2013, and P. njiomock Zimkus & Gvoždík, 2013 – the latter two were recently distinguished from P. steindachneri sensu lato (see Fig. 3, Zimkus & Gvoždík 2013). The divergence between the P. steindachneri species complex and P. cricogaster is dated to approxi- mately 3.8 million years ago (Mya) into the mid of the Pliocene. The sister clades of P. steindachneri and P. jimzimkusi-P. njiomock diverged approx. 2.6 Mya during the Pli- ocene-Pleistocene boundary (genomic dataset, M. Dolinay & V. Gvoždík, unpublished data).

16

Figure 3. Phylogenetic tree (12S-16S) of the P. steindachneri species complex (Zimkus & Gvoždík 2013, modified). P. jimzimkusi in red colour, P. njiomock in black and four mitochondrial lineages of P. steindachneri in blue.

1.3.4.1 Morphological characteristics A representative of the Phrynobatrachus steindachneri complex has a compact body with robust limbs. The length and width of the head are equal. The canthus rostralis is usually sharp. The tympanum is indistinct or hardly visible in P. jimzimkusi and P. njiomock, but clearly visible in P. steindachneri. The supratympanic fold is present and stretches from the posterior corner of the eye to the front limb. The praemaxillary and maxillary teeth are present. The vomer teeth are absent. The dorsal glands are present. The inner and the significantly smaller outer metatarsal tubercules are present. Medium to extensive web- bing present only on the hind limbs (Nieden 1910; Zimkus & Gvoždík 2013).

The dorsal colouration is rather variable, but predominantly brown. A lighter ver- tebral stripe of different widths might be present. The dorsal glands are usually outlined by darker colour. The ventral colouration has similar grey and sometimes yellow mottling in pectoral and abdominal regions. The gular region has darker colour than pectoral and abdominal ergions. Phrynobatrachus njiomock generally appears to have lighter dorsal and ventral colouration than the other two species, occasionally with reddish spots (Zim- kus & Gvoždík 2013).

1.3.4.2 Phrynobatrachus steindachneri Nieden, 1910 Lectotype: ZMB 20429, adult male, Cameroon, Adamaoua Region, “Banjo” = Banyo, coll. Riggenbach F. W. Designated from 28 syntypes (Zimkus & Gvoždík 2013).

Paralectotypes: MCZ A-19577, adult female, same collection data as lectotype; and 26 other specimens stored at ZMB.

17 Zimkus & Gvoždík (2013) found six mitochondrial lineages in the whole P. steindachneri species complex. The two most distinct were described as two new species (P. jimzimkusi and P. njiomock), while the remaining four have stayed together under the species name P. steindachneri (= P. steindachneri species complex). M. Dolinay & V. Gvoždík (un- published data) performed phylogenomic analyses of 387 nuclear genes (exon capture method performed in the laboratory of A. R. Lemmon & E. M. Lemmon, Florida State University, Florida, U. S. A.). Several analyses supported four instead of six (mtDNA) species within P. steindachneri species complex.: one corresponds to P. jimzimkusi, one to P. njiomock, one to P. steindachneri sensu stricto (s.s.), and one to yet undescribed species (now still formally under the name “P. steindachneri”; hereafter reffered to as P. sp. Mbam) (see Fig. 4). The date estimate for the divergence between P. steindachneri s.s. (lineages A and B in Fig. 4) and the candidate new species (lineages C and D) is approx. 1.5 Mya in the first half of the Pleistocene (M. Dolinay & V. Gvoždík, un- published data). See Fig. 4 for a visualization of the species relationships and groups.

Figure 4. Phylogenomic tree (387 nDNA genes) of the Phrynobatrachus steindachneri species com- plex (M. Dolinay & V. Gvoždík, unpublished data). Lineages of P. steindachneri s. l. are assigned by letters: A – Gotel Mts., B – Tchabal Mbabo, C – Mt. Oku and Mt. Mbam, D – Mambilla Plateau.

18 Amiet & Goutte (2017) presented the first recordings of “P. steindachneri” vocali- zation. Therefore, the original thought that P. steindachneri lacks any vocal expressions has to be rejected (Garthshore 1986). However, the recordings took place in Batié and Foto (to the south and southeast from Bamboutos Mts.) that are well outside the presumed area of occurrence of P. steindachneri sensu lato (s.l.), but lie inside the range of P. jim- zimkusi. Which suggests that the recordings were done of P. jimzimkusi.

The type locality Banyo lays at ~1200 metres above the see level to the east from the Mambilla Plateau and southeast of Gotel Mts. Its position at such “low” altitude and distance from the presumed area of occurrence of P. steindachneri s.l. suggest that the material did not originate in Banyo or in its vicinity, but rather in the mountains to the west and later was assigned to this locality. This has been confirmed by V. Gvoždík (per- sonal communication), who visited suitable locality in the vicinity of Banyo twice (2009 and 2016) and did not encounter any. The area of occurrence of P. steindachneri s.l. (P. steindachneri s.s. and P. sp. Mbam) extends from Mt. Mbam and Mt. Oku in the south to the northeast along Gotel Mts. and Tchabal Mbabo, and to the north in the Mambilla Plateau (see Fig. I in the Supplements for the map).

1.3.4.3 Phrynobatrachus jimzimkusi Zimkus, Gvoždík & Gonwouo, 2013 Holotype: MCZ A-136904, adult male, Cameroon, Ouest Region, below summit of Mount Bamboutos, 24. XI. 2004, 05°39’41.0”N 10°07’37.9”E, 2050 m alt., coll. Black- burn D. C., Diffo J. and Gonwouo N. (Zimkus & Gvoždík 2013).

Paratypes: MCZ A-136903, adult female, and MCZ A-136905-136908, adult male and 2 adult females, same collection data as holotype; MCZ A-136891-136892, 2 adult females, Cameroon, Ouest Region, summit of Mt. Bamboutos, 25. VIII. 2004, 2500-2600 m alt., coll. Blackburn D. C., Diffo J., Gonwouo N.; MCZ A-136865-136866 and MCZ A-138071, 3 adult females, Cameroon, Ouest Region, Mt. Bamboutos, 7. VIII. 2006, 5°37’24’’N 10°6’39’’E, 2020 m alt., coll. Blackburn D. C., Blackburn K. S., Huang P., Talla M.; MCZ A-138072, adult female, Cameroon, Ouest Region, Mt. Bamboutos, 7. VIII. 2006, 5°39’41’’N 10°7’37’’E, 2050 m alt., coll. Blackburn D. C., Blackburn K. S., Huang P., Talla M.; MCZ A-138075, adult male, Cameroon, Ouest Region, below the summit of Mt. Bamboutos, 8. VIII. 2006, 5°40’7’’N 10°6’11’’E, 2540 m alt., coll. Black-

19 burn D. C., Blackburn K. S., Huang P., Talla M.; MCZ A-138076, adult female, Came- roon, Ouest Region, summit of Mt. Bamboutos, 8. VIII. 2006, 5°39’41’’N 10°7’37’’E, 2540 m alt., coll. Blackburn D. C., Blackburn K. S., Huang P., Talla M. (Zimkus & Gvoždík 2013).

Phrynobatrachus jimzimkusi was originally classified under the name “P. steindachneri”, or in Amiet (1978) and Gartshore (1986) as “Phrynobatrachus sp. 2”. This species is together with P. njiomock and P. steindachneri s.l. in the complex of cryptic species, where the distinction between two species based only on morphological characters is a difficult task. However, genetic data show large disparity in the gene 16S rRNA (hereafter 16S) of the mitochondrial DNA (from 2.8% to 2.9% between lineages, and 0.94% intra- specific within P. jimzimkusi) (Zimkus & Gvoždík 2013). The divergence between P. jimzimkusi and P. njiomock occurred approx. 900 thousand years ago in the Pleisto- cene. Amiet & Goutte (2017) presented recordings of P. jimzimkusi under the name “P. steindachneri“.

The range of P. jimzimkusi stretches from Mt. Oku in the opposite direction than in P. steindachneri. It extends from Mt. Oku to the southwest and west along Cameroon Volcanic Line. The most southern record of this species comes from Mount Manengouba (Amiet 1987; Pfalzgraff et al. 2015) and the most western from Obudu Plateau in Nigeria (Zimkus 2009; Zimkus & Gvoždík 2013). See Fig. II in the Supplements for the area of the occurrence.

1.3.4.4 Phrynobatrachus njiomock Zimkus & Gvoždík, 2013 Holotype: NMP6V 74523/2, adult male, Cameroon, Nord-Ouest Region, Mt. Oku, Lake Oku, 24. XII. 2009, 06°12’07.6’’N 10°27’33.3’’E, 2219 m alt., coll. Kodádková A., Tropek R. (Zimkus & Gvoždík 2013).

Paratypes: NMP6V 74523/1 and NMP6V 74523/3-6, 5 adult females, same collec- tion data as holotype; MCZ A-136875-82, 8 adult females, Cameroon, Nord-Ouest Re- gion, lake Oku, 22. XI. 2004, 6°12.144’N 10°27.638’E, 2220 m alt., coll. Blackburn D. C., Diffo J., Gonwouo N.; MCZ A-138135-7 and 138139-40, 5 adult females, Cameroon, Nord-Ouest Region, lake Oku, forest at the edge of the lake, 18. VIII. 2006, 6°12.144’N 10°27.638’E, 2200 m alt., coll. Blackburn D. C., Blackburn K. S., Huang P., Talla M.;

20 MHNG 2452.017-18, 2 adult males, Cameroon, Nord-Ouest Region, lake Oku, coll. Am- iet J.-L. (Zimkus & Gvoždík 2013).

Amiet (1978) refered to P. njiomock as “Phrynobatrachus sp. 11”. Together with its sis- ter taxon P. jimzimkusi originally classified under the name “P. steindachneri”. P. njio- mock differs from P. jimzimkusi and P. steindachneri s.l. by 2.91 % and 3.4 % in mtDNA (16S). Within the species P. njiomock the variation reaches 0.54 % (Zimkus & Gvoždík 2013).

Phrynobatrachus njiomock is an endemic species of Lake Oku and surrounding ar- eas on Mt. Oku and is not known to be present anywhere else. See Fig. III in the Supple- ments for the map of the range of this species.

1.4 Family Hyperoliidae – the second objective The family Hyperoliidae Laurent, 1943 together with its sister family Arthroleptidae Mivart, 1869 and families Hemisotidae Cope, 1867 and Brevicipitidae Bonaparte, 1850 form a clade known as the Afrobatrachia (Amphibia: Anura) (Frost et al. 2006; Portik & Blackburn 2016). The families Brevicipitidae and Hemisotidae (Xenosyneunitanura; Frost et al. 2006) encompass only terrestrial, respectively fossorial genera. Ecologically, representatives of the close family Arthroleptidae is similar as they are mostly terrestrial, but the family also contains a single arboreal genus (Leptopelis Günther, 1859; used to be for a long time uncorrectly treated as a member of the family Hyperoliidae). Families Hyperoliidae and Arthroleptidae form a group known as Laurentobatrachia (Frost et al. 2006). The family Hyperoliidae currently comprises 17 genera with a total of 226 species (Frost 2019). There is a strong support for two to three distinct clades in this family: the first, Kassininae Laurent, 1972, comprising the genera Kassina Girard, 1853, Para- cassina Peracca, 1907, Phlyctimantis Laurent & Combaz, 1950 and Semnodactylus Hoff- man, 1939, the second, Hyperoliinae Laurent, 1943, that includes the genera Opis- thothylax Perret, 1966 as the earliest diverged, Madagascar and Seychelles endemic gen- era Heterixalus Laurent, 1944 and Tachycnemis Fitzinger, 1843, the genus Afrixalus Lau- rent, 1944 with them in a sister postion, genera Cryptothylax Laurent & Combaz, 1950 and Morerella Rödel, Kosuch, Grafe, Boistel & Veith, 2009 that form a common clade, the genus Hyperolius Rapp, 1842 in the sister position to them, and the genus Acanthix- alus Laurent, 1944 standing in between the two clades (Portik & Blackburn 2016; Portik

21 et al. 2019). Mostly monotypical genera Alexteroon Perret, 1988 (3 sp.), Arlequinus Per- ret, 1988, Callixalus Laurent, 1950, Chrysobatrachus Laurent, 1951 and Kassinula Lau- rent, 1940 were not yet included in any study and are supposed to be members of the subfamily Hyperoliinae (Portik et al. 2019).

The below listed species from the family Hyperoliidae were used to compare with the central Congolian endemic, Hyperolius robustus. Callixalus pictus Laurent, 1950 and Chrysobatrachus cupreonitens Laurent, 1951 were selected based on their geographic ranges, which are on the eastern margin of the Congo Basin in highlands of the Albertine Rift, and based on their uncertain phylogenetic position within the family. The same rea- son applies to Cryptothylax greshoffii (Schilthuis, 1889) and Morerella cyanophthalma Rödel, Assemian, Kouamé, Tohé & Perrét, 2009, which form the sister clade to the genus Hyperolius are well supported (Portik & Blackburn 2016; Portik et al. 2019; Rödel et al. 2009). The following species of the genus Hyperolius were selected from two of the three main clades within this genus (Portik et al. 2019), as representatives of these two clades are morphologically more similar to H. robustus (the third clade, H. nasutus Günther, 1865 complex, is obviously morphologically distinctive). Hyperolius balfouri (Werner, 1908) and H. cf. cinnamomeoventris Bocage, 1866 as representatives of the most speciose clade, so called Clade 2 sensu Portik et al. (2019), and H. phantasticus (Boulenger, 1899) and H. hutsebauti Laurent, 1956 (H. tuberculatus species complex) as representatives of the Clade 1 (Portik et al. 2019). Selection of these species was not random – all selected taxa occur within the Congo Basin, H. balfouri and H. hutsebauti were selected based on the availability of material, H. cf. cinnamomeoventris and H. phantasticus because of their sympatric occurrence with H. robustus in the DRC (= the Democratic Republic of the Congo), Kokolopori Bonobo Nature Reserve (V. Gvoždík, personal communication), and H. balfouri and H. cf. cinnamomeoventris also for their superficial similarity to H. ro- bustus. Additionaly, one available specimen of the very little-known species H. sanku- ruensis Laurent, 1979 was examined based on its supposed similarity to H. robustus, and sympatric occurrence with H. robustus in the type locality (DRC, Terr. de Lodja, Omani- undu; Laurent 1979).

22 1.4.1 Hyperolius robustus Laurent, 1979 Holotype: MRAC 79-24-B-4, adult male, Democratic Republic of the Congo (DRC), Terr. de Lodja, Marais Koiteko, Gembe, 9. VIII. 1959, coll. Laurent R. F. (Lau- rent, 1979).

Allotype: MRAC 79-24-B-5, adult female, same collection data as holotype (Lau- rent, 1979).

Paratypes: MRAC 79-24-B-6–12, 2 adult males and 5 adult females, same collec- tion data as holotype; MRAC 79-24-B-13–24, 7 adult males and 5 adult females, DRC, Terr. de Lodja, Riv. Musii, 18.-19. VIII. 1959, coll. Laurent R. F.; MRAC 79-24-B-25, adult males, DRC, Terr. de Lodja, Onema, 20. VIII. 1959, coll. Laurent R. F.; MRAC 79- 24-B-26–36, 7 adult males and 4 adult females, DRC, Terr. de Lodja, Omaniundu, 29. VII.1959, coll. Laurent R. F.; RL 237, 7 adult males and 7 adult females, DRC, Terr. de Lodja, Omaniundu, 29. VII.1959, coll. Laurent R. F.; FML 03083, 1 adult male and 1 adult female, DRC, Terr. de Lodja, Omaniundu, 29. VII.1959, coll. Laurent R. F.; RL 239, 1 adult female, DRC, Terr. de Lomela, Lomami, 1.-3. IX.1959, coll. Laurent R. F. (Laurent, 1979).

A large representative of the genus Hyperolius Rapp, 1842 (♂ 30-37 mm, ♀ 34-37 mm) known from a limited number of specimens (Schiøtz 1999, 2006) with a slender body. The original description (Laurent 1979) gave following definition: The head slightly longer than wide. The canthus rostralis blunt and straight. The frenal (= loreal) region is almost flat. The pupil is horizontal. The nostrils are twice as close to the tip of the snout than to the eye. The interorbital distance is larger than the internarial. The tympanum is small but distinct with a diameter less than a half of the eye. The manual digits in order from the shortest to the longest: I, II, IV and III. The pedal digits in order from the shortest to the longest: I, II, III, V, IV. The dorsal skin is warty. The ventral skin on the ventrum and thighs is finely squamous, and more coarsely squamous but less distinct on the gular gland. On other parts of the body is the skin smooth. See Fig. 5 for the original drawings of the gular gland, the hand and the foot.

23

Figure 5. Drawings of a male Hyperolius robustus Laurent, 1979 (Laurent 1979), (A) gular gland, (B) foot, and (C) hand.

The colouration of H. robustus described in Laurent (1979) and Schiøtz (1999): The specimens in alcohol display greyish beige colouration with diffused small black spots on the dorsal side. The ventre is unpigmented. The dorsal colouration tone in a living specimen is of an orange-pink or yellow, more red on the belly and thighs. The dorsum is densely beset with brown spots in males. Females, respectively the allotype, differes in its colouration from the holotype in continuity of dark dorsal spots, where only dorsolat- eral warts stand out (for photos of an adult male and a female alive see Figures 6 and 7; for a male stored in alcohol for a period of time see Fig. 8). See Fig. 15 (Chapter 1.4.3) for comparison with the colouration of Cryptothylax greshoffii, and 17 (Chapter 1.4.4) for the colouration of Morerella cyanophthalma.

24

Figure 6. Photograph of a freshly euthanized male of H. robustus, field number CD18_301, in (A) dorsal and (B) ventral view. Photo: V. Gvoždík.

25

Figure 7. Photograph of a freshly euthanized female of H. robustus, field number CD18_302, in (A) dorsal and (B) ventral view. Photo: V. Gvoždík.

26

Figure 8. Photograph of a male (ZMUC R.771175) in dorsal (left) and ventral view (right). Black bar in the bottom left corner represents a length of 30 mm.

The description of H. robustus is based only on the external morphology (Laurent 1979). So far no DNA analyses of H. robustus has been published. Laurent (1979) men- tioned that H. robustus is easily recognizable, from most other species groups inside the genus Hyperolius, by its ratio between the internarial and the eye-nostril distance (68- 83% in robustus, 82-136% in others). Hyperolius robustus appears to be somewhat mor- phologically isolated species, but similar to the H. concolor (Hallowell, 1844) species group (including H. balfouri, H. cinnamomeoventris; within Clade 2 sensu Portik et al. 2019) more than to any other compared species within Hyperolius (Laurent 1979). How- ever, while its elongated snout could resemble species from the H. concolor group, H. ro- bustus has more developed pedal webbing (Laurent 1979). Its colouration and presence of a reduced tympanum, Laurent (1979) saw as primitive characters of the genus and suggested a possible relationship with the genus Cryptothylax. A morphometric analysis of 29 morphological characters grouped H. robustus with H. balfouri and H. cinnamome- oventris (both included also in this study) as with the morphologically most similar (Lau- rent 1981).

27 Hyperolius robustus was described from the localities Gembe, Lomami (Ohidi), Omaniundu and Onema-Yandju in the territories of Lodja and Lomami, province Sankuru, central DRC (Laurent 1979). Schiøtz (1999) collected single male specimen (ZMUC R.079697) at the locality of Monkoto, near the border of the Salonga National Park, province Mai-Ndombe. In 2005, Schiøtz (2006) collected six specimens (ZMUC R.771174-79, 5 males and 1 female) in the Kokolopori Bonobo Natural Reserve on the border of the today’s provinces Tshuapa and Tshopo. Dr. V. Gvoždík (personal commu- nication) also reports abundance of individuals in the Kokolopori Reserve (nine included in the morphological assessment of H. robustus in this study) and together with G. Badjedjea Babangenge (personal communication) report presence of H. robustus at the locality of Mombongo (field number YHM102), terr. of Yahuma, province Tshopo. This locality is well outside of the presumed area of occurrence presented by IUCN SSC Am- phibian Specialist Group (2014). The specimen database of MRAC includes a specimen RMCA B.61800, which was collected by Laurent in the 1958 at the locality of Makaw, at the border of provinces Mai-Ndombe and Kwilu. J. Kielgast (personal communication) also reports H. robustus from a locality inside the buffer zone of the Salonga National Park (South), province Mai-Ndombe. See Fig. IV in the Supplements for the map of the range of this species with marked localities known from the literature (localities from older publications may not be localized correctly; coordinates of the locality Omaniundu for H. robustus in Schiøtz (1999) differ from coordinates of type locality, Omaniundu, of H. sankuruensis given in Laurent (1979).

1.4.2 Hyperolius Rapp, 1842 Hyperolius is the most speciose genus within the family Hyperoliidae (Frost 2019). This genus has passed through the process of a realtively recent radiation (Portik et al. 2019). Today, 145 species are recognized with a large palette of colours and colour patterns, but with a relatively conservative morphology (body shape, webbing, etc.). Thus, most of the identification in the field is based on colouration patterns, habitat preferences and vocal expressions. Identifications of specimens that were for decades conserved in a preserva- tive is not such an easy issue. For this reason, it has been labelled as one of the taxonom- ically most difficult anuran genera (Schiøtz 1999).

28 Hyperolius are small to medium sized (20-24 mm), mostly arboreal frogs (meaning also as climbing on lower, often herbaceous vegetation). The body is elongated. Finger and toe tips are distinctly dilated. The pupil is usually horizontal, or when widely dilated rounded. The tympanum is usually indistinct in males (meaning it is hidden under a layer of skin), but there are exceptions to this rule, e.g. H. mosaicus Perret, 1959 [Lötters et al. 2004; original publication (Perret 1959) does not highlight the presence of this character], H. robustus (Laurent 1979), and in some other species it varies between populations. The gular gland is a disc, oval or rhomboid-shaped with lateral and posterior edges free. The vocal pouch is single, composed of folds of dilatable skin, and covered by the usually granulous gular gland. The skin on other parts of the body is usually smooth (Drewes 1984; Schiøtz 1999).

Inner morphology (Drewes 1984): The nasals are triangular, sometimes with a dis- tinct ventroposterior process. The sphenethmoid is ventrally unfused. The vomer pro- cesses and teeth are absent. The medial margins of the coracoids are entire. The neural arches are not imbricate. The omosternum is moderately to widely forked. The terminal phalanxes are usually peniform, but can be claw-shaped. The intercalary elements are usually peripherally mineralized. The digital sesamoids are absent.

An exclusive feature of the genus Hyperolius is a form of sexual dichromatism, where in many species are females, and a portion of males, which undergo a colouration and patterning change when maturing and gain the “phase female” colouration, so called Phase F (Schiøtz 1967; Portik et al. 2019). While the majority of male population retains their juvenile colouration, the “phase juvenile”, so called Phase J. Which means that in a population of adult individuals are males that keep their juvenile colouration and usually a smaller number of males that have the same colouration patterning as adult females. Males are distinguishable by their vocal apparatus and are usually smaller in size, com- pared to females of the same species [with the exceptions of H. parkeri Loveridge, 1933 (males larger) and the H. nasutus species group (no sexual size difference); Schiøtz 1999]. Such colour and pattern variation within a single species may lead to descriptions of mul- tiple taxa that are in fact just one [e.g. H. castaneus Ahl, 1931 was described under four other names in the same publication (Frost 2019)].

29 1.4.2.1 Hyperolius balfouri (Werneri, 1908) Rappia balfouri Werner, 1908 “1907” Hyperolius zavattarii Scortecci, 1943 H. concolor balfouri Laurent, 1950 H. concolor viridistriatus Monard, 1951 H. viridistriatus Perret, 1966 H. balfouri balfouri Schiøtz, 1975 H. balfouri viridistriatus Schiøtz, 1975 H. balfouri Noble, 1924; Laurent, 1943 Source: Frost (2019) Syntypes: including NHMW 22894, type locality Gondokoro, Uganda (Frost 2019).

A large (♂ 28-34 mm, ♀ 36-42 mm) Hyperolius (Schiøtz 1999). This species is sexually monochramitic. The dorsal colouration is yellow to brown with thin dark (or green, see below) dorsolateral stripes. The ventral colouration is white to orange. The gular gland in males is large and slightly coarse. Females are larger than males and have smooth dorsal skin, while males bear small dorsal asperities. The eastern populations differ from the western, which developed green dorsolateral lines. The western populations are classified as the subspecies H. b. viridistriatus Monard, 1951, and the eastern as the nominotypical H. b. balfouri. Hyperolius balfouri is similar to H. concolor (Hallowell, 1844), which has uniformly green females, and H. kivuensis Ahl, 1931 with which it has overlapping areas of occurrence. Nevertheless, H. balfouri is a larger species with a different dorsal pattern and with small dorsal asperities in males. Hyperolius balfouri has also a dark line above the canthus rostralis (Schiøtz 1999). See photograph of vocalizing male H. balfouri in Fig. 9. See Fig. V in the Supplements for the map of range.

30

Figure 9. Photograph of a male Hyperolius balfouri. Photo: V. Gvoždík.

1.4.2.2 Hyperolius cinnamomeoventris Bocage, 1866 species complex Hyperolius cinnamomeo-ventris Bocage, 1866 H. tristis Bocage, 1866 H. fimbriolatus Peters, 1876 Rappia tristis Boulenger, 1882 R. fimbriolata Boettger, 1888 R. cinnamomeiventris Bocage, 1895 H. cinnamomeoventris cinnamomeoventris Laurent, 1943 H. cinnamomeoventris olivaceus Laurent, 1943 H. ituriensis Laurent, 1943 H. wittei Laurent, 1943 H. cinnamomeoventris wittei Laurent, 1957 H. cinnamomeoventris Noble, 1924 Source: Frost (2019) Holotype: MBL, Duque de Bragança, Angola, presumably destroyed in the 1978 fire (Frost 2019).

A small to medium sized frogs (♂ 19–28 mm, ♀ 19-27 mm) (Schiøtz 1999). Hypero- lius cinnamomeoventris sensu lato is a species complex (Bell et al. 2015, 2017), with most of evolutionary lineages being sexually dichromatic [H. drewesi , H. molleri ,

31 H. thomensis , H. veithi are monochromatic (Bell 2016; Bell et al. 2017; Drewes & Wil- kinson 2004; Shick et al. 2010)]. Females have uniformly green dorsum and the males display two types of the dorsal colouration, the green Phase F, and the light brown Phase J. Both phases can have a white dorsolateral line reaching from the snout tip to the hindlimbs. Males of this species have rather small gular gland. Hyperolius cinnamomeo- ventris is similar to sympatric H. kivuensis with some individuals difficult to distinguish, but H. kivuensis is a monochromatic species, where females are coloured the same as males. H. cinnamomeoventris also resembles H. lateralis Laurent, 1940, but the voice is very different, and H. schoutedeni Laurent, 1943, which is monochromatic (Schiøtz 1999). See Fig. 10 for a photograph of vocalizing male.

Figure 10. Photograph of a vocalizing male H. cf. cinnamomeoventris. Photo: V. Gvoždík.

Hyperolius cinnamomeoventris species complex is broadly distributed over a large portion of the Central and East Africa (Perret 1966; Schiøtz 1999; Fig. IX in the Supple- ments). Phylogenetic analyses of mtDNA (16S and cytochrom b) showed that H. cin- namomeoventris is a paraphyletic species (thus, species complex) in respect to H. veithi

32 Schick, Kielgast, Rödder, Muchai, Burger & Lötters, 2010. Hyperolius cinnamomeoven- tris species consists of two major clades that initially diverged during the Late Miocene. One includes H. olivaceus Peters, 1876 (previously considered as subspecies of H. cin- namomeoventris) from the Atlantic coastal forests and marginal Congo Basin and en- demic species from the Gulf of Guinea islands: H. drewesi (Príncipe Island), H. molleri, and H. thomensis (São Tomé Island). The second clade consists of four lineages of H. cf. cinnamomeoventris that are distributed across a large inland area of the Congo Basin and eastward reach as far as the Lake Victoria, and H. veithi (decribed and presently known only from the Salonga National Park in central DRC) that is embedded between the western and the eastern lineages of H. cf. cinnamomeoventris (Schick et al. 2010, Bell 2016, Bell et al. 2017). Individuals of H. cf. cinnamomeoventris included in this study in the morphometric analysis of the external morphology were collected in the central DRC, and the specimen used in the comparison of the internal morphology was collected in the Central African Republic. Both locations are quite distant from the type locality of H. cin- namomeoventris in Angola and their taxonomic positions were not yet solved. Hence, all examined specimens from this species complex will be reffered to as H. cf. cinnamome- oventris. The analyses of three nuclear genes (cmyc, POMC, RAG1) showed similar re- sults with five demes (two demes of H. cf. cinnamomeoventris, H. veithi, island endemics, and H. olivaceus) (Bell et al. 2017). See Fig. VI in the Supplements for the map of the range.

1.4.2.3 Hyperolius hutsebauti Laurent, 1956 Hyperolius tuberculatus hutsebauti Laurent, 1956 H. hutsebauti Schiøtz, 1999 Source: Frost (2019) Holotype: MRAC 52495, Ibembo, Uele, DRC (Frost 2019).

A medium sized (♂ 28–32 mm, ♀ 30-36 mm) Hyperolius from the central and eastern Congo Basin (Schiøtz 1999), closely related to H. tuberculatus (Bell et al. 2017). The sexual dichromatism is present in this species. The phase juvenile usually exhibits hour- glass-shaped mark on the dorsum (Schiøtz 1999, Bell et al. 2017). Hyperolius hutsebauti is together with H. dintelmanni Lötters & Schmitz, 2004 (south-western Cameroon High- lands) and H. tuberculatus (western coastal Lower Guinean forests and Bioko Island, marginal western Congo Basin) part of the H. tuberculatus species complex (Bell et al.

33 2017). This species was originally described as a subspecies of H. tuberculatus (Laurent 1956). See Fig. 11 for a photograph of male and female, and Fig. VII in the Supplements for the map of the range.

Figure 11. Photograph of a female and a male H. hutsebauti in amplexus. Photo: V. Gvoždík.

1.4.2.4 Hyperolius phantasticus (Boulenger, 1899) Rappia phantastica Boulenger, 1899 Hyperolius nigropalmatus Ahl, 1931 H. chabanaudi Ahl, 1931 H. boulengeri Laurent, 1943 H. phantasticus Noble, 1924; Ahl, 1931 Source: Frost (2019) Holotype: BMNH, Benito River, Equatorial Guinea (Frost 2019).

A large (27-37 mm) sexually dichromatic species. The Phase J has grey to yellow dorsal colouration. A pale dorsolateral stripe may be present. The ventre is without grey pig- mentation. The gular gland sometimes lightly green. The throat of calling males noticea- bly green-blue or blue. The Phase F has the dorsum from straw-coloured, orange-brown to chocolate brown. Sometimes bright yellow spots can be present. The ventre and some- times the limbs are coloured pale grey to deep black. Sometimes the gular gland is bright pink. The throat of calling males in the phase female is orange (Schiotz 1999, 2006). However, it is possible that this taxon represents more species, which yet need to be tested

34 (V. Gvoždík, personal communication). See Fig. 12 for a photograph of male and female in amplexus. See Fig. VIII in the Supplements for the map of the range.

Figure 12. Photograph of a female and a Phase F male in amplexus. Photo: V. Gvoždík.

1.4.2.5 Hyperolius sankuruensis Laurent, 1979 Holotype: MRAC 79-24-B-1, adult male, DRC, Terr. de Lodja, Omaniundu, VIII. 1959, coll. Laurent R. F. (Laurent, 1979).

Allotype: MRAC 79-24-B-2, adult female, same collection data as holotype (Lau- rent, 1979).

Paratypes: RL 237, adult male, and MRAC 79-24-B-3, adult male, same collection locality as holotype, 29. VII. 1959, coll. Laurent R. F.; FML 03045, juvenile, same col- lection data as holotype (Laurent, 1979).

One of the largest Hyperolius, described from the central DRC (females up to 40 mm SVL) (Schiøtz 1999, 2006). Males with a squat body. The head is wider than longer. The canthus rostralis is indistinct. The frenal region is slightly concave. The nostrils are closer to the snout tip than to the eyes. The interorbital distance is much wider than the distance

35 internarial. The tympanum is indistinct. The manual digits in order from the shortest to the longest: I, II, IV and III. The pedal digits in order from the shortest to the longest: I, II, III, V, IV. The dorsal skin is roughly granulated. The ventral skin is finely squamous. The skin on the gular gland is coarser and less distinctly squamous. On other parts of the body is the skin smooth (Laurent 1979).

The male dorsal colouration is dark brown with four darker areas: the interorbital triangle, the quadrangular spot, the transverse lumbar band, and the scapular lateral zone that is connected to the quadrangular spot. Other small spots of darker colour are scattered across the dorsum. The male ventre is greyish with the gular gland much clearer (Laurent 1979). See Fig. 13 for the original drawings from Laurent (1979).

Figure 13. Drawings of a male (paratype) Hyperolius sankuruensis Laurent, 1979 (Laurent 1979) in (A) dorsal view, (B) ventral view, (C) hand, and (D) foot.

Laurent (1979) and Schiøtz (1999) pointed out similar look to H. platyceps (Bou- lenger, 1900). It is the only species in the DRC with such large females (Laurent 1979; Schiøtz 2006). Formally known from only the type locality in the DRC, although Hy- perolius sp. from Schiøtz (2006) is most probably H. sankuruensis, and it is actually the individual examined in this study. Additional specimens were reported (without details) as a species rediscovery from the buffer zone of the Salonga National Park, South section

36 (Kielgast & Lötters 2011; Moore 2011). See Fig. IX in the Supplements for the map of the range.

1.4.3 Cryptothylax greshoffii (Schilthuis, 1889) Hylambates greshoffii Schilthuis, 1889 Cryptothylax greshoffii Laurent & Combaz, 1950 Source: Frost (2019) Types: Originally in the Zoological Museum of the University of Utrecht, now pos- sibly in the Nationaal Natuurhistorisch Museum in Leiden, type locality: “Boma (Congo, W. Africa)”, western DRC (Frost 2019).

A large species (♂ 39-54 mm, ♀ 48-58 mm) (Schiøtz 1999) from clearings in forested regions of Central Africa (Schiøtz 1999). Laurent & Combaz (1950) and Drewes (1984) described the species as following: The body has a slender constitution. The pupil is ver- tical (rhomboid). The tympanum is distinct. The vomer and maxillary teeth are present. The manual digits are free or slightly webbed at the base. The gular gland (= adhesive disc, gular flap, etc.) covers the gular region completely and overlaps margins of the lower jaw, however, the vocal pouch (dilatable skin) is absent, thus the throat is not inflatable. The dorsal skin is rough with small warts (see Fig. 14 for drawings of the gular gland, the hand and the foot; Laurent (1976).

Figure 14. Drawings of a male Cryptothylax greshoffii (Schilthuis, 1889) (Laurent 1976), (2) gular gland, (3) hand, and (4) foot.

37 Inner morphology (Laurent & Combaz 1950; Drewes 1984): The vomer bears a large longitudinally curving odontophorous process that is weakly oblique at its base. The omosternum is broadly forked. The metasternum is ossified at its base. The nasals are triangular and medially touching. The sphenethmoid is not ventrally fused. The frontopa- rietals are rectangular. The terminal phalanxes are peniform. The intercalary elements are completely calcified. The medial margin of coracoid is entire. The neural arches of the anterior vertebra are imbricate. The palmar complex of muscles is similar to the genus Hyperolius as is the musculus depressor mandibulae with its fan shape.

Cryptothylax has a sexually dichromatic colouration, where females are more red- dish than males. Their colouration is similar to that of Hyperolius tuberculatus (Mocquard, 1897), with underside of thighs and finger and toe tips bright red to orange (Laurent 1976). See Fig. 15 for colouration in live. Compare with the colouration of H. ro- bustus in Figures 6 and 7 (Chapter 1.4.1), and M. cyanophthalma in Fig. 17 (Chapter 1.4.4), where females also display more vivid colouration than males (personal observa- tion).

Figure 15. Photographs of Cryptothylax greshoffii: male, Kokolopori, DRC (A), and female, Lisala region, DRC (B). Photo: V. Gvoždík.

According to Laurent & Combaz (1950), Cryptothylax is relatively isolated form that may have some affinities with the genus Leptopelis, but probably also Hyperolius. These systematic suggestions were carried out without the additional evidence from the phylogenetic analyses, which later placed Leptopelis in Arthroleptidae. Laurent (1976) favoured a closer relationship to the genus Hyperolius based on the presence of a sexual

38 dichromatism similar to the one in Hyperolius. Recent studies place the Central African genus Cryptothylax in the sister position to the West African genus Morerella (see Chap- ter 1.4.4), and both forming a clade, which is a sister group to the pan-African genus Hyperolius.

In 1976, Laurent described a new species – Cryptothylax minutus Laurent, 1976 from the vicinity of the Lake Tumba in the western-central DRC, province Équateur. As the author already said in his study, the only difference between C. greshoffii and C. minu- tus is their different size, where C. minutus – as its name suggests – is the smaller one. Laurent (1976) postulated that the small size of C. minutus was caused by faster sexual maturity or slower growth. In addition, what also convinced R. F. Laurent in descrining a new Cryptothylax species was a different habitat preference of the two species. While C. greshoffii prefers shaded swamps inside forested areas, C. minutus can be found in open swamps without any shading from the sun (Laurent 1976). Although C. minutus is considered to be a valid species, there have been no additional records of this taxon other than the one from Laurent (1976). Thus, no genetic material is available for the evaluation of its validity, and eventually its systematic position. However, the validity of this taxon seems doubtful (Schiøtz 1999), with C. minutus probably representing a small body-sized population of C. greshoffii. See Fig. 16 for the original drawings of C. minutus.

39

Figure 16. Drawings of a male (holotype) Cryptothylax minutus Laurent, 1976 (Laurent 1976), (5) dorsal view, and (6) lateral view of the head.

Cryptothylax is not a strict arboreal species, but is commonly seen climbing on ra- ther lower vegetation (usually around 1 m above water surface; V. Gvoždík personal communication) in swamps, lakes and streams in dense forests across the Congo Basin and southern Cameroon (Drewes 1984). See Fig. X in the Supplements for the map of the range of C. greshoffii with marked type locality of C. minutus Laurent, 1976. Individuals of C. minutus were not examined in this study.

1.4.4 Morerella cyanophthalma Rödel, Assemian, Kouamé, Tohé & Perrét, 2009 Holotype: MHNG 2131.44, adult male, Ivory Coast, Banco National Park, 5°25’N 4°03’W, 1980, coll. Perret J.-L. (Rödel et al. 2009).

Paratypes: MHNG 2131.36-43, 45-55, 17 adult males and 2 adult females, same collection data as holotype; SMNS 11939, ZMB 71565 and ZFMK 82796, 3 adult males, Ivory Coast, Banco NP, near forest school, 5°23’104’’N 4°03’72’’, 4.XI.2003, coll. Assemian N. E., Kouamé N. G., Tohé B., Rödel M.-O.; SMNS 11940 and ZMB 71566, 2 adult males, stained and cleared, same collection data as SMNS 11939; ZMB 71588- 71590 and 73271, 4 adult males, Ivory coast, Banco NP, swampy forest with shallow

40 puddles near river and open area near fish culture ponds, 5°25’N 4°03’W, 23.XI.2004, coll. Assemian N. E., Kouamé N. G., Tohé B. & Rödel M.-O. (Rödel et al. 2009).

Rödel et al. (2009) described this species in its own genus Morerella. The body is slender. The head is flat with a slightly pointed snout. The canthus rostralis is rounded. The frenal region is slightly convex. The nostrils are much closer to the snout tip than to the eyes. The interorbital distance is wider than the internarial. The tympanum is small but distinct. The manual digits in order from the shortest to the longest: I, II, IV and III. The pedal digits in order from the shortest to the longest: I, II, V, III, IV. The gular gland is large and granular, and extends to the anterior part of breasts. The gular gland does not have any dilatable skin beneath or around its edges. The dorsal side bears small asperities. The largest spines are on lower and outer parts of the hindlimbs. The skin on the ventrum is granular.

The colouration of M. cyanophthalma is sexually dichromatic. The females are uni- formly brownish red, red-beige or bright orange on the dorsum, limbs, and toe and finger discs. The ventrum is whitish yellow to orange. The iris of females is greyish blue to bright blue. The dorsum of males is dark brown or almost black to beige. Some males have dorsum covered with smaller black and yellow spots. In daylight, some males can change colouration to almost female orange. The iris of males varies from white to yel- lowish brown depending on light conditions. The males have usually dark stripe over the canthus rostralis, which is less visible in females. The throat in males is whitish yellow to yellow. Otherwise, the ventrum is usually white (Rödel et al. 2009). Photographs of the sexual colour dichromatism in this species can be seen in Fig. 20 for more colour variations see Rödel et al. (2009) and Konan et al. (2016). See Fig. XI in the Supplements for a map of the range.

41

Figure 17. Photographs of Morerella cyanophthalma male (A), and female (B), south-eastern Côte d’Ivoire. Photos adapted from (A) Kpan et al. (2014), and (B) Rödel et al. (2009).

1.4.5 Callixalus pictus Laurent, 1950 Holotype: MRAC 105745, adult male, Rwanda, Terr. de Kisenyi, Lutsiro, 29.-30. VIII 1949, 2600 m alt., coll. Laurent R. F. (Laurent 1950).

Paratypes: one female, seven specimens of undetermined sex, same collection data as holotype (Laurent 1950).

Callixalus is a monotypic genus including only the species of Callixalus pictus. It is a large (♂ up to 37 mm, ♀ up to 43 mm) (Schiøtz 1999) species easily recognizable by its characteristic colouration: brown dorsal colouration with many small golden spots of var- ious shapes. The ventral and limb colouration is light yellow to orange. The colour of the ventre and the throat is pink to blue, white in the young. The iris is dark brown with golden tint (see Fig. 18 for the pattern of the dorsal colouration).

42

Figure 18. Drawing of Callixalus pictus Laurent, 1950 (Laurent 1964) from a dorsal view, probably a female.

Callixalus pictus has a slender body. The canthus rostralis is distinct. The pupil is vertically oriented. The tympanum is absent. Its forelimbs have rudimentary webbing. While hindlimbs have webbing little developed. The gular gland is in the shape of a hor- izontal oval and is restricted to the posterior part of the gular region. The vocal pouch (= gular sac/pouch) is absent. The dorsal skin is warty (Laurent 1950; Drewes 1984).

Inner morphology: The vomer dentigerous processes are absent. The omosternum is moderately forked at its base. The nasals are triangular in shape and well separated from each others and from the frontoparietals. The frontoparietals are rectangular. The sphenethmoid is ventrally unfused and is not exposed dorsally. The tympanal annulus is reduced to an incomplete ring. The columella is reduced. The medial margin of coracoid is entire. The neural arches are not imbricate. The terminal phalanxes are peniform. The intercalary elements are peripherally mineralized. The subarticular sesamoids are absent. The palmar musculature resembles that of the genus Hyperolius. The musculus depressor mandibulae is fan-shaped, angled forward and reaching in the place normally occupied by the tympanal annulus (Drewes 1984).

43 The genetic material for C. pictus is not available (the most recent material was collected by R. F. Laurent in 1950). Therefore, its systematic position is based purely on morphological characters. Callixalus pictus most resembles other arboreal frogs from the genera Afrixalus, Acanthixalus, Phlyctimantis, Cryptothylax and Leptopelis (Laurent 1950). It differs from Afrixalus in the absence of vocal pouch. From Acanthixalus in the absence of tarsal spines and submaxillary glands in males. From Cryptothylax, Phlyc- timantis and Leptopelis in the absence of vomer teeth. But it is similar to Cryptothylax in the type of the reduction of its vocal pouch (Laurent 1950). Laurent (1950) did not per- form osteological examination to properly evaluate the systematic position of the genus, but suggested that Callixalus is a remnant species from an old group derived from the genus Leptopelis (which was a wrong assumption as Leptopelis is an arthroleptid). Ac- cording to the morphological (inner morphology) assessment of Drewes (1984), Callixa- lus appears to be the sister taxon to Acanthixalus, which is now known as standing some- how in between the subfamilies Kassininae and Hyperoliinae (Portik & Blackburn 2016) or as a basal lineage within Kassininae (Portik et al. 2019).

Callixalus pictus inhabits highland bamboo forests of the Itombwe Highlands in the eastern DRC, where it resides in broken stalks two to four metres above ground. It can be also found in the Kabobo Mountains (eastern DRC), where bamboo forests are not that frequent and C. pictus is mostly found hidden between a tree bark and a layer of moss. Outside of the DRC, it can be also found in the mountains of western Rwanda. Callixa- lus pictus is known only from the altitudes above 2100 metres (Laurent 1964). It was last seen in 1950 by its discoverer and descriptor, R. F. Laurent. Since then multiple field- works failed to find more specimens. Its disappearance may be linked to the vulnerability of the mountainous habitats to recent climate changes and to the bamboo stalks being used as an easily accessible building material by local inhabitants (Greenbaum 2017). See Fig. XII in the Supplements for the map of the range.

1.4.6 Chrysobatrachus cupreonitens Laurent, 1951 Holotype: MRAC 109970, adult female, eastern DRC, Itombwe highlands, Kivu, Terr. d’Uvira, Kivu, bassin de l’Ulindi, Riv. Kitadjabukwe, 6.-8. IX. 1950, 2800 - 2850 m alt., coll. Laurent R. F. (Laurent 1951).

44 Paratypes: 95 adult males, 70 adult females and 7 juveniles, same collection data as holotype; 121 adult males and 60 adult females, eastern DRC, Itombwe highlands, Kivu, Terr. d’Uvira, bassin de la Ruzizi, Haute Sanghe, 4.-8. IX. 1950, 2800 m alt., coll. Laurent R. F.; 18 adult males, 50 adult females and 7 juveniles, eastern DRC, Itombwe highlands, Kivu, Terr. d’Uvira, bassin de l’Ulindi, Riv. Kitembe, 2.-3. IX. 1950, 2650 m alt., coll. Laurent R. F.; 10 adult males, 21 adult females and 3 juveniles, eastern DRC, Itombwe highlands, Kivu, Terr. d’Uvira, bassin de la Ruzizi, Riv. Kabembe, 27. IX. 1950, 2650 m alt., coll. Laurent R. F.; 510 adult males, 134 adult females and 108 juveniles, eastern DRC, Itombwe highlands, Kivu, Terr. d’Uvira, bassin de l’Ulindi, Marais de la Haute Kilungutwe, 28. IX. 1950, 2650 m alt., coll. Laurent R. F.; 1311 adult males, 299 adult females and 36 juveniles, eastern DRC, Itombwe highlands, Kivu, Terr. d’Uvira, bassin de la Ruzizi, Haute Luvubu, 23.-30. IX. 1950, 2550 m alt., coll. Laurent R. F.; 2 adult males, 2 adult females and 1 juvenile, eastern DRC, Itombwe highlands, Kivu, Terr. d’Uvira, bassin de la Luvubu, Mutombo, 15.-19. XII. 1950, 2650 m alt., coll. Laurent R. F. (Laurent 1951).

The genus Chrysobatrachus is a monotypic genus including only Ch. cupreonitens, which is a ground dwelling species from the mountains of the eastern DRC with large females (27-34 mm) and small males (19-24 mm, about 70% of females)(Laurent 1951; Schiøtz 1999). The body is robust with exceptionally short limbs, which is typical for ground- dwelling anurans. The head is as long as wide. The canthus rostralis is indistinct. The frenal region is oblique. The nostrils are closer to the snout tip than to the eyes. The in- ternarial distance is slightly bigger than the distance between the eyes and the nostrils. The interorbital distance is greater than the internarial. The pupil is oriented horizontally. The tympanum is absent. The manual (less) and pedal digits (more) have developed web- bing. The gular gland is small and anteromedially reduced to the posterior part of the throat (Laurent 1951; Drewes 1984). According to Drewes (1984) the dilatable vocal pouch is absent. The dorsal skin is very finely coarse. The ventral skin is highly squamous on the belly and the undersides of the thighs (Laurent 1951; Drewes 1984). The original drawing of an adult female from Laurent (1964) in Fig. 19.

45

Figure 19. Drawing of a female Chrysobatrachus cupreonitens Laurent, 1951 (Laurent 1964) from a dorsal view.

Osteology (Laurent 1951; Drewes 1984): The nasals are triangular and well sepa- rated from the frontoparietals. The frontoparietals have slightly curved external edges and are slightly narrower anteriorly than posteriorly. The vomer teeth are absent, but the od- ontophorous process may be present. The medial margin of coracoid is entire. The neural arches are not imbricate. The quadtratojugal is robust and overlapped by maxilla. The omosternum is sexually dimorphic and assymetric, where it is moderately forked in males and in both sexes the right arm is shorter than the left. The digital sesamoids are absent. The intercalary elements are mineralized. The ossification of the metasternum is minimal.

The dorsal colouration is metallic green, copper or bronze with numerous black spots. The green colour can dominate the dorsum or can be present only in inguinal region and legs, while the entire dorsum can be golden or cuprous. The ventre is white to pink, turning grey under the limbs. The flanks are dark brown with increasing white spots to- wards the belly that correspond with the squamous granulation of the ventre. The canthus rostralis is highlighted by a dark brown line. The iris is copper coloured. The males dis- play the same colouration as the females do, but with a tendency to a metallic grey (Lau- rent 1951). The dorsal colouration alive can be seen in Fig. 20 Greenbaum (2017) reports

46 a different colour scheme, where the most of the golden coloured back is covered in black spots.

Figure 20. Photograph of a specimen, probably female, of Chrysobatrachus cupreonitens Laurent, 1951 (Greenbaum & Kusamba 2012).

Based on the osteological characters, Laurent (1951) proposed that Hyperolius is the closest genus to Chrysobatrachus. Laurent (1951) hypothesized that Chrysobatrachus diverged from the common ancestor with Hyperolius in the early stages of the group ra- diation when the climatic conditions favoured a return to terrestrial lifestyle. However, similarities in the gular gland structure and other characters suggest some relationship with Callixalus (Drewes 1984).

Chrysobatrachus cupreonitens is an endemic species of the Itombwe Highlands above altitudes of 2400 metres. It is a terrestrial species and occurs in the peat bogs be- tween swamps and undulating rivers, where it usually hides between leaves of Lobelia plants near streams, but can wander further from the water. Although there can also be found Phrynobatrachus bequaerti (Barbour & Loveridge, 1929) and “Rana angolensis

47 (Bocage, 1866)” [possibly Amietia ruwenzorica (Laurent, 1972) (Channing et al. 2016)], Ch. cupreonitens is the most abundant of the three (Laurent 1951, 1964, 1971). The only report of Ch. cupreonitens for more than 60 years had been the one from 1950 (Laurent 1951), but Greenbaum & Kusamba (2012) rediscovered this species at the Lungwe Lake in the Itombwe Highlands, eastern DRC. See Fig. XIII in the Supplements for the map of the range.

Laurent (1951) also observed the lumbar (= inguinal) amplexus in Ch. cupreonitens, which he saw as a possible sign of an ancient origin of this genus. However, after the osteological examination Laurent (1951) concluded that this type of amplexus has oc- curred secondarily. Its derived state was probably caused by a big sexual size dimorphism. Thus, small males are obliged to grasp large females in front of their hindlimbs (Laurent 1951). Eggs of this species are oligolecithal and are laid during the dry season in large clumps inside holes filled by water. Chrysobatrachus cupreonitens becomes very rare during the rainy season, when the peat bogs are flooded by rising water (Laurent 1951).

2 Material 2.1 P. steindachneri species complex The morphological assessments of Phrynobatrachus steindachneri species complex were based on loaned material from the Museum of Comparative Zoology, Harvard University, Cambridge, U. S. A. (abbreviation MCZ), National Museum in Prague, Czech Republic (NMP), and Zoologisches Forschungsinstitut und Museum Alexander Koenig in Bonn, Germany (ZFMK). Examined were 47 individuals of P. jimzimkusi, 18 individuals of P. njiomock, 47 individuals of P. steindachneri s.s., 19 individuals of a candidate species, hereafter as “Phrynobatrachus sp. Mbam”, i.e. 131 specimens in total. List of all speci- mens with additional information (locality, date of collection, collectors, etc.) can be found in Table II in the Supplements, as well as a list of museum abbreviations (Table I).

Males of P. steindachneri species complex do not have any signs of external vocal pouch, which is usually the best sex-identification character. Therefore, the sex of exam- ined specimens was identified by the combination of several characters. Males usually have darker mottling on the ventral side than females that usually display immaculate abdominal region. But this character is not ideal due to the storage of specimens in alcohol

48 for a long period of time, which ads to a fading of the colouration in general. The females are usually larger and stockier than males, but even here are exceptions. It turned out that the only reliable way to identify sex without dissecting the specimen is the presence of minute asperities in undersites of feet and toes in males. The correctness of this sex-re- lated character was proofed by dissections of several problematic specimens (Zimkus & Gvoždík 2013; author’s observations).

2.2 Family Hyperoliidae The assessments of species from the genus Hyperolius were based on borrowed material from the Zoological Museum at University of Copenhagen, Dennmark (ZMUC) and spec- imens collected during V. Gvoždík’s fieldwork in the Kokolopori Bonobo Nature Reserve in the Democratic Republic of the Congo in 2018 (field code CD18), which will be later deposited in the National Museum in Prague. Field code of an individual of H. robustus YHM102 stands for the locality Mombongo, Luende River, Yahuma district, DRC. Spec- imens of Callixalus pictus and Chrysobatrachus cupreonitens were borrowed from the California Academy of Sciences in San Francisco, U. S. A. (CAS). Specimens of Hypero- lius balfouri, H. cf. cinnamomeoventris, H. hutsebauti and H. phantasticus were collected during fieldworks in Gabon in 2011 (GA; fieldwork by M. Jirků, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic), Central African Republic in 2012 (CAR; fieldwork by M. Jirků and D. Modrý, Depart- ment of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Vet- erinary and Pharmaceutical Sciences, Brno, Czech Republic), Republic of the Congo in 2015 (CG15; fieldwork by V. Gvoždík) and Democratic Republic of the Congo in 2018 (CD18; fieldwork by V. Gvoždík). Fifty specimens (10 from each species) from the genus Hyperolius were examined. All specimens were males identified by the presence of the gular gland that females lack. Detailed list of examined specimens with additional infor- mation can be found in Table III in the Supplements.

DNA sequences used in the phylogenetic analyses were downloaded from the online database GenBank (NCBI, https://www.ncbi.nlm.nih.gov/). This does not apply to the sequences of H. robustus and partly of C. greshoffii that were produce directly for this study. A list of used sequences of the mitochondrial DNA can be found in Table 1. Lists of used sequences of the nuclear genes can be found in Tables 2–5.

49 Table 1. List of sequences of mitochondrial DNA fragment (16S rRNA) used in phylogenetic anal- yses of hyperoliid frogs, with focus on Hyperolius robustus.

Taxon Museum code GenBank code Source Afrixalus paradorsalis CAS 249943 KX492598 Portik & Blackburn (2016) Cryptothylax greshoffii CAR 143 - This study GA 024 - This study MVZ 234714 MK509644 Portik et al. (2019) Hyperolius balfouri CAS 253643 KX492614 Portik & Blackburn (2016) Hyperolius cinnamomeoventris ZFMK 73207 FJ594077 Veith et al. (2009) AACRG 1030 JQ863699 Channing et al. (2013) Hyperolius phantasticus - KY080213 Deichmann et al. (2017) Hyperolius hutsebauti UTEP 21458 MF377325 Bell et al. (2017) Hyperolius robustus YHM 102 - This study ZMUC R.771176 - This study ZMUC R.771179 - This study Morerella cyanophthalma Ba04.3 KX492878 Portik & Blackburn (2016)

Table 2. List of sequences of nuclear DNA (FICD) used in phylogenetic analyses of hyperoliid frogs, with focus on Hyperolius robustus.

Taxon Museum code GenBank code Source Acanthixalus sonjae MORAS2 KX492638 Portik & Blackburn (2016) Afrixalus paradorsalis CAS 249943 KX492643 Portik & Blackburn (2016) Cryptothylax greshoffii MVZ 234714 KX492655 Portik & Blackburn (2016) Heterixalus alboguttatus MVZ 241451 KX492657 Portik & Blackburn (2016) Hyperolius adspersus CAS 254256 KX492658 Portik & Blackburn (2016) Hyperolius balfouri CAS 253643 KX492659 Portik & Blackburn (2016) CAS 253869 KX492660 Portik & Blackburn (2016) Hyperolius fusciventris CAS 254006 KX492661 Portik & Blackburn (2016) Hyperolius ocellatus CAS 254075 KX492662 Portik & Blackburn (2016) Hyperolius robustus YHM102 - This study Kassina senegalensis MVZ 234142 KX492673 Portik & Blackburn (2016) Morerella cyanophthalma Ba04.3 KX492681 Portik & Blackburn (2016) Opisthothylax immaculatus MVZ 234815 KX492683 Portik & Blackburn (2016)

50 Table 3. List of sequences of nuclear DNA (KIAA2013) used in phylogenetic analyses of hyperoliid frogs, with focus on Hyperolius robustus.

Taxon Museum code GenBank code Source Acanthixalus sonjae MORAS2 KX492692 Portik & Blackburn (2016) Afrixalus paradorsalis CAS 249943 KX492697 Portik & Blackburn (2016) Cryptothylax greshoffii MVZ 234714 KX492709 Portik & Blackburn (2016) Heterixalus alboguttatus MVZ 241451 KX492711 Portik & Blackburn (2016) Hyperolius adspersus CAS 254256 KX492712 Portik & Blackburn (2016) Hyperolius balfouri CAS 253643 KX492713 Portik & Blackburn (2016) Hyperolius concolor CAS 253869 KX492714 Portik & Blackburn (2016) Hyperolius fusciventris CAS 254006 KX492715 Portik & Blackburn (2016) Hyperolius ocellatus CAS 254075 KX492716 Portik & Blackburn (2016) Hyperolius robustus YHM102 - This study Kassina senegalensis MVZ 234142 KX492726 Portik & Blackburn (2016) Morerella cyanophthalma Ba04.3 KX492734 Portik & Blackburn (2016) Opisthothylax immaculatus MVZ 234815 KX492736 Portik & Blackburn (2016)

Table 4. List of sequences of nuclear DNA (POMC) used in phylogenetic analyses of hyperoliid frogs, with focus on Hyperolius robustus.

Taxon Museum code GenBank code Source Acanthixalus sonjae MORAS2 KX492745 Portik & Blackburn (2016) Afrixalus paradorsalis CAS 249943 KX492750 Portik & Blackburn (2016) Cryptothylax greshoffii MVZ 234714 KX492760 Portik & Blackburn (2016) Heterixalus alboguttatus MVZ 241451 KX492762 Portik & Blackburn (2016) Hyperolius adspersus CAS 254256 KX492763 Portik & Blackburn (2016) Hyperolius balfouri CAS 253643 KX492764 Portik & Blackburn (2016) Hyperolius concolor CAS 253869 KX492765 Portik & Blackburn (2016) Hyperolius fusciventris CAS 254006 KX492766 Portik & Blackburn (2016) Hyperolius ocellatus CAS 254075 KX492767 Portik & Blackburn (2016) Hyperolius robustus YHM102 - This study Kassina senegalensis MVZ 234142 KX492776 Portik & Blackburn (2016) Morerella cyanophthalma Ba04.3 KX492784 Portik & Blackburn (2016) Opisthothylax immaculatus MVZ 234815 KX492786 Portik & Blackburn (2016)

51 Table 5. List of sequences of nuclear DNA (Tyr) used in phylogenetic analyses of hyperoliid frogs, with focus on Hyperolius robustus.

Taxon Museum code GenBank code Source Acanthixalus sonjae MORAS2 KX492838 Portik & Blackburn (2016) Afrixalus paradorsalis CAS 249943 KX492843 Portik & Blackburn (2016) Cryptothylax greshoffii MVZ 234714 KX492853 Portik & Blackburn (2016) Heterixalus alboguttatus MVZ 241451 KX492855 Portik & Blackburn (2016) Hyperolius adspersus CAS 254256 KX492856 Portik & Blackburn (2016) Hyperolius balfouri CAS 253643 KX492857 Portik & Blackburn (2016) Hyperolius concolor CAS 253869 KX492858 Portik & Blackburn (2016) Hyperolius fusciventris CAS 254006 KX492859 Portik & Blackburn (2016) Hyperolius ocellatus CAS 254075 KX492860 Portik & Blackburn (2016) Hyperolius robustus YHM102 - This study Kassina senegalensis MVZ 234142 KX492870 Portik & Blackburn (2016) Morerella cyanophthalma Ba04.3 KX492878 Portik & Blackburn (2016) Opisthothylax immaculatus MVZ 234815 KX492880 Portik & Blackburn (2016)

3 Methods 3.1 Genetics DNA was extracted only from the species of the Hyperoliidae family. Morphological data of P. steindachneri were compared with the unpublished work of M. Dolinay and V. Gvoždík. All laboratory associated work was done in the laboratory at the Institute of Vertebrate Biology, Czech Academy of Sciences, external research facility in Studenec.

3.1.1 DNA extraction In most cases, DNA was isolated from tongue, muscle or liver tissue. A commertial DNA extraction kit was used and manufacturer’s protocol followed. Briefly: 20 mg of tissue was placed in 200 μl of TL buffer, vortexed and stored in 56 °C overnight. The following day 400 μl of TB buffer was added. This suspension was vortexed and placed into SV columns. After 1 minute in centrifuge at more than 8000 rpm (rotations per minute) was changed the collection tube. Then, 600 μl of BW buffer was added, and centrifuged for 30s at 8000 or more rpm. Collection tube was changed and 700 μl of TW buffer was added. After centrifuging for 30s collection tube was emptied and then the suspension was centrifuged again at the maximum rpm for 1 minute. After this, the SV column was placed in 1.5 ml tube. 100 μl of AE buffer was added to the SV column, incubated for 2

52 minutes in the room temperature and centrifuged for 1 minute at the maximum rpm. The last step was repeated one more time.

3.1.2 Polymerase chain reactions Polymerase chain reactions (PCR) were used to amplify the mitochondrial gene 16S rRNA (16S) and nuclear genes FICD, KIAA2013, POMC, Tyr. For amplification of 16S the 16SL1 (forward) and 16SH1 (reverse) primers were used (taken or modified accord- ing to Palumbi et al. 1991). The following primers were used to amplify the nuclear genes: FICD_F1, FICD_R1, FICD_F2 and FICD_R2 for nuclear gene FICD (Shen et al. 2013); KIAA2013_F1, KIAA2013_R1, KIAA2013_F2 and KIAA2013_R2 for nuclear gene KIAA2013 (Shen et al. 2013); POMC_1 (Wiens et al. 2005) and POMC_7 (Smith et al. 2007) for gene POMC; Tyr 1C and Tyr 1G for Tyr (Bossuyt & Milinkovitch 2000). For the 16S mitochondrial DNA fragment the PPP Master Mix (Top-Bio; http://www.top- bio.cz/) was used, and for the nuclear-gene fragments Taq PCR Master Mix (Qiagen; https://www.qiagen.com/cz/). Primer sequences can be found in Table IV in the Supple- ments. Details for thermal cycles and suspense ratios for each gene in Tables V and VI in the Supplements.

3.1.3 Alignment and phylogenetic analyses Alignment of the sequences was done in the program Geneious version R11.0.3 (Kearse et al. 2012) using the plugin MAFFT v7.388 (Katoh et al. 2002; Katoh & Standley 2013). Nuclear genes were concatenated into one sequence in an alphabetical order (FICD, KIAA2013, POMC and Tyr). The selection of Kassina senegalensis (Duméril & Bibron, 1841) and Acanthixalus sonjae Rödel, Kosuch, Veith, Ernst, 2003 as the outgroups in the analyses of the nuclear DNA is based on the work of Portik & Blackburn (2016) and Portik et al. (2019). The genus Kassina is a member of the sister clade and the subfamily Kassininae, containing genera Kassina, Paracassina, Phlyctimantis, Semnodactylus and the basal lineage is Acanthixalus, to the clade and subfamily Hyperoliinae, which includes also the genera in focus, Cryptothylax, Hyperolius, Morerella, and supposedly also Callixalus and Chrysobatrachus (Portik et al. 2019). As the outgroup for the analyses of the mitochondrial DNA, a member of the genus Afrixalus (A. paradorsalis Perret, 1960) was selected (Portik & Blackburn 2016; Portik et al. 2019) as a not too distant representa- tive of the sister clade to the Hyperolius-Cryptothylax-Morerella clade.

53 The Bayesian inference (BI) of the 16S fragment was carried out in MrBayes 3.2.6 (Ronquist et al. 2012). The GTR+G model was selected as the substitution model using the program jModelTest2 (Darriba et al. 2012). Two analyses were run. Each with four Markov chain Monte Carlo. Each for 10 million generations with sampling every 5000th generation. First 25% were discarded as a burn-in. Only values > 95% were considered as well supported (Wilcox et al. 2002). The BI of nuclear genes (FICD, KIAA2013, POMC and Tyr) was done under same conditions as the BI of 16S, but with different settings for the gamma distribution and substitution rates. The BI of nuclear genes was carried out using CIPRES Science Gateway (Miller et al. 2010).

The ML analysis of 16S was performed by the PhyML (Guindon et al. 2010) plugin in Geneious. The models for evolution of nucleotide sequences suggested by jModelTest2 were GTR+G for 16S and GTR+G+I for the nuclear concatenated genes. Both analyses were run with 100 000 bootstrap pseudoreplicates. The analysis of nuclear genes was carried out using PhyML 3.0 on the website http://www.atgc-montpellier.fr/phyml/ (Guindon et al. 2010).

3.2 Morphology 3.2.1 External morphology 3.2.1.1 Phrynobatrachus steindachneri species complex All parameters were measured using digital calipers XTline P13430 150 mm with reso- lution of 0.01 mm. Measurements were taken to the nearest 0.1 mm. On the specimens from the P. steindachneri species complex, the following parameters were measured: Snout-vent length (SVL), measured from the snout tip to the opening of the cloaca; snout- urostyle length (SUL), from the snout tip to the posterior edge of the urostyle; head width (HW), measured at the greatest head width in the close proximity to the posterior edge of the tympanum; head length (HDL), measured from the snout tip to the posterior edge of the tympanum; tympanum diameter (TD), measured along the anteroposterior body axis; eye diameter (ED), measured at the greatest anteroposterior diameter of the upper eyelid; interorbital distance (IOD), the shortest distance between the upper eyelids measured at the level of the interorbital bar; internarial distance (IND), measured from the centres of the external nares; snout length (SL), measured from the anterior border of the eye to the snout tip; eyelid-nostril length (ENL), measured from the corner of the eye to the centres

54 of the nares; radioulna length (RL), measured from the elbow to the proximal edge of the most proximal palmar tubercle; femur length (FL), measured from the centre of the venter to the distal portion of the knee; tibiofibula (TL), measured from the knee to the proximal edge of the ankle; foot-tarsus length (FTL), measured from the proximal edge of the ankle to the most proximal subarticular tubercle of the fourth pedal digit; inner metatarsal tu- bercle length (IMTL), measured parallel to the hind limb axis at the greatest lengths; outer metatarsal tubercle (OMTL) measured parallel to the hind limb axis at the greatest lengths. These measurements are based on publications focused on the genus Phrynoba- trachus (Blackburn 2010, Blackburn & Rödel 2011, Zimkus 2009, Zimkus & Gvoždík 2013) and Watters et al. (2016). Measurements shown in Fig. 21.

Figure 21. Schematic drawings of 15 measurements taken on individuals of P. steindachneri s.s., P. jimzimkusi, P. njiomock, and Phrynobatrachus sp. Mbam. SVL and SUL are combined in BL.

55 3.2.1.2 Genus Hyperolius All parameters were measured using digital calipers XTline P13430 150 mm with reso- lution of 0.01 mm. Measurements were taken to the nearest 0.1 mm. Following 16 pa- rameters were measured on the species from the genus Hyperolius: snout-vent length (SVL), measured from the snout tip to the opening of the cloaca; snout-urostyle length (SUL), from the snout tip to the posterior edge of the urostyle; head width (HW), meas- ured at the greatest head width in the close proximity to the posterior of the jaw; head length (HDL), measured from the snout tip to the posterior edge of the jaw; eye diameter (ED), measured at the greatest anteroposterior diameter of the upper eyelid; interorbital distance (IOD), the shortest distance between the upper eyelids measured at the level of the interorbital bar; internarial distance (IND), measured from the centres of the external nares; snout length (SL), measured from the anterior border of the eye to the snout tip; eye-naris length (ENL), measured from the corners of the eyes to the centres of the nares; humerus length (HL), measured from the body wall to the elbow; radioulna length (RL), measured from the elbow to the proximal edge of the most proximal palmar tubercle; hand length (HaL), from the most proximal palmar tubercle to the tip of the fourth manal digit; femur length (FL), measured from the centre of the venter to the distal portion of the knee; tibiofibula (TL), measured from the knee to the proximal edge of the ankle; foot length (FoL), from the most proximal edge of the inner metatarsal tubercle to the tip of the fourth pedal digit; disc width (DW), measured at the greatest width of the adhesive disc of the fourth pedal digit. These measurements are based on recent publications on the genus Hyperolius (e.g. Conraide et al. 2018) and the methodological publication by Watters et al. (2016). All parameters are shown in Fig. 22.

56

Figure 22. Schematic drawings of 15 measurements taken on individuals of Hyperolius balfouri, H. cf. cinnamomeoventris, H. hutsebauti, H. phantasticus, and H. robustus. SVL and SUL are combined in BL.

3.2.2 Internal morphology – family Hyperoliidae Apart from a general description of the H. robustus skeleton features and their comparison with the other examined taxa, several osteological characters adapted from Drewes (1984) were examined to see where H. robustus is placed following these Drewes’ approach. State marked as 0 was considered to be an ancestral state of a given character (Drewes 1984). The dorsal exposure of the sphenethmoid was evaluated in four states: (0) dorsally invisible or barely visible; (1) dorsal exposure equal to 0.1 to 0.2 of length of frontopari- etals; (2) dorsal exposure equal to 0,3 to 0,5 of length of frontoparietals; (3) dorsal expo- sure equal to 0.6 or more of length of frontoparietals. The ventral configuration of the sphenethmoid in two states: (0) ventroanterior portion forms a single plate; (1) ventroan- terior portion is unfused and consists of two elements. The contact of the quadratojugal and the maxilla in four states: (0) quadratojugal contacts maxilla anteriorly; (1) same as in 0 but quadratojugal is dorsally enlarged; (2) quadratojugal does not contact maxilla; (3) quadratojugal is reduced or absent. The vomer dentigerous processes in two states: (0) present with or without teeth; (1) absent without teeth. The shape of the vertebral

57 centra in two states: (0) diplasiocoelous; (1) procelous. The imbrication of the neural arches in two states: (1) at least the anterior presacral vertebrae are imbricate (= conceal- ing the spinal canal); (2) nonimbricate. The length of the vertebral column relative to the length of the transverse processes of the eighth presacral vertebra in three states: (0) ratio is between 1.6 and 2.4; (1) ratio of 2.5 to 3.5; (2) ratio greater than 3.6. The orientation of the transverse processes of the eighth presacral vertebra in the relation to the vertebral longitudinal axis in two states: (0) perpendicular; (1) angled forward (at least 70°). The presence of the digital sesamoids in subarticular regions in two states: (0) present; (1) absent. The shape of the terminal phalanx in four states: (0) long, slender, claw-shaped; (1) long, slender, peniform (= constricted near tip); (2) short, obtuse, unmodified or slightly notched; (3) similar to 2 but the tip is bifurcated. The shape of the medial margins of the coracoids in two states: (0) entire; (1) centrally perforated. The degree of the omosternum bifurcation in four states: (0) unforked; (1) notched or slightly forked, great- est space less than half width of a single arm; (2) moderately forked, space one to two times width of one arm; (3) greatly forked, space more than twice width of one arm. The degree of ossification of the intercalary elements in four states: (0) no intracellular matrix formed; (1) cartilaginous, unminerilazed; (2) peripherally mineralized, centra remain car- tilaginous; (3) completely mineralized. The fusion of the carpal bones in two states: (0) unfused; (1) fused. The fusion the tarsal bones in two states: (0) unfused; (1) fused. These 15 characters of H. robustus were compared with the other examined taxa and results of Drewes (1984).

To gain information needed for evaluation of the internal morphology, a micro com- puted tomography (μCT) using a patented device TORATOM (European patent 2835631) was used, together with the in-house developed software ToraST for image acquisition, a Flat Field correction, a defective pixel corrections and projection equalization. For the reconstruction and the visualization, the Volume Graphics VG Studio Max 3.2 was used. Hence, in this study, characters requiring work with soft and cartilaginous tissues (e.g. shape of hyoid apparatus, the vocal sac musculature, the ratio of the caudal margin to the anterior margin of the metasternum, etc.) were excluded, although, some of the cartilagi- nous elements of the skulls were unintentionally scanned too.

58 3.3 Statistical analyses The snout-vent length (SVL) and snout-urostyle length (SUL) were averaged to a single character – body length (BL). Raw data were transformed using the Mosimann’s method of geometric means (Mosimann 1970). Size index of each individual was calculated as an arithmetic mean of natural logarithms of all 15 (BL included) measurements. Then from each logarithmized parameter the value of the individual’s size index was sub- tracted. Such data transformation and size-standardization removes the effect of body size on other measured parameters and thus eliminates the effect of different age, and possible sex size dimorphism. BL was exluded from the following multivariate analyses to obtain linearly independent shape variables (Gvoždík 2003; Gvoždík et al. 2008).

All variables were tested for the normal distribution using the Shapiro-Wilk’s test. Identified outliers were examined, and corrected (re-measured) or removed. The principal component analysis (PCA) was used to assess variation among 14 (BL was excluded) size-standardized transformed parameters. The Broken-stick model was used to select the number of significant components (Jackson 1993). The linear discriminant analysis (DA) was used to differentiate specimens into predefined groups (corresponding to species identified by genetical tools) using size-standardized parameters.

All multivariate analyses were carried out in the program R version 3.4.2 (R Core Team 2017). The principal component analyses were computed using the package vegan (Oksanen et al. 2018) and the discriminant analyses using the package MASS (Venables & Ripley 2002).

3.4 Graphics The program Gimp 2.10. was used to add labels to resulting phylogenetic trees and sche- matic drawings. Maps of geographical ranges were produced in ArcGIS 10.6 (ESRI 2018) using IUCN data for species ranges (IUCN 2019), the GlobCover 2009 dataset (Arino et al. 2012), and the processed SRTM Data V4.1 (Jarvis et al. 2008) as landcover and geo- morphology layers. Accompanying laboratory photographs were taken using a camera Canon EOS 700D and a binocular microscope Olympus SZX16 with the Olympus SDF PLAPO 1XPF and the Olympus SDF PLFL 0.3X lenses.

59 4 Results 4.1 Morphological variation of the P. steindachneri species com- plex 4.1.1 P. steindachneri species complex Table containing values for 14 measured parameters (and SVL and SUL used in calcula- tion of BL) of the all examined specimens of the P. steindachneri species complex that were used to compute following multivariate analyses can be found in the Supplements in Table VII. See also Tables 6–10 for the descriptive statistics for each examined taxon from the P. steindachneri species complex.

Table 6. Descriptive statistics of the measured parameters in the examined specimens of Phrynoba- trachus jimzimkusi. Males are displayed on left, females on right.

P. jimzimkusi ♂♂ P. jimzimkusi ♀♀ [mm] Mean SD Min Max n Mean SD Min Max n SVL 29.3 4.0 20.2 35.3 21 31.1 3.2 23.6 35.7 26 SUL 29.2 4.2 19.1 35.3 21 30.8 3.2 23.7 36.0 26 HW 10.3 1.3 7.2 12.2 21 10.4 1.2 8.1 13.0 26 HDL 9.0 1.2 6.1 10.7 21 9.2 0.9 7.6 11.0 26 ED 3.7 0.5 2.8 4.7 21 3.8 0.4 3.2 4.6 26 IOD 2.3 0.4 1.8 3.4 21 2.3 0.4 1.7 3.3 26 IND 3.0 0.4 2.2 3.5 21 3.1 0.2 2.4 3.4 26 SL 3.8 0.5 2.6 4.5 21 3.9 0.5 3.0 4.9 26 ENL 2.2 0.4 1.4 2.8 21 2.3 0.4 1.6 3.2 26 HL 6.6 1.3 3.5 8.6 21 6.3 0.7 4.9 7.6 26 RL 7.1 1.1 4.5 8.6 21 6.8 0.8 5.4 8.3 26 FL 16.4 2.5 10.2 19.6 21 16.6 1.8 12.8 18.9 26 TL 17.7 2.7 11.3 21.5 21 17.9 1.9 13.9 20.9 26 FTL 17.2 2.4 11.0 21.0 21 17.1 1.8 14.1 19.9 26 IMTL 1.2 0.2 0.7 1.5 21 1.1 0.2 0.8 1.5 26 OMTL 0.7 0.2 0.4 1.1 21 0.7 0.2 0.5 1.1 26

60 Table 7. Descriptive statistics of the measured parameters in the examined specimens of Phrynoba- trachus njiomock. Males are displayed on left, females on right.

P. njiomock ♂♂ P. njiomock ♀♀ [mm] Mean SD Min Max n Mean SD Min Max n SVL 30.5 - - - 1 25.7 2.9 20.5 30.5 17 SUL 30.2 - - - 1 25.4 2.9 20.4 30.0 17 HW 10.3 - - - 1 8.7 0.7 7.1 9.9 17 HDL 8.8 - - - 1 7.8 0.6 6.6 8.7 17 ED 3.1 - - - 1 3.2 0.3 2.5 3.7 17 IOD 2.1 - - - 1 2.2 0.2 1.8 2.7 17 IND 3.2 - - - 1 2.7 0.2 2.2 3.3 17 SL 3.8 - - - 1 3.3 0.3 2.7 3.7 17 ENL 2.2 - - - 1 2.0 0.3 1.5 2.4 17 HL 6.7 - - - 1 5.3 0.6 4.3 6.4 17 RL 6.9 - - - 1 5.3 0.5 4.5 6.1 17 FL 16.9 - - - 1 13.7 1.3 11.7 15.6 17 TL 18.3 - - - 1 15.0 1.5 12.4 17.2 17 FTL 17.8 - - - 1 13.9 1.4 11.8 16.1 17 IMTL 1.1 - - - 1 0.9 0.2 0.7 1.3 17 OMTL 0.7 - - - 1 0.6 0.1 0.5 0.8 17

Table 8. Descriptive statistics of the measured parameters in the examined specimens of Phrynoba- trachus steindachneri s.l., which contains P. steindachneri s.s. and P. sp. Mbabo. Males are displayed on left, females on right.

P. steindachneri s.l. ♂♂ P. steindachneri s.l. ♀♀ [mm] Mean SD Min Max n Mean SD Min Max n SVL 26.2 3.3 17.8 32.1 33 27.0 3.4 19.9 31.6 33 SUL 26.4 3.5 16.7 33.1 33 27.0 3.4 20.6 31.8 33 HW 9.0 1.0 6.7 11.3 33 9.3 1.1 7.1 11.2 33 HDL 8.3 0.9 6.1 9.7 33 8.3 1.1 6.1 9.8 33 ED 3.4 0.5 1.8 4.1 33 3.4 0.5 2.4 4.3 33 IOD 2.5 0.4 1.6 3.7 33 2.4 0.4 1.7 3.9 33 IND 2.9 0.4 1.8 3.6 33 2.9 0.3 2.3 3.5 33 SL 3.3 0.4 2.5 4.2 33 3.3 0.4 2.5 4.3 33 ENL 1.9 0.4 1.3 2.8 33 2.0 0.3 1.4 2.7 33 HL 5.8 0.7 3.9 7.0 33 5.6 0.8 3.7 7.0 33 RL 6.0 0.7 3.5 7.1 33 5.9 0.8 4.4 7.1 33 FL 13.9 1.6 8.8 16.0 33 14.3 2.0 10.7 17.2 33 TL 15.0 1.8 9.6 18.5 33 15.4 1.9 11.5 18.3 33 FTL 14.0 1.9 8.3 16.9 33 14.5 2.1 10.5 17.6 33 IMTL 0.9 0.2 0.6 1.3 33 1.0 0.2 0.6 1.5 33 OMTL 0.6 0.1 0.3 0.7 33 0.6 0.1 0.3 0.8 33

61 Table 9. Descriptive statistics of the measured parameters in the examined specimens of Phrynoba- trachus steindachneri s.s. Males are displayed on left, females on right.

P. steindachneri s.s. ♂♂ P. steindachneri s.s. ♀♀ [mm] Mean SD Min Max n Mean SD Min Max n SVL 25.9 3.3 17.8 31.5 30 27.1 3.5 19.9 31.6 17 SUL 26.1 3.6 16.7 33.1 30 27.2 3.4 20.6 31.8 17 HW 9.0 1.1 6.7 11.3 30 9.3 1.2 7.1 11.2 17 HDL 8.2 0.9 6.1 9.7 30 8.4 1.0 6.1 9.6 17 ED 3.4 0.5 1.8 4.1 30 3.6 0.5 2.6 4.3 17 IOD 2.5 0.4 1.6 3.7 30 2.5 0.4 1.9 3.9 17 IND 2.8 0.4 1.8 3.4 30 2.8 0.3 2.3 3.3 17 SL 3.2 0.3 2.5 4.1 30 3.3 0.4 2.5 3.8 17 ENL 1.8 0.3 1.3 2.4 30 1.9 0.2 1.4 2.3 17 HL 5.8 0.7 3.9 6.9 30 5.6 0.9 3.7 6.8 17 RL 6.0 0.7 3.5 7.1 30 5.8 0.7 4.4 6.8 17 FL 13.7 1.6 8.8 15.8 30 14.1 1.9 10.8 16.7 17 TL 14.7 1.7 9.6 17.7 30 15.1 1.8 11.5 17.5 17 FTL 13.8 1.9 8.3 16.6 30 14.1 2.0 10.5 16.9 17 IMTL 0.9 0.2 0.6 1.2 30 0.9 0.2 0.6 1.1 17 OMTL 0.6 0.1 0.3 0.7 30 0.6 0.1 0.3 0.8 17

Table 10. Descriptive statistics of the measured parameters in the examined specimens of Phryno- batrachus sp. Mbabo. Males are displayed on left, females on right.

P. sp. Mbabo ♂♂ P. sp. Mbabo ♀♀ [mm] Mean SD Min Max n Mean SD Min Max n SVL 30.0 1.5 28.8 32.1 3 25.4 3.3 21.3 31.1 10 SUL 29.1 1.2 28.1 30.7 3 25.4 3.5 20.9 30.9 10 HW 9.9 0.1 9.7 9.9 3 8.9 1.0 7.1 10.3 10 HDL 9.0 0.4 8.5 9.4 3 7.8 1.1 6.6 9.8 10 ED 3.5 0.3 3.3 4.0 3 3.0 0.4 2.4 3.8 10 IOD 2.5 0.2 2.3 2.7 3 2.2 0.3 1.7 2.7 10 IND 3.2 0.4 2.8 3.6 3 2.8 0.4 2.3 3.4 10 SL 4.1 0.1 4.0 4.2 3 3.3 0.5 2.5 4.3 10 ENL 2.6 0.1 2.6 2.8 3 2.1 0.3 1.6 2.7 10 HL 6.4 0.4 6.0 7.0 3 5.4 0.8 4.6 7.0 10 RL 6.8 0.2 6.5 7.1 3 5.7 0.8 4.5 6.9 10 FL 15.2 0.7 14.4 16.0 3 13.6 2.1 10.7 16.8 10 TL 17.7 0.6 17.1 18.5 3 14.9 2.0 12.1 17.9 10 FTL 15.8 1.0 14.5 16.9 3 14.1 2.1 11.5 17.6 10 IMTL 1.1 0.1 1.0 1.3 3 0.9 0.2 0.7 1.1 10 OMTL 0.7 0.1 0.6 0.7 3 0.5 0.1 0.4 0.7 10

62 4.1.1.1 Principal component analysis The broken stick model recommended the first three principal components. The PCA is based on 14 transformed and size-corrected components. The first three compo- nents together express 52.5% (PC1 19.3%, PC2 18.57% and PC3 14.63%) of total varia- bility. The factor loadings of each component can be seen in Table 11. The distribution of factor scores of the first three components is shown in Fig. 23 for PC1 and PC2, and in Fig. 24 for PC1 and PC3. P. jimzimkusi, P. njiomock and P. steindachneri are coloure- coded. Figures 25 and 26 display the same PCA results but with marked P. sp. Mbam. The PC1 shows the biggest variability in parameters of hindlimbs (FL, TL and FTL) and also parameters measured on head (IOD and IND). The PC2 shows the biggest variability in parameters of head (HW, HDL and IND) and the two metatarsal tubercules (IMTL and OMTL). The PC3 has the biggest variability in the length of the snout (SL and ENL) and humerus (HL).

Tabel 11. Factor loadings for the first three components.

PC1 PC2 PC3 PC1 PC2 PC3 HW -0.15 -0.88 -0.09 HL -0.14 -0.28 0.84 HDL 0.51 -1.07 -0.37 RL -0.48 -0.63 0.53 ED 0.64 -0.69 0.52 FL -1.36 -0.70 0.17 IOD 1.16 -0.60 -0.27 TL -1.25 -0.65 -0.04 IND 0.74 -0.74 -0.26 FTL -1.27 -0.16 0.09 SL -0.30 0.23 -1.47 IMTL -0.21 1.01 0.63 ENL -0.44 0.53 -1.38 OMTL 0.23 1.37 0.47

63

Figure 23. Plot of the distribution of factor scores of the first two principal components (PC1 and PC2). Red squares indicate P. jimzimkusi, black triangles P. njiomock, and blue circles P. steindachneri s.l. The same colour-coding applies to polygons.

Figure 24. Plot of factor scores of PC1 and PC3. Red squares indicate P. jimzimkusi, black triangles P. njiomock, and blue circles P. steindachneri s.l. The same colour-coding applies to polygons.

64

Figure 25. Plot of factor scores of the first two principal components (PC1 and PC2). Red squares indicate P. jimzimkusi, black triangles P. njiomock, blue circles P. steindachneri s.s. and yellow rings P. sp. Mbam. The same colour-coding applies to polygons.

Figure 26. Plot of factor scores of PC1 and PC3. Red squares indicate P. jimzimkusi, black triangles P. njiomock, blue circles P. steindachneri s.s. and yellow rings P. sp. Mbam. The same colour-coding ap- plies to polygons.

65 The results of the PCA for the three taxa, P. jimzimkusi, P. njiomock and P. steindachneri s.l., show that P. njiomock is morphologically very similar to both, P. jimzimkusi and P. steindachneri s.l. and lays within the morphospace, where these two species overlap. P. jimzimkusi and P. steindachneri s.l. overlap substantially, but still show some difference. Where distribution of individuals of P. jimzimkusi seems to be driven by variables measured on hindlimbs (FL, TL and FTL), while P. steindachneri s.l. by variables of head (HDL, ED, IOD and IND). The length of the snout (SNL and ENL) seems to have same weight in all three species. After differentiation of P. sp. Mbam from P. steindachneri s.s., it seems that most of the individuals previously shown as P. steindachneri s.l. that were most similar to P. njiomock and P. jimzimkusi are in fact individuals of the candidate species P. sp. Mbam.

4.1.1.2 Discriminant analysis For the linear discriminant analysis of the three taxa, P. jimzimkusi, P. njiomock and P. steindachneri s.l., were selected following variables: HW, HDL, ED, IOD, IND, SL, FL, TL and FTL. Coefficients of linear discriminants in Table 12. Species’ mean values for each linear discriminant in Table 13. Characters that did not have enough weight in the first two discriminants and thus did not help in distinction between afore- mentioned taxa were excluded. Visualization of the DA in Fig. 27. Histograms of distri- butions for each species along the first two discriminant axes in Fig. 28.

Table 12. Table of coefficients of selected linear discriminants. HW HDL ED IOD IND SL FL TL FTL LD1 0.44 6.41 -0.97 3.44 5.69 -2.28 1.32 -6.65 -8.92 LD2 8.72 6.97 4.49 -0.94 -5.56 -1.21 4.67 -22.16 9.14

66

Figure 27. Scatterplot of the first two linear discriminants. Red squares indicate P. jimzimkusi, black circles P. njiomock, and blue triangles P. steindachneri s.l.

Figure 28. Distributions of individuals along LD1 (left) and LD2 (right). Red colour indicates P. jimzimkusi, dark grey P. njiomock, and blue P. steindachneri s.l.

Table 13. Table of group mean values for each discriminant.

Taxon HW HDL ED IOD IND SL FL FTL TL P. jimzimkusi 0.64 0.52 -0.37 -0.86 -0.58 -0.36 1.11 1.15 1.18 P. njiomock 0.63 0.52 -0.39 -0.74 -0.53 -0.35 1.09 1.11 1.18 P. steindachneri s.l. 0.65 0.55 -0.35 -0.67 -0.52 -0.37 1.07 1.09 1.15

67

The linear discriminant analysis of the four species (distinguishing P. sp. Mbam) used following variables: HW, HDL, ED, IOD, IND, SL, HL, RL, FL, TL and FTL. Co- efficients of linear discriminants in Table 14. Species’ mean values for each linear discri- minant in Table 15. Characters that did not help in distinction between aforementioned taxa were excluded. Visualization of the DA in Fig. 29. Histograms of distributions for each species along first two discriminant axis in Fig. 30.

Table 14. Table of coefficients of selected linear discriminants.

HW HDL ED IOD IND SL HL RL FL TL FTL LD1 2.52 7.01 3.03 4.79 3.25 -1.11 5.55 -1.49 5.47 -12.93 -6.45 LD2 -5.30 -0.50 -5.20 -0.02 6.00 -3.06 -0.31 -16.16 2.04 11.02 -7.41

Figure 29. Scatterplot of the first two linear discriminants. Red squares indicate P. jimzimkusi, black circles P. njiomock, blue triangles P. steindachneri s.s., and gold diamonds P. sp. Mbam.

68

Figure 30. Distributions of individuals along LD1 (left) and LD2 (right). Golden colour indicates candidate species P. sp, red P. jimzimkusi, dark grey P. njiomock, and blue P. steindachneri s.s.

Table 15. Table of group mean values for each discriminant.

Taxon HW HDL ED IOD IND SL HL RL FL TL FTL P. sp. Mbam 0.65 0.53 -0.42 -0.77 -0.53 -0.35 0.15 0.22 1.08 1.17 1.11 P. jimzimkusi 0.64 0.52 -0.37 -0.86 -0.58 -0.36 0.16 0.24 1.11 1.18 1.15 P. njiomock 0.63 0.52 -0.39 -0.74 -0.53 -0.35 0.13 0.14 1.09 1.18 1.11 P. steindachneri s.s. 0.65 0.56 -0.31 -0.63 -0.52 -0.38 0.18 0.22 1.07 1.15 1.08

The first DA where were all individuals separated into three groups/species shows similar results to the PCA with three species. P. njiomock is hard to distinguish from the other two species of P. jimzimkusi and P. steindachneri and lays within the place of their overlap. The second DA with additional fourth species is P. njiomock much easier to identify and is no longer in such big overlap. When P. sp. Mbam is distinguished, it is situated in between all three other species with which it to a certain extent overlaps. The overlapping of P. jimzimkusi and P. steindachneri is also smaller than in the first DA.

4.1.2 P. steindachneri and candidate species P. sp. Mbam 4.1.2.1 Principal component analysis The broken stick model recommended first three principal components. The PCA is based on 14 size-corrected components. The first three components together express 47.6% (PC1 17.6%, PC2 15.5% and PC3 14.5%) of total variability. The factor loadings of each component can be seen in Table 16. The distribution of factor scores of the first three

69 components are shown in Fig. 31 for PC1 and PC2, and Fig. 32 for PC2 and PC3. P. steindachneri and P. sp. Mbam are colour-coded with differentiated lineages. The PC1 shows the biggest variability in the width of the head (HW) and measurements of hindlimbs (FL, TL and OMTL). The PC2 shows the biggest variability in parameters of head (ED, IOD, SL and ENL). And the PC3 displays the biggest variability in snout length (SL and ENL) and the two metatarsal tubercules (IMTL and OMTL).

Tabel 16. Factor loadings for the first three principal components.

PC1 PC2 PC3 PC1 PC2 PC3 HW -0.81 0.19 -0.37 HL -0.06 0.27 -0.10 HDL -0.38 0.55 0.59 RL -0.30 0.46 -0.30 ED 0.22 0.83 -0.01 FL -1.06 -0.27 -0.53 IOD -0.05 0.97 0.42 TL -0.98 -0.35 -0.38 IND -0.40 0.51 0.38 FTL -0.36 -0.25 -0.39 SL -0.38 -0.73 1.03 IMTL 0.43 -0.49 -0.98 ENL -0.16 -0.94 0.86 OMTL 1.21 -0.30 -0.11

Figure 31. Distribution of factor scores of the first two components (PC1 and PC2). Blue polygon indicates P. steindachneri s.s. with dark (lineage B, Gotel Mts.) and light blue circles (lienage A, Tchabal Mbabo). Light khaki polygon indicates the candidate species P. sp. Mbam with green (lineage C, Mt. Mbam and Mt. Oku) and yellow squares (lineage D, Mambilla Plateau).

70 Figure 32. Distribution of factor scores of PC2 and PC3. Blue polygon indicates P. steindachneri s.s. with dark (lineage B) and light blue circles (lineage A). Light khaki polygon indicates the candidate species P. sp. Mbam with green (lineage C) and yellow squares (lineage D).

The PCA of individuals of P. steindachneri and P. sp. Mbam shows big similarity between these two species. The individuals of P. sp. Mbam seem to differ in the length of the snout (SL and ENL). While P. steindachneri appears to have wider and longer characters of head. Measurements of hindlimbs do not show any significance. Individuals of the lineage B (light blue) of P. steindachneri are positioned well within the lineage A (dark blue). The sole individual of the lineage D from the Mambilla Plateau was exam- ined. Coincidentally it is the most distinct individual of P. sp. Mbam.

4.1.2.2 Discriminant analysis The linear discriminant analysis for the candidate species P. sp. Mbam and P. steindachneri was carried out with following variables: HW, HDL, ED, IOD, SL, HL, TL and IMTL. Coefficients of linear discriminants in Table 17. Species’ mean values for each linear discriminant in Table 18. Characters that did not help in distinction between the aforementioned taxa were excluded. Visualization of the single linear discriminant in Fig. 33.

71 Table 17. Table of coefficients of selected linear discriminants.

HW HDL ED IOD SL HL TL IMTL LD1 4.63 3.48 2.50 3.15 -4.03 4.89 -4.99 -4.39

Figure 33. Distributions of individuals along LD1. Golden colour indicates P. sp. Mbam and blue P. steindachneri s.s.

Table 18. Table of group mean values for each discriminant.

Taxon HW HDL ED IOD SL HL TL IMTL P. sp. Mbam 0.64 0.53 -0.39 -0.77 -0.36 0.15 1.16 -1.52 P. steindachneri s.s. 0.66 0.57 -0.32 -0.63 -0.38 0.18 1.15 -1.68

The DA displays similar results to the PCA, where both species greatly overlap. P. sp. Mbam differs from P. steindachneri s.s. mostly in length of the snout (SL) and also in the length of tibia (TL) and inner metatarsal tubercule (IMTL). P. steinadchneri s.s. exhibits larger characters of head (HW, HDL and IOD), but also the length of humerus (HL) seems to be significant.

4.2 Morphological variation in the family Hyperoliidae 4.2.1 External morphology Table containing values for the 14 measured parameters (SVL and SUL used in calcula- tion of BL) of all examined specimens of the genus Hyperolius that were used to compute the multivariate statistical analyses can be found in the Supplements in Table VIII. See

72 also Tables 19 and 20 for the descriptive statistics for each examined taxon of the genus Hyperolius.

Table 19. Descriptive statistics of the measured parameters in the examined specmens of Hyperolius balfouri, H. cf. cinnamomeoventris and H. hutsebauti. All examined specimens were males. H. balfouri H. cf. cinnamomeoventris H. hutsebauti [mm] Mean SD Min Max n Mean SD Min Max n Mean SD Min Max n SVL 29.4 3.2 20.9 32.5 10 27.8 1.0 26.6 30.4 10 24.4 1.0 22.8 26.3 10 SUL 29.8 1.5 26.6 31.9 10 26.8 1.0 25.7 29.2 10 23.7 1.0 22.3 25.4 10 HW 10.1 0.4 9.6 10.9 10 9.4 0.4 8.8 10.0 10 8.2 0.4 7.7 8.9 10 HdL 9.0 0.3 8.6 9.7 10 8.4 0.2 8.0 8.8 10 7.0 0.3 6.4 7.4 10 IOD 3.4 0.2 3.1 3.8 10 3.2 0.3 2.9 3.9 10 2.9 0.1 2.7 3.1 10 ED 3.6 0.2 3.3 4.1 10 3.3 0.2 3.0 3.7 10 3.3 0.2 2.8 3.6 10 ENL 2.7 0.3 2.4 3.5 10 2.4 0.1 2.3 2.5 10 1.5 0.1 1.3 1.7 10 IND 2.7 0.2 2.5 3.1 10 2.6 0.1 2.3 2.7 10 2.6 0.1 2.4 2.8 10 SL 3.7 0.4 3.3 4.5 10 3.1 0.2 2.8 3.3 10 2.3 0.2 2.0 2.6 10 HL 5.7 0.4 5.2 6.4 10 5.0 0.3 4.6 5.5 10 4.6 0.5 3.8 5.3 10 RL 6.7 0.4 6.2 7.4 10 5.7 0.2 5.4 6.2 10 4.9 0.4 3.9 5.5 10 HaL 7.0 0.4 6.4 7.6 10 6.5 0.5 5.8 7.4 10 5.3 0.6 4.5 6.5 10 DW 1.4 0.2 1.2 1.8 10 1.3 0.1 1.1 1.4 10 1.1 0.1 1.0 1.3 10 FL 14.4 0.9 13.3 16.2 10 12.8 0.6 12.1 13.8 10 11.2 0.7 10.2 12.3 10 TL 15.3 0.8 13.9 17.0 10 13.7 0.6 12.9 15.0 10 12.0 0.8 10.8 13.2 10 Fol 13.4 0.8 11.9 14.7 10 11.5 0.6 10.5 13.0 10 10.4 0.8 9.5 12.0 10

Table 20. Descriptive statistics of the measured parameters in the examined specmens of H. phan- tasticus and H. robustus. All examined specimens were males. H. phantasticus H. robustus [mm] Mean SD Min Max n Mean SD Min Max n SVL 31.9 1.1 29.8 33.4 10 32.5 0.9 30.7 33.7 10 SUL 30.4 1.0 28.3 31.6 10 31.4 1.1 29.3 32.9 10 HW 12.1 0.4 11.4 13.0 10 11.0 0.4 10.6 11.8 10 HdL 9.5 0.3 9.1 10.2 10 10.6 0.5 9.7 11.6 10 IOD 4.3 0.2 3.9 4.5 10 3.9 0.2 3.6 4.1 10 ED 3.9 0.2 3.5 4.2 10 4.3 0.4 3.4 5.0 10 ENL 2.3 0.2 2.0 2.6 10 3.2 0.1 3.0 3.6 10 IND 3.6 0.2 3.2 3.9 10 2.9 0.2 2.5 3.2 10 SL 3.6 0.3 3.0 3.9 10 4.1 0.2 3.7 4.5 10 HL 5.1 0.3 4.6 5.5 10 5.4 0.4 4.8 6.1 10 RL 6.2 0.3 5.8 6.6 10 6.2 0.3 5.9 6.7 10 HaL 7.8 0.3 7.2 8.3 10 7.1 0.4 6.6 7.7 10 DW 1.5 0.1 1.2 1.6 10 1.4 0.1 1.2 1.6 10 FL 14.8 0.5 14.1 16.1 10 15.2 0.8 13.7 16.3 10 TL 15.3 0.5 14.8 16.6 10 16.1 0.7 15.0 17.3 10 Fol 13.6 0.4 12.9 14.3 10 14.0 0.5 13.3 14.8 10

73 The PCA was performed on specimens from the genus Hyperolius (5 species, in- cluding H. robustus) only. It was based on 14 size-corrected measurements. The broken stick model recommended the first two principal components that together express 52.3% (PC1 27.1% and PC2 25.3%) of total variation. The factor loadings of each component can be seen in Table 21. The distribution of factor scores of the first two components are shown in Fig. 34, where species are colour-coded, for details see figure description. The PC1 shows the biggest variability in parameters measured on the head (HW, IOD, ENL and IND). The PC2 displays the biggest variability in parameters of limbs (HL, RL, FL, TL and FoL), the length of head (HdL) and snout (SL).

Tabel 21. Factor loadings for the first two principal components.

HW HdL IOD ED ENL IND SL PC1 -1.00 0.58 -0.92 -0.32 1.12 -1.25 0.78 PC2 0.40 0.81 0.32 -0.12 0.69 -0.11 0.89

HL RL HaL DW FL TL FoL PC1 0.32 0.38 -0.61 -0.60 0.29 0.52 0.20 PC2 -1.11 -0.91 -0.03 -0.28 -0.78 -0.99 -0.83

74

Figure 34. Distribution of factor scores of the first two principal components. Dark green triangles indicate Hyperolius balfouri, light green triangles H. cf. cinnamomeoventris, red circles H. hutsebauti, or- ange circles H. phantasticus, and gold squares H. robustus.

Hyperolius robustus is distinguished from the other examined taxa by longer head (HdL) and snout (SL and ENL), which has been already pointed out by Laurent (1979). H. robustus has bigger ratio of eye-naris distance (ENL) to internarial distance (IND) (mean value from 10 measured specimens: 1.12) than in other 4 examined species (H. balfouri: 0.97; H. cinnamomeoventris: 0.93; H. hutsebauti: 0.58; H. phantasticus: 0.65) and as was observed by Laurent (1979). Cryptothylax greshoffii shows similar ENL/IND ratio value as H. robustus (1.14). H. hutsebauti and H. phantasticus seem to have wider heads (HW, IOD and IND) and longer palms (HaL) than the others. See Fig. 35 for com- parison of rostra in selected examined taxa. H. hutsebauti and H. balfouri also have longer limbs (HL, FL, RL and TL) and toes (FoL), which means H. phantasticus and H. robustus have shorter limbs relatively to their body length.

75

Figure 35. Comparison of rostra from dorsal views of (A) Cryptothylax greshoffi (CD18_169), H. robustus (CD18_159), and H. phantasticus (CD18_519) with highlighted IND and ENL measurements. All three are pictured specimens are adult males. Schematic drawings were scaled to the same size.

Other external characters were observed in examined specimens (including other genera from the family Hyperoliidae). One of them was the extension of gular gland and type of vocal pouch, if present. H. robustus does not lack the extensible vocal pouch that in male underlies the gular gland entirely, but is not develop in such extent as in other Hyperolius species. Similar state occurres in Cryptothylax greshoffii, where the gular gland covers most of the gular region, but the vocal pouch is absent. However, in H. ro- bustus the gular gland does not cover the throat in such extent and the gular gland has free posterior and posterolateral margins. Morerella cyanophthalma lacks dilatable skin around its smaller gular gland (Rödel et al. 2009). But Laurent (1951) mentioned poster- omedial position of the gular gland in Callixalus pictus and a lack of vocal pouch. Laurent (1950) stated that the gular gland of Ch. cupreonitens is positioned in posterior part of the gular region and the vocal pouch is lacking. See Fig. 36 for comparison of gular regions of Cryptothylax greshoffii, H. robustus and H. cf. cinnamomeoventris. Other genera from the family Hyperoliidae that do not have vocal pouch are e.g. Acanthixalus and Arlequi- nus.

76

Figure 36. Gular regions of (A) Cryptothylax greshoffii (CD18_30), (B) H. robustus (CD18_159), (C) H. cf. cinnamomeoventris (CD18_92). All three are pictured specimens are adult males. Schematic drawings were scaled to the same size.

Another external character, mentioned earlier, is the visibility of tympanum. Where in species from the genus Hyperolius the tympanum is mostly indistinct. From other ex- amined taxa it is absent in Callixalus pictus and Ch. cupreonitens (Laurent 1950, 1951). Other genera from the family Hyperoliidae that lack visible tympanum are e.g. Acanthix- alus, Kassinula and Opisthothylax (Schiøtz 1999). Whereas Cryptothylax greshoffii, H. robustus and M. cyanophthalma (Rödel et al. 2009) have distinct tympanums. The tympanum in H. robustus is small and positioned right behind large eyes as in other spe- cies from the genus Hyperolius. Whereas in C. greshoffii the tympanum is located further away from the eye. See Fig. 37 for comparison of C. greshoffii, H. robustus and H. cf. cin- namomeoventris. Other genera from the same family that have distinct tympanum are e.g. Kassina, Paracassina and Phlyctimantis (Schiøtz 1999).

Figure 37. Lateral views of heads of (A) Cryptothylax greshoffii (CD18_30), (B) H. robustus (CD18_159), and (C) H. cf. cinnamomeoventris (CD18_129). All three are pictured specimens are adult males. Schematic drawings were scaled to the same size.

77 The pupil of H. robustus is horizontal. All Hyperolius species share this character. From other examined taxa it is Callixalus pictus and Cryptothylax greshoffii that have vertically oriented (or rhomboid) pupils. Other genera in the same family that do not have horizontal pupils are e.g. Afrixalus, Kassina, and Kassinula.

4.2.2 Internal morphology

Figure 38. Volume rendering of microtomography of a female H. robustus skull (ZMUC R.771176) in (A) dorsal, (B) ventral, (C) lateral, (D) anterior and (E) posterior view.

78 The assessment of the internal morphology of Hyperolius robustus based on the μCT scans yielded following results (see Fig. 38 for visualization of H. robustus skull). The premaxilla of H. robustus bears minute teeth and is less robust than in Cryptothylax gresh- offii. Overlapping of the maxilla over the premaxilla is minimal. The nasals are triangular, separated medially from each other and posteriorly from the frontoparietals. The canthal regions of the nasals are rounded. The vomers of H. robustus do not bear dentigerous processes. See comparison with Callixalus pictus, Cryptothylax greshoffii and H. sanku- ruensis in Fig. 39.

Figure 39. Comparison of right vomers of (A, B) Callixalus pictus (CAS 145260); (C, D) Cryp- tothylax greshoffii (CD15_169) with dentigerous process; (E, F) H. robustus (ZMUC R.771175); (G, H) H. sankuruensis (ZMUC R.771205). Dorsal views (A, C, E, G) presented above ventral (B, D, F, H).

The lateral and medial termina of neopalatine, that connects maxilla with spheneth- moid, are blunt in H. robustus. The sphenethmoid is not dorsally exposed. From all com- pared taxa is Cryptothylax greshoffii the only differing species that has sphenethmoid dorsally exposed (ratio between 0.1 and 0.2). The ventroanterior portion of the spheneth- moid is unfused. This character is shared among all examined taxa. Maxilla of H. robustus bears minute teeth. The dorsal margin of the medial ramus of the pterygoid is deeply incised in Callixalus pictus. In Ch. cupreonitens the dorsal margin of the medial ramus forms a protuberence. Both of these characters are missing in Cryptothylax and Hypero- lius. But the medial ramus in C. greshoffii and H. robustus are wider (mediolaterally). The frontoparietals of H. robustus are rectangular with slightly diverged anterior margins that uncover small portion of the sphenethmoid. The cultriform process of parasphenoid

79 in H. robustus bifurcates at its tip and is wider in the medial part than at its base. The pos- terior process of parasphenoid is pointed. While in C. greshoffii it is rounded. The culti- form process in Callixalus pictus narrows down toward the bifurcated tip and its posterior process is blunt and wide. The cultriform process of Ch. cupreonitens does not bifurcate and its posterior process is pointed. The parasphenoid in all three examined Hyperolius species has the anterior portion of the cultriform process narrower than H. robustus and its posterior process is narrow and with a pair of processes at its base. See Fig. 40 for the comparison of parasphenoids.

Figure 40. Comparison of parasphenoids from ventral views of (A) Callixalus pictus (CAS 145260), (B) Cryptothylax greshoffii (CD15_169), (C) H. robustus (ZMUC R.771176), and (D) H. sankuruensis (ZMUC R.771205).

The maxillary process of quadratojugal (later only as QJ) of H. robustus ZMUC R.771175 is anteriorly in contact with maxilla and more than half of it is overlapped by angulare. The dorsal process of QJ is as wide (from anterior view) as its quadrate base. The QJ of Callixalus pictus does not have its dorsal process as wide as the base and its maxillary process is taller in its medial portion than in its base and the tip. The QJ of Ch. cupreonitens is more robust than in other compared taxa. The dorsal process of QJ in other Hyperolius is not as wide as in H. robustus and its maxillary process widens towards the anterior pointing tip. Unlike in H. robustus, where the maxillary process maintains the same width throughout its entire length. Cryptothylax greshoffii and M. cyanoph- thalma (Rödel et al. 2009) differ from other examined species in anterior contact of QJ and maxilla as H. robustus does. The ventral ramus of squamosum (later only as SQ) in H. robustus is curved anterirorly more than in other Hyperolius in which it is almost straight and differs from all other examined taxa in a presence of anteriorly oriented

80 pointed process at the end of ventral ramus. Callixalus pictus exhibits S-shaped ventral ramus of SQ. The upper part of the SQ as a whole (consisting of zygomatic and otic rami) is in Hyperolius angled laterally (U-shaped with tips of rami angled outwards) more than in H. robustus. The zygomatic and otic rami are angled laterally in examined specimens, apart from C. pictus where they are flat and Cryptothylax greshoffii where the zygomatic ramus is sharply pointed and angled medially into the orbit. See Fig. 41 for comparison of squamosal.

Figure 41. Comparison of squamosal in lateral views: (A) Callixalus pictus (CAS 145260), (B) Cryptothylax greshoffii (GA 024), (C) H. robustus (ZMUC R.771176), (D) H. hutsebauti (CD15_10) and (E) H. balfouri (CD15_61).

The columella is present and well developed in H. robustus. Although Callixalus pictus lacks tympanum, it possesses a columella that is reduced and partially hidden be- hind the otic ramus of squamosum.

The vertebral centra of H. robustus are diplasiocoelous. Same character was ob- served in Callixalus pictus and Rödel et al. (2009) report this character in Morerella. Other examined taxa have procoelous vertebral centra. Neural arches of H. robustus are non-imbricate. The only examined species bearing this character is Cryptothylax gresh- offii. The ratio of the length of the vertebral column to the length of transverse processes of the 8th presacral vertebra is between 1.6 and 2.4. The transverse processes of the 8th presacral vertebra are angled perpendicularly to the vertebral column. The subarticular sesamoids are absent. The terminal phalanxes are long and peniform. Only H. balfouri and H. phantasticus have differently shaped terminal phalanxes. The medial margins of coracoids are entire in all examined taxa. The bifurcation of omosternum in H. robustus is greatly forked. Differing are only Callixalus pictus and Ch. cupreonitens with smaller distances between arms of omosternum. The cartilaginous metasternum is a synapo- morphic character of all Hyperoliidae taxa. Hyperolius robustus meets these principles

81 with metasternum slightly ossified at its base. See Fig. 42 for pectoral girdle of H. ro- bustus.

Figure 42. Volume rendering of microtomography of pectoral girdle of a male H. robustus (ZMUC R.771175); cla = clavicule, cor = coracoid, hum = humerus, omo = omosternum, sca = scapula, sup = suprascapular, ste = (meta-) sternum.

The intercalary elements of H. robustus are not centrally mineralized in the exam- ined female ZMUC R.771176, but are fully mineralized in the male ZMUC R.771175. This could be a difference between sexes or a result of size difference, respectively dif- ferent μCT settings during scanning. The carpal and tarsal bones are not fused as the free carpal and tarsal bones (3rd is not fused with 4th and 5th) are synapomorphic character of the whole family Hyperoliidae (Drewes 1984). An overview of all examined individuals from different taxa and results of Drewes (1984) and Rödel et al. 2009 is available in Table 22.

82 Table 22. Results of the internal morphology assessment from Drewes (1984) and the results from this study. For more details on characters examined see the Chapter 3.2.2. (1) Dorsal exposure of spheneth- moid, (2) ventral configuration of sphenethmoid, (3) contact of quadratojugale and maxilla, (4) presence of vomer teeth, (5) shape of vertebral centra, (6) imbrication of neural arches, (7) length of vertebral column, (8) orientation of transverse processes of 8th vertebra, (9) presence of digital sesamoids, (10) shape of ter- minal phalanx, (11) shape of medial margins of coracoids, (12) omosternum bifurcation, (13) ossification

of intercalary elements, (14) fusion of carpal and (15) tarsal bones.

. 2009

et et al

rewes (1984)

Source Drewes (1984) This study D This study Drewes (1984) This study This study Drewes (1984) This study This study This study Drewes (1984) This study Rödel

2 2 2 2 2 2 2 2 2 2 2 2 2 2

15

2 2 2 2 2 2 2 2 2 2 2 2 2 2

14

2 2 3 3 2 2 2 2 3 2 2 3 3

13

3(2)

2 2 3 3 3 3 3 3 3 3 3 2 3

12

2(3)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

11

-

1 1 1 1 1 1 0 1 1 1 1 1 1

10

-

9 1 1 1 1 1 1 1 1 1 1 1 1 1

8 0 0 0 0 1 0 0 0 0 0 0 0 0 0

-

7 1 1 0 0 0 0 0 0 0 0 1 0 0

6 1 1 0 0 1 1 1 1 1 1 1 1 1 1

5 0 0 1 1 1 1 1 1 0 0 1 1 1 0

4 1 1 0 0 1 1 1 1 1 1 1 1 1 1

3 2 2 0 0 2 2 2 2 0 0 2 2 2 0

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

ID - 145260 CAS - CD15_169 - CD15_061 CD15_010 - ZMUC 771175 ZMUC 771176 ZMUC 771205 - 145263 CAS -

Species Callixalus pictus Cryptothylax greshoffii Hyperolius balfouri Hyperolius hutsebauti Hyperolius phantasticus Hyperolius robustus Hyperolius sankuruensis Chrysobatrachus cupreonitens Morerella cyanophthalma

83 4.3 Phylogenetic position of H. robustus The phylogenetic analyses of the fragment 16S mtDNA and four nuclear genes resulted in four phylogenetic trees. Two (ML and BI) for mtDNA and two for the nDNA. See Figures 43 and 44 for respective phylogenetic trees. Table 23 shows the distinctiveness of H. robustus 16S sequence from other analyzed taxa.

4.3.1 Mitochondrial DNA The phylogenetic analyses of the mitochondrial DNA (fragment 16S rRNA) resulted in the phylogenetic tree shown in Fig. 43, where values of ML bootstraps are placed in front of BI posterior probabilities. BI and ML analyses did not differ in tree topologies.

Three individuals of the species Hyperolius robustus form distinct clade (100/1) and are different from all other analysed species (see Table 23 for percentual differences in the fragment of 16S mtDNA among involved taxa), including five representatives of the genus Hyperolius. Same applies to three individuals of C. greshoffii (99.9/1) and the single specimen of M. cyanophthalma. Selected species from the genus Hyperolius form somewhat supported monophyly (80.7/0.9) with three subclades: H. balfouri and H. cin- namomeoventris (99.7/1), H. hutsebauti and H. phantasticus (98.4/1), and H. nasutus. Results show four main clades (Morerella, H. robustus, Cryptothylax and genus Hypero- lius). However, 16S rRNA does not offer well supported solutions to relationships be- tween them.

4.3.2 Nuclear DNA The phylogenetic analyses of four nuclear (FICD, KIAA2013, POMC and Tyr) genes re- sulted in the phylogenetic tree shown in Fig. 44. Values of ML bootstraps are placed in front of BI posterior probabilities. BI and ML analyses produced trees with same topolo- gies but different supports.

Hyperolius robustus is placed in the sister position to M. cyanophthalma with strong support in BI (1), but weaker support in ML (68.6). These two taxa are with strong support placed in the sister position to C. greshoffii (99.9/1). All analysed Hyperolius species (apart from H. robustus) create a strongly supported monophyletic group (100/1) in the sister position to the clade containing the aforementioned species (87.9/1). Hyperolius balfouri and H. concolor form a strongly supported clade (100/1) in the sister position to

84 a clade containing H. fusciventris and H. ocellatus as the sister taxa (99.7/1) and H. ad- spersus (56.4/1). Afrixalus paradorsalis and Heterixalus alboguttatus form a strongly supported clade (92.6/1) in the sister position to the all aforementioned taxa. Opis- thothylax immaculatus is the sister taxon to the clade formed by Afrixalus-Heterixalus, Hyperolius and Cryptothylax-Morerella clades (100/1). Acanthixalus sonjae is the sister taxon to the remaining analysed taxa (without Kassina outgroup).

85

Table 23. Sequence dissimilarities in the fragment of 16S rRNA of the analysed taxa.

33 53 93 83 84 64 83 82 08 37 14 17

......

H. cinnamomeoventris -

21 21 21 18 19 19 18 12 19 17 17 14

73207

ZFMK

FJ594077

98 18 38 66 57 37 56 09 93 66 61 17

......

H. balfouri -

CAS CAS

21 22 22 21 21 21 20 24 20 18 20 14

253643

KX492614

0 0

61 61 61 35 3 3 09 73 01 61 14

...... 83 . . -

H. hutsebauti .

9

19 19 19 17 20 20 20 20 19 20 17

21458 UTEP

MF377325

0

11 32 72 8 93 72 92 56 52 66 37

...... 83 . .

- -

H. phantasticus .

9

19 19 19 16 20 20 19 19 15 18 17

KY080213

0 0 0 0 0 0

4 6 3 6 4 6 64 52 01 93 08

. . .00 ......

H. nasutus -

1030

17 17 18 17 19 19 18 18 15 19 20 19

AACRG AACRG

JQ863699

77 97 37 79 38 18 37 64 56 73 09 82

......

A. paradorsalis -

CAS CAS

16 16 17 13 18 18 17 18 19 20 24 12

249943

KX492598

0 0

79 99 4 23 37 6 92 09 56 83

. . . . 02 81 ......

- .

C. greshoffii .

1 0

MVZ

15 15 16 14 17 18 19 20 20 18

234714

MK509644

0 0

45 65 06 04 18 4 72 3 37 64

. . . . 61 81 ......

- - .

C. greshoffii .

0 0

15 15 16 15 18 19 20 20 21 19

GA021

0 0

65 48 89 24 38 6 93 3 57 84

. . . . 61 02 ......

- - .

C. greshoffii .

0 1

15 15 15 15 18 19 20 20 21 19

CAR143

0 0 0 0

99 2 2 24 04 23 79 3 8 35 66 83

......

M. cynophthalma -

11 12 12 15 15 14 13 17 16 17 21 18

Ba04.3

KX492878

0 0

2 89 06 4 37 72 61 38 93

61 41 ...... 00 . . . .

- - .

H. robustus .

102

0 0

12 15 16 16 17 18 19 19 22 21

YHM

0 0

0

2 48 65 99 97 6 32 61 18 53

2 41 ......

- - .

H. robustus .

0 0

12 15 15 15 16 17 19 19 22 21

ZMUC

R.771179

0

0

99 65 45 79 77 4 11 61 98 33

2 61 ......

- - .

H. robustus .

0 0

11 15 15 15 16 17 19 19 21 21

ZMUC

R.771176

asutus

H. H. robustus H. robustus H. robustus cyanophthalma M. C. greshoffii C. greshoffii C. greshoffii A. paradorsalis H. n H. phantasticus H. hutsebauti H. balfouri H. cinnamomeoventris

86

Figure 43. Relationships of the selected species from the Hyperoliidae family inferred from the fragment of mitochondrial DNA (16S rRNA). Values of ML bootstraps are shown in front of values of BI posterior probabilities.

87

Figure 44. Relationships of the selected species from the Hyperoliidae family inferred from four nuclear genes (FICD, KIAA2013, POMC and Tyr). Values of ML bootstraps are shown in front of values of BI posterior probabilities. Taxa assigned to subfamilies sensu Portik et al. (2019).

88 5 Discussion 5.1 Morphological variation in the P. steindachneri species com- plex First half of this study is based on results of phylogenetic analyses from Zimkus & Gvoždík (2013) and M. Dolinay & V. Gvoždík (unpublished data). Analysis of three ex- amined nominal species showed the biggest (but overall small) difference between P. steindachneri and P. jimzimkusi with P. njiomock being the least distinguishable from the other two. Differentiation of P. jimzimkusi seems to be driven mainly by characters on hindlimbs, respectively P. jimzimkusi seems to have longer hindlimbs than the other two species. Whereas P. steinachneri stands out with shape of head, respectively dis- tances between eyes, nostrils and length of head. Tejedo et al. (2000) reported that pro- portionally smaller hind limbs develop in larvae at higher population densities, and vice versa [tested in Pelophylax esculentus (Linnaeus, 1758), P. lessonae (Camerano, 1882), P. ridibundus (Pallas, 1771)]. The development of shorter hindlimbs had been also ob- served in populations exposed to a drying of the water body in which were the larvae developing [e.g. Scaphiopus couchii Baird, 1854 (Newman 1989); Pelodytes punctatus (Daudin, 1802) (Richter-Boix et al. 2006)]. Larger, respectively longer, legs also play important role in a defence against predator (Miller et al. 1993). This suggests that the populations of P. jimzimkusi, P. njiomock and P. sp. Mbam could be exposude to a lack of suitable breeding sites, which could lead to higher densities of their larvae, or a higher predation risk that in the northern CVL. While the populations of P. steindachneri s.s. in the north might face faster drying of breeding pools. The shape of head that discerns P. steindachneri from the rest of the P. steindachneri species complex might be depend- ent on the growth rate, where larvae developing under warmer conditions grow wider heads [Rana cascadae Slater, 1939 (Blouin & Brown 2000)], which agrees with the de- velopment of shorter limbs in faster drying pools. On the contrary, Márquez-García et al. (2009) reported longer hind limbs and larger head measurements from habitats with low dessication in Rhinella spinulosa (Wiegmann, 1834). The previously mentioned possible causes that might have led to the distinction of P. steindachneri s.s. among other closely related atxa could be regarded to the phenotypic plasticity, which allows a single genotype

89 to produce multiple morphological variations and because phenotype (the product of gen- otype and environmental effects) is the focus of the natural selection, it leads to the di- versification/speciation (West-Eberhard 1989).

After separating individuals of the candidate species P. sp. Mbam (lineages C and D) from P. steindachneri, it was the rest of P. steindachneri individuals (lineages A and C) that became the most distinct from the other three groups/taxa. The candidate species P. sp. Mbam is rendered to be very similar to P. njiomock and similar to P. jimzimkusi. Ranges of all of these three species overlap on Mt. Oku. The range of P. sp. Mbam extends to the Mambilla Plateau in Nigeria and to extent as far as the Gotel Mts. (Nigeria/Came- roon border) where it might be found together with individuals of P. steindachneri s.s., or at least some “typical” P. sp. Mbabo genes indicating that hybridization occurs in the Gotel Mts. (M. Dolinay & V. Gvoždík, unpublished data). These supposedly hybrid in- dividuals were excluded from all statistical analyses because of their uncertain genetic composition. Comparison of individuals of P. steindachneri s.s. and P. sp. Mbam did not show significant difference between them. Individuals of P. steindachneri s.s. from the lineage B from Tchabal Mbabo are positioned well within the lineage A (Gotel Mts.) cluster. Individuals of P. sp. Mbam from the lineage C (Mt. Oku and Mt. Mbam) greatly overlap with P. steindachneri s.s., while the sole individual of P. sp. Mbam from the lin- eage D (Mambilla Plateau) differes from others. This may be caused by an irregular de- viation in body parameters in this individual that were not detected, or simply by lack of other individuals from this lineage that would either more differentiate the lineage D from the other three mitochondrial lineages, or draw this lineage closer to the rest.

The results primarly showed that discernment of all four participating taxa based on external morphology continues to be a difficult task. Especially in field conditions if we take into account their partially overlapping ranges. Other outcome of this study is that results of morphological analyses do not draw as sharp boundaries between species as the results of phylogenetic analyses.

The main reasons for diversification in the P. steindachneri species complex are attributed to fluctuations of montane forest distributions during the Pliocene and the Pleis- tocene (from ~5.3 million to approx. 12 thousand years ago) that allowed taxa to disperse with extending forests and than being afterwards isolated in forest refugia (= species-

90 specific habitat stability) from each other (Zimkus & Gvoždík 2013). The dating esti- mates suggest that the Cameroon radiation originated ~22-21 Mya in the beginning of the Miocene (Zimkus & Gvoždík 2013). A period of an extensive aridification (Zhang et al. 2014), and a retreat of forests towards the equator (Kissling et al. 2012). The warm cli- matic phase peaked in the late Miocene (17 to 15 Mya) and is referred to as the Miocene climatic optimum (Zachos et al. 2001). However, Gvoždík et al. (unpublished data) bring different results with dating of the initial divergence from the P. africanus group to ~9.7 Mya, after the global cooling at the verge of the Miocene (spanning from 15 to 10 Mya and then further to 6 Mya; Vincent et al. 1985; Flower & Kennett 1995; Vorren & Thiede 1994). Zimkus & Gvoždík (2013) dated the divergence between P. steindachneri s.l. and the clade containing P. jimzimkusi and P. njiomock to occur ~12.5 Mya in the Miocene during the global cooling event, where the equatorial temperatures did not change drasti- cally in the equatorial regions, but rather the temperature gradient between equater and geographical poles became steeper due to decrease of temperatures in high latitudes (Her- bert et al. 2016). The environmental conditions stabilized at temperatures similar to the present at the end of the Miocene (between 7 and 5.4 Mya) (Herbert et al. 2016).

The following glaciation (~3.2 Mya) of the northern hemisphere in the Plio-Pleis- tocene and the periodic glacilal-interglacial cycles had a substantial effect on the montane speciation in Africa (Bowie et al. 2006; Lewis et al. 2008; Missoup et al. 2012; Zachos et al. 2001). These events coincide with the divergence dating of the P. steindachneri and P. werneri groups of Gvoždík et al. (~5.5 Mya; unpublished data). Gvoždík et al. (un- published data) did not calculate the divergence dating between P. steindachneri and P. jimzimkusi/njiomock, but they estimated the divergence between the montane P. steindachneri species complex and the submontane P. cricogaster into the mid Plio- cene [~3.8 Mya; approx. 15 Mya in Zimkus & Gvoždík (2013)]. Thus, we can expect that the divergence of the P. steindachneri complex would happen between ~3.8 and ~1.4 Mya (the Middle Pliocene to the Late Pleistocene; ~1.4 Mya is the estimated dating of the divergence of P. jimzimkusi and P. njiomock; Gvoždík et al., unpublished data). In this approx. time frame were reported multiple events of a rising aridity on the African continent through out the Late Pliocene and the Pleistocene [e.g. ~2.8, ~1.7, and ~1 Mya in the West Africa in deMenocal (1995); ~3.5, ~2.3 and ~1.7 form the Turkana Basin, Kenya in Wynn (2004)] that would affect the forest coverage and its fluctuation along the

91 altitudinal axis in the CVL forest refugium (Maley 1996; Lowe et al. 2010; Koffi et al. 2011; Budde et al. 2013; Migliore et al. 2019) and thus repeatedly restrict and allow the contact of neighbouring populations of the P. steindachneri species complex that would lead to present state inferred from the phylogenomic analyses (M. Dolinay & V. Gvoždík, unpublished data).

The northward movement of the African continent also induced volcanic activity across the whole continent (Plana 2004). But the origins of the CVL are dated to ~70 Mya in the Cretaceous period, thus much earlier (Déruelle et al. 1991 In: Milleli et al. 2012). The volcanic activity in the Bamenda-Banso Highlands, where the presumed ancestor of the Cameroon radiation arised (Zimkus & Gvoždík 2013), started approx. 31 Mya (Mt. Oku 31-22 Mya, Bamboutos Mts. 21-14 Mya; Marzoli et al. 2000), which supports find- ings of Zimkus & Gvoždík (2013) with the divergence of P. cricogaster and the montane P. steindachneri species complex 30 Mya that would latter invade the newly established montane regions and further diverge.

Existence of the presumed hybrids of P. steindachneri and P. sp. Mbam, and P. njiomock and P. jimzimkusi (M. Dolinay & V. Gvoždík, unpublished data) indicate that reproductive barriers between the taxa of the P. steindachneri complex are still in developement and that this species complex may still be undergoing speciation. Although amphibians are known for their ability to hybridize with other distantly related spe- cies/genera [e.g. Bufo bufo (Linnaeus, 1758) x Bufotes viridis (Laurenti, 1768) (Duda, 2008)] (Drillon et al. 2019). The divergence of Phrynobatrachus jimzimkusi and P. njio- mock is estimated to happen ~1.4 Mya (V. Gvoždík et al., unpublished data), respectively quiet recently (opposed to the ~43 million years old divergence of bufonids; Pramuk et al. 2008). Therefore, neither prezygotic nor postzygotic reproductive barriers may be es- tablished.

A hypothesis explaining the difference of individuals from P. steinadchneri s.s. (A and B) could be that they are exposed to different ecological conditions. While the rest of analysed taxa occurs naturally in the Bamenda-Banso Highlands, and on Mt. Oku three species sympatrically. P. steindachneri s.s. has restricted range to the Gotel Mts. and Tchabal Mbabo in the north of CVL. V. Gvoždík (personal communication), who visited both mountain ranges, confirmed apparent difference of the northern CVL (Gorel Mts.,

92 Tchabal Mbabo) and more southern areas, e.g. Bamenda-Banso Highlansd. Gotel Mts. and Tchabal Mbabo have steeper slopes that are more forested than those of Bamenda- Banso Highlands. This hypothesis has yet to be tested by analysis of ecological data from both mountain ranges. Its confirmation would prove that the montane species from the P. steindachneri complex evolved their morphological features in accordance with eco- logical factors of the environment surrounding them. Where P. steindachneri s.s. from the north differs from the remaining, similarly looking three taxa from the south. How- ever, if there will not be found any significant differences in acquired ecological data between these two mountain ranges, the morphological differences could be blamed on e.g. random character fixation, or female bias towards such character. Still, that would require substantial bottleneck in the population of P. steindachneri s.s. since its separation from a common ancestor with P. sp. Mbam. Therefore, the morphological differences induced by the differences in ecological factors in these two regions seem to be more plausible explanation. The variation of body shape between populations across an eco- logical gradient can be seen in other anuran taxa too. Gvoždík et al. 2008 reported a higher interspecific similarity in body shape between Hyla arborea (Linnaeus, 1758) and H. sa- vignyi Andouin, 1827 (Gvoždík et al. (2010) later excluded the Middle Eastern popula- tions into a new species H. felixarabica Gvoždík, Kotlík & Moravec, 2010) from same region, than in conspecific populations from regions differing in ecological conditions. Similar results yielded a morphological comparison of populations of Pelophylax sahari- cus (Boulenger, 1913) from Tunisia, where the most inland populations differed from the coastal in larger hind limb length and measurements of head (Amor et al. 2009).

The last fieldwork (2016) of V. Gvoždík (personal communication) into the moun- tains of the northern Cameroon to study frogs in the wild, and in particular to collect more data on these montane species, returned with gloomy results. Not a single individual of Phrynobatrachus was found during this fieldwork. The disappearance occurred rapidly in recent years. In 2009, Phrynobatrachus was the most common frog in the region (V. Gvoždík, personal communication). Suspected cause of their dissappearence is the anuran disease chytridomycosis, induced by the waterborne microbial fungus Batracho- chytrium dendrobatidis Longcore, Pessier & Nichols, 1999. Dormant stages of B. den- drobatidis can be transferred in sand stuck on shoe soles or hooves of grazing cattle, or even in feathers of migratory birds (Johnson & Speare 2005). Taxa from the

93 P. steindachneri complex spend most of the time in shaded humid habitats, such as forest undergrowth or pools on montane creeks where their larval stages undergo metamorpho- sis. Therefore, the chytrid fungus is reasonably suspected to be the main reason of their rapid decline. Although surveys from CVL from 2008 (Doherty-Bone et al. 2008) show negative results for the chytrid pathogen in Phrynobatrachus, it has been reported in other genera from eastern Nigeria (e.g. Petropedetes) (Reeder et al. 2011) and NP Lobéké in southeastern Cameroon (e.g. Phlyctimantis) (Baláž et al. 2012). Finally, Hirschfeld et al. (2016) and Miller et al. (2018) also suspected the chytrid fungus as one of the most prob- able causes of the decline in the Cameroon mountains.

5.2 Relationship of the genus Hyperolius and “Hyperolius” ro- bustus The results of the phylogenetic analyses clearly placed “Hyperolius” robustus in the close relation to the genera Cryptothylax and Morerella, instead of to the genus Hyperolius. It is not suprising that the results based on a short fragment of the mitochondrial DNA do not show strong supports for the inferred topology of the tree, however, the genetic dis- tance is clearly big (from 17.5 to 21.8% uncorrected p-distance), placing “H.” robustus out of the genus Hyperolius. In general, short fragments of mtDNA are more useful to resolve relationships among more recently divergened groups, e.g. like species within the genus Hyperolius (Galewski et al. 2006). While nuclear DNA is commonly used to re- solve deeper phylogenetic relationships. Nonetheless, mtDNA analyses group individuals of “H.” robustus together with a strong support (100/1; ~0.4% uncorrected p-distance within “H.” robustus), and outside the clade containing species from the genus Hypero- lius (Fig. 43). The taxa with most similar sequence of the fragment 16S is M. cyanoph- thalma with dissimilarity of 12.0–12.2 % (Table 23). The results of the phylogenetic anal- yses of the nuclear DNA data of several representatives of the Hyperoliinae subfamily (sensu Portik et al. 2019, Acanthixalus classified into the subfamily Kassininae) showed species from the genus Hyperolius clustered in a common clade (100/1) in the sister po- sition (87.9/1) to the clade containing genera Cryptothylax, Morerella and “Hyperolius” robustus (99.9/1) (Fig. 44). Both, mtDNA and nuclear DNA, analyses place “H.” ro- bustus in a clade distinct from the other Hyperolius species, and in a closer relationship with Morerella and Cryptothylax.

94 The external morphology shows variability between species from the genus Hy- perolius. Characters that stand out in “H.” robustus are the eye-naris length (ENL), snout length (SL) and head length (HdL). These measurements indicate that “H.” robustus has longer head and snout than any other examined Hyperolius. The ration between eye-naris length (ENL) and internarial distance (IND) of “H.” robustus has higher mean value than in examined true Hyperolius. The ENL/IND ratio is equal to 1.12 in “H.” robustus. While in examined Hyperolius it is below the 1.0 value. C. greshoffii (1.14) and M. cyanoph- thalma (1.1; DEN/INO measured by Rödel M.-O. in Rödel et al. 2009) both have the value of this character above 1.0 and close to the value of “H.” robustus. Though more Hyperolius species have to be examined, specifically H. concolor addressed by Laurent (1979) to be similar in this character to “H.” robustus. Same applies for the presence of the distinct tympanum which although is not a common character among Hyperolius and Laurent (1979) reports its presence as a primitive character pointing to basal position of “H.” robustus in the genus and that it is possibly a sign of relationship with C. greshoffii (M. cyanophthalma by extension). However, this character is also present in other Hy- perolius species, e.g. H. mosaicus (Lötters et al. 2004) that is in the same clade including examined H. cinnamomeoventris and H. balfouri, i.e. well within the Hyperolius radia- tion, which could be also interpreted as a secondary development of this character in this species since in its closely related species H. endjami Amiet, 1980 (Portik & Blackburn 2016) is the tympanum not distinct or at least its presence is not mentioned in Amiet (1980). What Laurent (1979) surprisingly did not mention is the lacking of an extendable vocal pouch in “H.” robustus and its similarity in this character to C. greshoffii, which also lacks the dilatable skin pouch below its large gular gland (Fig. 36).

The assessment of characters of the internal morphology following selected char- acters from Drewes (1984) show the greatest similarity of “H.” robustus to the genus Morerella, which differs only in the degree of calcification of intercalary elements in the female “H.” robustus (Table 22 in the Chapter 4.2.2). Detailed examination shows a number of dissimilarities between three examined species from the genus Hyperolius and “H.” robustus. Examined species from the genus Hyperolius differ from “H.” robustus e.g. in the procelous vertebral centra (Drewes (1984) considered the diplasiocoelous cen- tra as a primitive character); the narrow posterior process of the parasphenoid with a pair

95 of additional processes at its base; straight ventral ramus of squamosum; maxillary pro- cess of quadratojugal that is not in contact with maxilla; and thinner medial ramus of pterygoid than in “H.” robustus (and C. greshoffii). But other than that, this study also shows differences between “H.” robustus and supposedly closely related Cryptothylax. Cryptothylax greshoffii differs from “H.” robustus e.g. in the vomer equipped with a dentigerous process bearing teeth, where C. greshoffii is the only representative from the subfamily Hyperoliinae with this character (more often in Kassininae; Drewes 1984), and because of the basal position of C. greshoffii within this group, it could be considered as a primitive character; dorsal exposure of sphenethmoid; blunt posterior process of paras- phenoid; and imbricate neural arches. It could be, that “H.” robustus retained the ances- tral osteological scheme which makes it similar to the genus Hyperolius. The reasons justifying the conservatism of the internal morphology might be the same as in the mor- phology external: the niche conservatism, or the same selection pressure as in the “com- peting” Hyperolius.

The results of the external and internal morphological assessments show differences between “H.” robustus and other examined taxa, including three members of the genus Hyperolius. And support the results of the phylogenetic analyses that place “H.” robustus ouside the genus Hyperolius. Such results suggest a removal of “H.” robustus from the genus Hyperolius and its classification into a new, supposedly monotypic genus.

“Hyperolius” robustus has been observed sympatrically with C. greshoffii, but not completely syntopically. While C. greshoffii prefers more open marshes overgrown with plants, that are less shaded by the surrounding canopy (syntopic presence of H. cf. cin- namomeoventris). “Hyperolius” robustus can be found in more closed areas within the same forest, usually near small streams with slow-flowing water or small ponds on stream, but generally in the same habitat as species from the genus Hyperolius (e.g. syn- topical H. phantasticus) (V. Gvoždík, personal communication). Based on these allega- tions, “H.” robustus has the same habitat preferences as some species from the genus Hyperolius. Hence, the similarity between “H.” robustus and other Hyperolius could be best attributed to the convergent evolution caused by the same/similar selection pressures on Hyperolius and “H.” robustus (Chapter 1.2). Although the resemblance between these

96 two taxa/genera is not so strikingly similar anymore, if we take in account the results presented in this study.

The divergence of Hyperolius and clade containing “H.” robustus (+ M. cyanoph- thalma and C. greshofii) occurred approx. 30 Mya (± 6 million years) in the Late Eo- cene/Oligocene (Portik & Blackburn 2016; Portik et al. 2019). The Oligocene was a pe- riod when the wet tropics of Central Africa were progressively developed due to the southward shift of the area of hot wet climate, respectively the northward movement of the African continent (Maley 1996; Jacobs 2004; Plana 2004). That could have lead to a colonization of the newly established continuous rain forest that reached across the whole equatorial Africa (Plana 2004) and a subsequent divergence between ancestral Hyperolius and the ancestor of Cryptothylax/Morerella/”H.” robustus clade caused by different niche selection. However, no studies assessing the origin of the common ancestor of the family Hyperoliidae (eventually Hyperolius/Cryptothylax ancestor) were carried out yet. Thus, following considerations should be taken with a caution.

The divergence of M. cyanophthalma and C. greshoffii took place ~20 Mya in early Miocene (similar to the previously discussed Cameroon radiation; the divergence estima- tion spans from ~26 to ~12 Mya; Portik & Blackburn 2016). The closure of Tethys that happened near the Oligocene/Miocene boundary caused an extensive aridification (Zhang et al. 2014), a major retreat of forests (Kissling et al. 2012), and triggered uprising and volcanic activity across the whole continent (e.g. Rift Valley) (Plana 2004). These events formed the African continent through out the whole Miocene (~23-~5.3 Mya). And even- tually forced rain forests to persist only in lowland and montane refugia in the late Mio- cene (10-~5.3 Mya) (Migliore et al. 2018; Plana 2004). These events could have led to a separation of M. cyanophthalma ancestors in the west and C. greshoffii ancestors in the Central Africa. The phylogenetic analyses of nuclear DNA placed “H.” robustus in the sister position to M. cyanophthalma. There is more than one scenario that could explain this situation. (1) The repeated invasion into the central African forests from the west by the ancestors of “H.” robustus happened. (2) The divergence of the ancestors of genera Morerella and Cryptothylax occurred in the Congo Basin and Morerella colonized West Africa later, after the separation of “H.” robustus, which remained in the Congo Basin.

97 (3) The widespread ancestor of all three taxa was separated into three rain forest refugia caused by climatic changes and leading to an allopatric speciation.

We recognize three to four separate units of rainforests of the West and Central Africa that more or less differ in their species composition and could be discerned as four regions with high endemism (Lovett et al. 2005). The oldest and most different are the West African rainforest to the west of the river Sassandra in the Côte d’Ivoire (Murienne et al. 2013). The remaining three units are more closely related, but the rainforests be- tween rivers Sassandra and Sanaga in the Cameroon are more different than the coastal Lower Guinean forests and the drier forests of the interior Congo Basin (Linder et al. 2012; Hardy et al. 2013; Fayolle et al. 2014). Leaché et al. (in press) report genetic vari- ation in the genus Chiromantis (Rhacophoridae) that follows mentioned divisons [or ra- ther gradients (Fayolle et al. 2014)] and differences between rainforests of the West and Central Africa, but in the time period of the Late Miocene [~5 million years later, than are the most recent dating estimates for the divergence of Cryptothylax and Morerella (Portik & Blackburn 2016)].

The clade containing the genera Cryptothylax, Morerella and “H.” robustus (ac- cording to the results presented in this study) contains only only low number of species. M. cyanophthalma is now restricted to the fragments of the coastal rain forests in the eastern Côte d’Ivoire (Fig. XI). The opposite case is C. greshoffii (Fig. X). But while it can be found through out the Congo Basin, it lacks any significant variation in its mtDNA (own unpublished data). This could be interpreted as a severe bottleneck occurring in a recent history, probably caused by the last rain forest retractions and its survival in one of the refugia in the Congo Basin during the Pleistocene (Anhuf et al. 2006; Maley 1966). Last but not least, the “H.” robustus that is known from the central D. R. C. and newly from the Kokolopori Bonobo Nature Reserve (V. Gvoždík, unpublished data; Fig. IV). Compared to the species rich genus Hyperolius (145 spp., Frost 2019) we could only guess if the clade of C. greshoffii is a remainder of its diverse past self that fell down due to changing climatic conditions in the African rainforests. Or if these three species repre- sent a less successful competitor to the almost pan-African genus Hyperolius.

The position of “H.” robustus presented in this study in the end created more ques- tions than answers, but future analyses based on a genomic dataset and new material from

98 acquired from larger area could possibly resolve the divergence datings within this clade and help to understand the speciation events starting on the turn of the Oligocene and Miocene, and leading to the present situtation.

99 6 Conclusions The results of the morphometrical analyses of 14 measurements taken on specimens of four taxa (one yet undescribed) from the species complex of Phrynobatrachus steindachneri presented in this study showed only small differences between the exam- ined taxa. P. steindachneri s.s. from the Gotel Mts. and Tchabal Mbabo showed the big- gest differentiation from the other three examined taxa (P. jimzimkusi, P. njiomock and the candidate new species). Such differentiation may be caused by different environmen- tal conditions (e.g. climate) between areas occupied by P. steindachneri s.s. and the other three, and locally sympatric (Mt. Oku) taxa. Thus, the overall morphological conserva- tiveness of the species complex (with the exception of P. steindachneri s.s.) is most prob- ably due to the niche conservativeness. This hypothesis has yet to be tested.

The second part of this study shone light on the systematical position of Hyperolius robustus. The phylogenetic analyses of mitochondrial and nuclear DNA together with the morphological analyses of external and internal (osteological) characters support exclu- sion of H. robustus from its current classification in the genus Hyperolius and its place- ment in the sister clade to the Hyperolius clade, containing monotypic genera Cryp- tothylax and Morerella. Clearly, “Hyperolius” robustus must be treated as a separate ge- nus, and represents a case of morphological convergence with the genus Hyperolius.

100 7 Literature Ahl E. 1931: Amphibia, Anura III, Polypedatidae. Das Tierreich 55: XVI + 477.

Amiet J.-L. 1978: Liste provisoire des amphibiens anoures du Cameroun. Laboratoire Zoologie de la Faculté des Sciences du Yaoundé, Cameroun: 1–21.

Amiet J.-L. 1980: Un Hyperolius nouveau du Cameroun: Hyperolius endjami n. sp. (Am- phibia, Anura, Hyperoliidae). Revue Suisse de Zoologie 87: 445–460.

Amiet J.-L. 1987: Aires disjointes et taxons vicariants chez les Anoures du Cameroun: Implications paléoclimatiques. Alytes 6: 99–115.

Amiet J.-L. & Goutte S. 2017: Chants d’Amphibiens du Cameroun. Editions Petit Génie, Saint-Nazaire, France, 280 pp.

Amor N., Farjallah S. & Said K. 2009: Morphometric variation in the Tunisian green frog, Rana saharica (Anura: Ranidae). African Zoology 44(2): 194–203.

Anhuf D., Ledru M.-P., Behling H., Da Cruz Jr. F. W., Cordeiro R. C., Van der Hammen T., Karmann I., Marengo J. A., De Oliviera P. E., Pessenda L., Siffedine A., Albuquer- que A. L. & Da Silva Dias P. L. 2006: Paleo-environmental change in Amazonian and African rainforest during the LGM. Palaeogeography, Palaeoclimatology, Palaeoe- cology 239: 510–527.

Arino O., Ramos Perez J. J., Kalogirou V., Bontemps S., Defourny P. & Van Bogaert E. 2012: Global Land Cover Map for 2009 (GlobCover 2009). © European Space Agency (ESA) & Université catholique de Louvain (UCL), PANGAEA, https://doi.org/10.1594/PANGAEA.787668.

Baláž V., Kopecký O. & Gvoždík V. 2012: Presence of the amphibian chytrid pathogen confirmed in Cameroon. Herpetological Journal 22: 191–194.

Bell R. C., Drewes R. C. & Zamudio K. R. 2015: Reed frog diversification in the Gulf of Guinea: Overseas dispersal, the progression rule, and in situ speciation. Evolution 69(4): 904–915.

Bell R. C. 2016: A New Species of Hyperolius (Amphibia: Hyperoliidae) from Príncipe Island, Democratic Republic of São Tomé and Príncipe. Herpetologica 72(4): 343– 351.

Bell R. C., Parra J. L., Badjedjea G., Barej M. F., Blackburn D. C., Burger M., Channing A., Dehling J. M., Greenbaum E., Gvoždík V., Kielgast J., Kusamba Ch., Lötters S., McLaughlin P. J., Nagy Z. T., Rödel M.-O., Portik D. M., Stuart B. L., VanDerWal J., Zassi-Boulou A. G. & Zamudio K. R. 2017: Idiosyncratic responses to climate-driven

101 forest fragmentation and marine incursions in reed frogs from Central Africa and the Gulf of Guinea Islands. Molecular Ecology 26: 5223–5244.

Bickford D., Lohman D. J., Sodhi N. S., Ng P. K. L., Meier R., Winker K., Ingram K. K. & Das I. 2007. Cryptic species as a window on diversity and conservation. Trends in ecology and evolution 22(3): 148–155.

Blackburn D. C. 2010: A new puddle frog (Phrynobatrachidae: Phrynobatrachus) from the Mambilla Plateau in eastern Nigeria. African Journal of Herpetology 59: 33–52.

Blomberg S. P. & Garland T. 2002: Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. Journal of Evolutionary Biology 15(6): 899– 910.

Blomberg S. P., Garland T. & Ives A. R. 2003: Testing for phylogenetic signal in com- parative data: behavioural traits are more labile. Evolution 75: 717–745.

Blouin M. S. & Brown S. T. 2000: Effects of temperature-induced variation in anuran larval growth rate on head width and leg length at metamorphosis. Oecologia 125: 358–361.

Bossuyt F. & Milinkovitch M. C. 2000: Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proceedings of the National Academy of Sciences of the United States of America 97: 6585–6590.

Bossuyt F., Brown R. M., Hillis D. M., Cannatella D. C. & Milinkovitch M. C. 2006: Phylogeny and Biogeography of a Cosmopolitan Frog Radiation: Late Cretaceous Di- versification Resulted in Continent-Scale Endemism in the Family Ranidae. System- atic Biology 55(4): 579–594.

Bowie R. C. K., Fjeldså J., Hackett S. J., Bates J. M. & Crowe T. M. 2006: Coalescent models reveal the relative roles of ancestral polymorphism, vicariance, and dispersal shaping phylogeographic structure of an African montane forest robin. Molecular Phy- logenetics and Evolution 38: 171–188.

Bravo G. A., Remsen J. V. & Brumfield R. T. 2014: Adaptive processes drive ecomor- phological convergent evolution in antwrens (Thamnophilidae). Evolution 68(10): 2757–2774.

Budde K. B., González-Martínez S. C., Hardy O. J. & Heuertz M. 2013: The ancient tropical rainforest tree Symphonia globulifera L. f. (Clusiaceae) was not restricted to postulated Pleistocene refugia in Atlantic Equatorial Africa. Heredity 111: 66–76.

Darriba D., Taboada G. L., Doalla R. & Posada D. 2012: jModelTest2: More models, new heuristics and parallel computing. Nature methods 9(8): 772.

102 Deichmann J. L., Mulcahy D. G., Vanthomme H., Tobi E., Wynn A. H., Zimkus B. M. & McDiarmid R. W. 2017: How many species and under what names? Using DNA barcoding and GenBank data for west Central African amphibian conservation. PLoS ONE 12(11): e0187283. deMenocal P. B. 1995: Plio-Pleistocene African Climate. Science 270(5233): 53–59.

Déruelle B., Moreau C., Nkoumbou C., Kambou R., Lissom J., Njongfang E., Ghogomu R. T. & Nono A. 1991: Chapter 9: The Cameroon line: a review. Magmatism in Ex- tensional Structural Settings. The Phanerozoic African Plate. Springer-Verlag, Berlin, Germany, pp. 274–327.

Doherty-Bone T. M., Bielby J. Gonwouo N. L., LeBreton M. & Cunningham A. A. 2008: In a vulnerable position? Preliminary survey work fails to detect the amphibian chytrid pathogen in the highlands of Cameroon, an amphibian hotspot. Herpetogical Journal 15: 115–118.

Drewes R. C. 1984: A Phylogenetic Analysis of the Hyperoliidae (Anura): Treefrogs of Africa, Madagascar, and the Seychelles Islands. Occasional papers of the California Academy of Sciences 139: 1–70.

Drewes R. C. & Wilkinson J. 2004: The California Academy of Sciences Gulf of Guinea expedition I: the taxonomic status of the genus Nesionixalus with comments on the genus Hyperolius. Proceedings of the California Academy of Sciences 55: 395–418.

Drillon O., Dufresnes G., Perrin N., Crochet P.-A. & Dufresnes Ch. 2019: Reaching the edge of the speciation continuum: hybridization between three sympatric species of Hyla tree frogs. Biological Journal of the Linnean Society 126: 743–750.

Duda M. 2008: First record of a natural male hybrid of Bufo (Pseudepidalea) viridis LAURENTI, 1768 and Bufo (Bufo) bufo LINNEUS, 1758 from Austria. Herpetozoa 20(3/4): 184–186.

ESRI 2018: ArcGIS Desktop: Release 10.6. Environmental Systems Research Institute, Redlands, California, U. S. A.

Fayolle A., Swaine M. D., Bastin J.-F., Bourland N., Comiskey J. A., Dauby G., Doucet J.-L., Gillet J.-F., Gourlet-Fleury S., Hardy O. J., Kirunda B., Kouamé F. N. & Plump- tre A. J. 2014: Patterns of tree species composition across tropical African forests. Journal of Biogeography 41(12): 2320–2331.

Fišer C., Robinson Ch. T., Malard F. 2018: Cryptic species as a window into the paradigm shift of the species concept. Molecular Ecology 27(3): 613–635.

103 Flower B. & Kennett J. P. 1995: Middle Miocene deepwater paleoceanography in the southwest Pacific: Relations with East Antarctic Ice Sheet development. Paleocean- ography 10(6): 1095–1112.

Frost D. R., Grant T., Faivovich J., Bain R. H., Haas A., Haddad C. F. B., De Sá R. O., Channing A., Wilkinson M., Donnellan S. C., Raxworthy Ch. J., Campbell J. A., Blotto B. L., Moler P., Drewes R. C., Nussbaum R. A., Lynch J. D., Green D. M. & Wheeler W. C. 2006: The Amphibian Tree of Life. Bulletin of the American Museum of Natural History 297, 370 pp.

Frost D. R. 2019: Amphibian Species of the World: an Online Reference. Version 6.0 (12. II. 2019). Electronic Database accessible at http://research.amnh.org/herpetology/am- phibia/index.html. American Museum of Natural History, New York, U. S. A.

Galewski T., Tilak M., Sanchez S., Chevret P., Paradis E. & Douzery E. J. P. 2006: The evolutionary radiation of Arvicolinae (voles and lemmings): relative contribution of nuclear and mitochondrial DNA phylogenies. BMC Evolutionary Biology 6: 80.

Gartshore M. E. 1986: The status of the montane herpetofauna of the Cameroon high- lands. In Stuart S. N. (ed.): Conservation of Cameroon Montane Forests. International Council for Bird Preservation, Cambridge, U. K.

Greenbaum E. 2017: Emerald labyrinth: A scientist’s adventures in the jungles of the Congo. University Press of New England. U. S. A., 336 pp.

Greenbaum E. & Kusamba C. 2012: Conservation implications following the rediscovery of four frog species from the Itombwe Natural Reserve, eastern Democratic Republic of the Congo. Herpetological Review 43(2): 253–259.

Günther A. C. L. G. 1862: Descriptions of new species of reptiles and fishes in collection of the British Museum. Proceedings of the Zoological Society of London 1862: 188– 194.

Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W. & Gascuel O. 2010: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59(3): 307–321.

Gvoždík V. 2003: Mezidruhová a vnitrodruhová variabilita rosniček Hyla savignyi a Hyla arborea. MSc Thesis, Charles University, Faculty of Sciences, Department of Zoology, Prague, Czech Republic, 154 pp.

Gvoždík V., Moravec J. & Kratochvíl L. 2008: Geographic morphological variation in parapatric Western Palearctic tree frogs, Hyla arborea and Hyla savignyi: are related species similarly affected by climatic conditions? Biological Journal of the Linnean Society 95: 539–556.

104 Gvoždík V., Moravec J., Klütsch C. & Kotlík P. 2010: Phylogeography of the Middle Eastern tree frogs (Hyla, Hylidae, Amphibia) as inferred from nuclear and mitochon- drial DNA variation, with a description of a new species. Molecular Phylogenetics and Evolution 55: 1146–1166.

Hardy O. J., Born C., Budde K., Daïnou K., Dauby G., Duminil J., Ewédjé E.-E. B. K., Gomez C., Heuertz M., Koffi G. K., Lowe A. J., Micheneau C., Ndiade-Bourobou D., Piñeiro R. & Poncet V. 2013: Comparative phylogeography of African rain forest trees: A review of genetic signatures of vegetation history in the Guineo-Congolian region. Comptes Rendus Geoscience 345: 284–296.

Herbert T. D., Lawrence K. T., Tzanova A., Cleaveland Peterson L., Caballero-Gill R. & Kelly Ch. S. 2016: Late Miocene global cooling and the rise of modern ecosystems. Nature Geoscience 9(11): 843.

Hirschfeld M., Blackburn D. C., Doherty-Bone T. M., Gonwouo L. N., Ghose S. & Rödel M.-O. 2016: Dramatic Declines of Montane Frogs in a Central African Biodiversity Hotspot. PLoS ONE 11(5): e0155129.

Channing A., Hillers A., Lötters S., Rödel M.-O., Schick S., Conraide W., Rödder D., Mercurio V., Wagner P., Dehling J. M., Du Preez L. H., Kielgast J. & Burger M. 2016: Taxonomy of the super-cryptic Hyperolius nasutus group of long reed frogs of Africa (Anura: Hyperoliidae), with descriptions of six new species. Zootaxa 3620(3): 301– 350.

Channing A., Dehling J. M., Lötters S. & Ernst R. 2016: Species boundaries and taxon- omy of the African river frogs. Zootaxa 4155: 1–76.

IUCN SSC Amphibian Specialist Group 2014: Hyperolius robustus. The IUCN Red List of Threatened Species 2014: e.T56199A18383041. http://dx.doi.org/10.2305/IUCN.UK.2014-1.RLTS.T56199A18383041.en, accessed on the 6th of July 2018.

IUCN 2019: The IUCN Red List of Threatened Species. Version 2019-1. Available at https://www.iucnredlist.org.

Jackson D. A. 1993: Stopping rules in principal component analysis: Comparison of heu- ristical and statistical approaches. Ecology 74(8): 2204–2214.

Jacobs B. F. 2004: Palaeobotanical studies from tropical Africa: relevance to the evolu- tion of forest, woodland and savannah biomes. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 359(1450): 1573–1583.

Jarvis A., Reuter H. I., Nelson A. & Guevara E. 2008: Hole-filled seamless SRTM data V4. International Centre for Tropical Agriculture (CIAT), available from http://srtm.csi.cgiar.org.

105 Johnson M. L. & Speare R. 2005: Possible modes of dissemination of the amphibian chytrid Batrachochytrium dendrobatidis in the environment. Disease of Aquatic Or- ganisms 65: 181–186.

Katoh K., Misawa K., Kuma K. & Miyata T. 2002: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30(14): 3059–3066.

Katoh K. & Standley D. M. 2013: MAFFT Multiple Sequence Alignment Software Ver- sion 7: Improvements in Performance and Usability. Molecular Biology and Evolution 30(4): 772–780.

Kielgast J. & Lötters S. 2011: The green heart of Africa is a blind spot in herpetology. FrogLog 97: 16–17.

Koffi K. G., Hardy O. J., Doumenge Ch., Cruaud C. & Heuertz M. 2011: Diversity gra- dients and phylogeographic patterns in Santiria trimera (Burseraceae), a widespread African tree typical of mature rainforests. American Journal of Botany 98(2): 254– 264.

Konan J. Ch. B. Y. N., Kouamé N. G., Kouamé A. M., A. B. Adepo-Gourène & Rödel M.-O. 2016: New data from Morerella cyanophthalma (Anura: Hyperoliidae) in Azagny National Park, southern-central Ivory Coast. Herpetology Notes 9: 59–65.

Kpan T. F., Adeba P. J., Kouamé N. G., Koné I., Kouassi K. P. & Rödel M.-O. 2014: The anuran fauna of a Volunteer Nature Reserve: the Tanoé-Ehy Swamp Forests, south- eastern Ivory Coast, West Africa. Zoosystematics and Evolution 90(2): 261–270.

Laurent R. F. 1950: Diagnoses préliminaires de treize batraciens nouveaux d’Afrique centrale. Revue de Zoologie et de Botanique Africaines 44: 1–18.

Laurent R. F. 1951: Deux reptiles et onze batraciens nouveaux d’Afrique centrale. Revue de Zoologie et de Botanique Africaines 44: 360–381.

Laurent R. F. 1956: Notes herpétologiques africaines. Revue de Zoologie et de Botanique Africaines 53: 229–256.

Laurent R. F. 1964: Adaptive modification in frogs of an isolated highland fauna in cen- tral Africa. Evolution 18: 458–467.

Laurent R. F. 1976: Les genres Cryptothylax, Phlyctimantis et Kassina au Zaïre. Annales du Musée Royale de l’Afrique Centrale. Série Octavo, Science Zoologique 213: 1–67.

Laurent R. F. 1979: Description de deux Hyperolius nouveaux du Sankuru (Zaïre). Revue de Zoologie et de Botanique 93: 779–791.

106 Laurent R. F. 1981: Phenogrammes d’anoures basés sur la morphométrie. Monitore Zo- ologico Italiano, Supplemento 15: 1–22.

Laurent R. F. & Combaz J. 1950: Sur l’attribution générique de certains batraciens ap- purtenant à la sous-famille de Hyperoliidae. Revue de Zoologie et de Botanique Afri- caines 43: 269–280.

Lewis A. R., Marchant D. R., Ashworth A. C., Hedenäs L., Hemming S. R., Johnson J. V., Leng M. J., Machlus M. L., Newton A. E., Raine J. I., Willenbring J. K., Williams M. & Wolfe A. P. 2008: Mid-Miocene cooling and the extinction of tundra in conti- nental Antarctica. Proceedings of the National Academy of Sciences 105(31): 10676– 10680.

Linder H. P., de Klerk H. M., Born J., Burgess N. D., Fjeldså J. & Rahbek C. 2012: The partitioning of Africa: statistically defined biogeographical regions in sub-Saharan Af- rica. Journal of Biogeography 39(7): 1189–1205.

Losos J. B. 2008: Phylogenetic niche conservatism, phylogenetic signal and the relation- ship between phylogenetic relatedness and ecological similarity among species. Ecol- ogy Letters 11(10): 995–1003.

Lötters S., Shick S., Scheelke K., Teege P., Kosuch J., Rotich D. & Veith M. 2004: Bio- sketches and partitioning of sympatric reed frogs, genus Hyperolius (Amphibia; Hy- peroliidae). In two humid tropical African forest regions. Journal of Natural History 38: 1969–1997.

Lovett J C., Marchant R., Taplin J. & Küper W. 2005: The oldest rainforests in Africa: stability or resilience for survival and diversity? In: Purvis A., Gittleman J. L. & Brooks T. (Eds.): Conservation Biology 8: Phylogeny and Conservation. Cambridge University Press, Cambridge, U. K.

Lowe A. J., Harris D., Dormontt E. & Dawson I. K. 2010: Testing Putative African Trop- ical Forest Refugia Using Chloroplast and Nuclear DNA Phylogeography. Tropical Plant Biology 3: 55–58.

Márquez-García M., Correa-Solis M., Sallaberry M. & Méndez M. A. 2009: Effects of pond drying on morphological and life-history traits in the anuran Rhinella spinulosa (Anura: Bufonidae). Evolutionary Ecology Research 11: 803–815.

Marzoli A., Piccirillo E. M., Renne P. R., Bellieni G., Iacumin M., Nyobe J. B. & Tongwa A. T. 2000: The Cameroon Volcanic Line Revisited: Petrogenesis of Continental Ba- saltic Magmas from Lithospheric and Astenospheric Mantle Sources. Journal of Pe- trology 41: 87–109.

Mayr E. 1942: Systematics and the Origin of Species, from the Viewpoint of a Zoologist. First Harvard University Press, U. S. A., 337 pp.

107 Migliore J., Kaymak E., Mariac C., Couvreur T. L. P., Lissambou B.-J., Piñeiro R. & Hardy O. J. 2019: pre-Pleistocene origin of phylogeographical breaks in African rain forest trees: New insights from Greenwayodendron (Annonaceae) phylogenomics. Journal of Biogeography 46: 212–223.

Milleli L., Fourel L. & Jaupart C. 2012: A lithospheric instability origin for the Cameroon Volcanic Line. Earth and Planetary Science Letters 335–336: 80–87.

Miller K., Monteforte P. B. & Landis L. F. 1993: Scaling of Locomotor Performance and Enzmy Activity in the Leopard Frog, Rana pipiens. Herpetologica 49(3): 383–392.

Miller C. A., Tasse Taboue G. C., Ekane M. M. P., Robak M., Sesink Clee P. R., Rich- ards-Zawacki C., Fokam E. B., Fuashi N. A. & Anthony N. M. 2018: Distribution modelling and lineage diversity of the chytrid fungus Batrachochytrium dendrobatidis (Bd) in a central African amphibian hotspot. PLoS ONE 13(6): e0199288.

Miller M. A., Pfeiffer W. & Schwartz T. 2010: Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing En- vironments Workshop (GCE), 14. Nov. 2010, New Orleans, U. S. A., pp. 1–8.

Missoup A. D., Nicolas V., Wendelen W., Keming E., Bilong Bilong C. F., Couloux A., Atanga E., Hutterer R. & Denys C. 2012: Systematics and diversification of Praomys species (Rodentia: Muridae) endemic to the Cameroon Volcanic Line (West Central Africa). Zoological Scripta 41: 327–345.

Moore R. D. 2011: The Search For “Lost” Frogs. FrogLog 95: 13–16.

Mosimann J. E. 1970: Size allometry – size and shape variables with characterizations of lognormal and generalized Gamma distributions. Journal of the American Statistical Association 65(330): 930–945.

Murienne J., Benavides L. R., Prendini L., Hormiga G. & Giribet G. 2013: Foerst refugia in Western and Central Africa as ‘museums’ of Mesozoic biodiversity. Biology Letters 9: 20120932.

Nečas T. 2017: Skrytá diverzita horských žab rodu Phrynobatrachus v Kamerunských horách. BSc thesis, Masaryk University, Faculty of Sciences, Department of Botany and Zoology, Brno, Czech Republic, 86 pp.

Newman R. A. 1989: Developmental Plasticity of Scaphiophus couchii Tadpoles in an Unpredictable Environment. Ecology 70(6): 1775–1787.

Nieden F. 1910: Neue Reptilien und Amphibien aus Kamerun. Archiv für Naturges- chichte 76: 234–246.

108 Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P. R., O’Hara R. B., Simpson G. L., Solymos P., Stevens M. H. H., Szoecs E. & Wagner H. 2018: vegan: Community Ecology Package. R package version 2.5-2. https://CRAN.R-project.org/package=vegan.

Palumbi S. R., Martin A., Romano S., McMillan W. O., Stice L., Grabowski G. 1991: The simple fool’s guide to PCR. University of Hawaii Press, Honolulu, Hawaii, U. S. A.

Perret J.-L. 1959: Batraciens nouveaux du Cameroun. Revue Suisse de Zoologie 66: 711– 721.

Perret J.-L. 1966: Les Amphibiens du Cameroun. Zoologische Jahrbücher, abteilung für systematik, ökologie und geographie der tiere 8: 289–461.

Pfalzgraff T., Hirschfield M., Barej M. F., Dahmen M., Gonwouo L. N., Doherty-Bone T. M. & Rödel M.-O. 2015: The tadpoles of four Central African Phrynobatrachus species. Salamandra 51(2): 91–102.

Plana V. 2004: Mechanisms and tempo of evolution in the African Guineo-Congolian rainforest. Philosophical Transactions of the Royal Society of London. Series B: Bio- logical Sciences 359(1450): 1585–1594.

Portik D. M. & Blackburn D. C. 2016: The evolution of reproductive diversity in Afroba- trachia: A phylogenetic comparative analysis of an extensive radiation of African frogs. Evolution 70(9): 2017–2032.

Portik D. M., Bell R. C., Blackburn D. C., Bauer A. M., Barratt Ch. D., Branch W. R., Burger M., Channing A., Colston T. J., Conraide W., Dehling J. M., Drewes R. C., Ernst R., Greenbaum E., Gvoždík V., Harvey J., Hillers A., Hirschfeld M., Jongsma G. F. M., Kielgast J., Kouete M. T., Lawson L. P., Leaché A. D., Loader S. P., Löt- ters S., van der Meijden A., Menegon M., Müller S., Nagy Z. T., Ofori-Boateng C., Ohler A., Papenfuss T. J., Rößler D., Sinsch U., Rödel M.-O., Veith M., Vindum J., Zassi-Boulou A.-G. & McGuire J. A. 2019: Sexual Dichromatism Drives Diversifi- cation With a Major Radiation of African Amphibians. Systematic biology. In press. Preprint available at: https://www.biorxiv.org/content/bior- xiv/early/2018/07/22/372250.full.pdf.

Pramuk J. B., Robertson T., Sites Jr. J. W. & Noonan B. P. 2008: Around the world in 10 million years: biogeography of the nearly cosmopolitan true toads (Anura: Bufonidae). Global Ecology and Biogeography 17: 72–83.

R Core Team 2007: R: A language and environment for statistical computing. R Founda- tion for Statistical Computing, Austria, Vienna. https://www.R-project.org/.

109 Reeder N. M. M., Cheng T. L., Vredenburg V. T. & Blackburn D. C. 2011: Survey of the chytrid fungus Batrachochytrium dendrobatidis from montane and lowland frogs in eastern Nigeria. Herpetology Notes 4: 83–86.

Richter-Boix A., Llorente G. A. & Montori A. 2006: Effects of phenotypic plasticity on post-metamorphic traits during pre-metamorphic stages in the anuran Pelodytes punc- tatus. Evolutionary Ecology Research 8: 309–320.

Rocha-Olivares A., Fleeger J. W. & Foltz D. W. 2001: Decoupling of Molecular and Morphological Evolution in Deep Lineages of a Meiobenthic Harpacticoid Copepod. Society of Molecular Biology and Evolution 18(6): 1088–1102.

Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Höhna S., Larget B., Liu L., Suchard M. A. & Huelsenback J. P. 2012: MrBayes 3.2: Efficient Bayseian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology 61(3): 539–542.

Rödel M.-O., Kosuch J., Grafe T. U., Boistel R., Assemian N. G. E., Kouamé N. G. G., Tohé B., Gourène G., Perret J.-L., Henle K., Tafforeau P., Pollet N. & Veith M. 2009: A new tree-frog genus and species from Ivory Coast, West Africa (Amphibia: Anura: Hyperoliidae). Zootaxa 2044: 23–45.

Rödel M.-O., Burger M., Zassi-Boulou A. G., Emmrich M., Penner J. & Barej M. F. 2015: Two new Phrynobatrachus species (Amphibia: Anura: Phrynobatrachidae) from the Republic of the Congo. Zootaxa 4032(1): 055–080.

Sáez A. G. & Lozano E. 2005: Body doubles. Nature 433: 111.

Shen X. X., Liang D., Feng Y. J., Chen M. Y. & Zhang P. 2013: A versatile and highly efficient toolkit including 102 nuclear markers for vertebrate phylogenomics, tested by resolving the higher level relationships of the Caudata. Molecular Biology and Evo- lution 30: 2235–2248.

Schick S., Kielgast J., Rödder D., Muchai V., Burger M. & Lötters S. 2010: New species of reed frog from the Congo basin with discussion of paraphyly in Cinnamon-belly reed frogs. Zootaxa 2501: 23–36.

Schiøtz A. 1967: The treefrogs (Rhacophoridae) of West Africa. Spolia Zoologica Musei Hauniensis 25: 1–346.

Schiøtz A. 1999: Treefrogs of Africa. Edition Chimaira, Frankfurt am Main, Germany.

Schiøtz A. 2006: Notes on the genus Hyperolius (Anura, Hyperoliidae) in central Ré- publique Démocratique du Congo. Alytes 24: 40–60.

110 Smith S. A., Stephens P. R. & Wiens J. J. 2005: Replicate patterns of species richness, historical biogeography, and phylogeny in Holarctic treefrogs. Evolution 59(11): 2433–2450.

Struck T. H., Feder J. L., Bendiksby M., Birkeland S., Cerca J., Gusarov V. I., Kistenich S., Larsson K.-H., Liow L. H., Nowak M. D., Stedje B., Bachmann L. & Dimitrov D. 2018: Finding evolutionary processes hidden in cryptic species. Trends in ecology and evolution 33(3): 153–163.

Tejedo M., Semlitsch R. D. & Hotz H. 2000: Covariation of Morphology and Jumping Performance in Newly Metamorphosed Water Frogs: Effects of Larval Growth His- tory. Copeia 2: 448–458.

Veith M., Kosuch J., Rödel M.-O., Hillers A., Schmitz A., Burger M. & Lötters S. 2009: Multiple evolution of sexual dichromatism in African reed frogs. Molecular Phyloge- netics and Evolution 51(2): 388–393.

Venables W. N. & Ripley B. D. 2002: Modern Applied Statistics with S. Fourth Edition. Springer, New York, U. S. A.

Vincent E., Killingley J. S. & Berger W. H. 1985: Miocene oxygen and carbon isotope stratigraphy of the tropical Indian Ocean. Geological Society of America Memoir 163: 103–130.

Vorren T. O. & Thiede J. 1994: The marine geology of the Arctic Ocean – Summary. Marine Geology 119: 357–361.

Watters J. L., Cummings S. T., Flanagan R. L. & Siler C. D. 2016: Review of morpho- metric measurements used in anuran species descriptions and recommendations for a standardized approach. Zootaxa 4072(4): 477–495.

Wiens J. J., Fetzner Jr. J. W., Parkinson C. L. & Reeder T. W. 2005: Hylid frog phylogeny and sampling strategies for speciose clades. Systematic Biology 54: 778–807.

Wiens J. J. & Graham C. H. 2005: Niche Conservationism: Integrating Evolution, Ecol- ogy, and Conservation Biology. Annual Review of Ecology, Evolution, and Systemat- ics 36: 519–539.

Wiens J. J., Sukumaran J., Pyron R. A. & Brown R. M. 2009: Evolutionary and biogeo- graphic origins of high tropical diversity in Old World frogs (Ranidae). Evolution 63: 1217–1231.

Wiens J. J. & Pyron R. A. 2011: A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Molecular Phylogenetics and Evolution 61: 534–583.

111 Wilcox T. P., Zwickl D. J., Heath T. A. & Hillis D. M. 2002: Phylogenetic relationships of dwarf boas and comparison of Bayesian and bootstrap measures of phylogenetic support. Molecular Phylogenetics and Evolution 25: 361–371.

Wynn J. G. 2004: Influence of Plio-Pleistocene Aridification on Human Evolution: Evi- dence From Paleosols of the Turkana Basin, Kenya. American Journal of Physical Anthropology 123: 106–118.

Yuan Z.-Y., Zhang B.-L., Raxworthy Ch. J., Weisrock D. W., Hime P. M., Jin J.-Q., Lemmon E. M., Lemmon A. R., Holland S. D., Kortyna M. L., Zhou W.-W., Peng M.- S., Che J. & Prendini E. 2019: Natatanuran frogs used the Indian Plate to step-stone disperse and radiate across the Indian Ocean. National Science Review 6: 10–14.

Zachos J., Pagani M., Sloan L., Thomas E. & Billups K. 2001: Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686–693.

Zhang Z., Ramstein G., Schuster M., Li C., Contoux C. & Yan Q. 2014: Aridification of the Sahara desert caused by Tethys Sea shrinkage during the Late Miocene. Nature 513: 401–404.

Zimkus B. M. 2009: Biogeographical analysis of Cameroonian puddle frogs and descrip- tion of a new species of Phrynobatrachus (Anura: Phrynobatrachidae) endemic to Mount Oku, Cameroon. Zoological Journal of the Linnean Society 157(4): 795–813.

Zimkus B. M., Rödel M.-O. & Hillers A. 2010: Complex patterns of continental specia- tion: Molecular phylogenetics and biogeography of sub-Saharan puddle frog (Phryno- batrachus). Molecular Phylogenetics and Evolution 55: 883–900.

Zimkus B. M. & Gvoždík V. 2013: Sky Islands of the Cameroon Volcanic Line: a diver- sification hot spot for puddle frogs (Phrynobatrachidae: Phrynobatrachus). Zoological Scripta 42(6): 591–611.

Zúñiga-Reinoso Á. & Benítez H. A. 2015: The overrated use of the morphological cryptic species concept: An example with Nyctelia darkbeetle (Coleoptera: Tenebrionidae) using geometric morphometrics. Zoologischer Anzeiger 255: 47–53.

112 Supplemets Figure list Figure I. Range of Phrynobatrachus steindachneri sensu lato ...... 114 Figure II. Range of Phrynobatrachus jimzimkusi ...... 114 Figure III. Range of Phrynobatrachus njiomock ...... 115 Figure IV. Range of Hyperolius robustus ...... 115 Figure V. Range of Hyperolius balfouri ...... 116 Figure VI. Range of the Hyperolius cinnamomeoventris species complex ...... 116 Figure VII. Range of Hyperolius hutsebauti ...... 117 Figure VIII. Range of Hyperolius phantasticus ...... 117 Figure IX. Range of Hyperolius sankuruensis ...... 118 Figure X. Range of Cryptothylax greshoffii ...... 118 Figure XI. Range of Morerella cyanophthalma ...... 119 Figure XII. Range of Callixalus pictus ...... 119 Figure XIII. Range of Chrysobatrachus cupreonitens ...... 120

Table list Table I. A list of museum abbreviations...... 120 Table II. A list of examined specimens from the species complex of Phrynobatrachus steindachneri...... 121 Table III. List of examined specimens from the genus Hyperolius ...... 129 Table IV. List of primers ...... 131 Table V. List of ratios of components in PCR solutions for each used primer ...... 132 Table VI. List of PCR thermal cycles for each used primer ...... 132 Table VII. Table of values of the measured parameters on the specimens from the P. steindachneri species complex ...... 133 Table VIII. Table of values of the measured parameters on five species from the genus Hyperolius ...... 138

113

Figure I. Range of Phrynobatrachus steindachneri sensu lato. Blue star indicates type locality of P. steindachneri. Points show other recorded localities, where yellow points are localities of the candidate species P. sp. Mbam. Blue and yellow polygons show presumed areas of occur- rences for each species.

Figure II. Range of Phrynobatrachus jimzimkusi. Red star indicates type locality. Red points show other records. Red polygon shows presumed area of occurrence.

114

Figure III. Range of Phrynobatrachus njiomock. Grey star indicates type locality of P. njiomock. Grey points show other recorded localities for this species. Red points indicate records of P. jimzimkusi, and yellow records of the candidate species P. sp. Mbam. Showing their sympatric occurrence on Mt. Oku.

Figure IV. Range of Hyperolius robustus. Red star indicates type locality. Red points indicate additional localities known from literature (see Chapter 1.4.1). Orange polygon shows pre- sumed area of occurrence by IUCN showing how little is known about this central Congolian endemic.

115

Figure V. Range of Hyperolius balfouri. Red star indicates type locality of H. balfouri balfouri. Blue star indicates type locality of H. balfouri viridistriatus. Orange polygon shows presumed area of occurrence by IUCN. In reality, the species occurs also in the northern Congo Basin (V. Gvoždík, personal communication).

Figure VI. Range of the Hyperolius cinnamomeoventris species complex (without the Gulf of Guinea islands endemics). Red star indicates type locality of H. cinnamomeoventris. Blue star indicates H. olivaceus type locality. And green star type locality of H. veithi. Orange polygon shows presumed area of occurrence by IUCN before distinction of H. olivaceus from H. cin- namomeoventris.

116

Figure VII. Range of Hyperolius hutsebauti. Red star indicates type locality. Orange polygon shows presumed area of occurrence by IUCN, however, it is much larger in reality, compros- ing most of the eastern and probably also central part of the Congo Basin (Bell et al. 2017; V. Gvoždík, personal communication).

Figure VIII. Range of Hyperolius phantasticus. Red star indicates type locality. Orange polygon shows presumed area of occurrence by IUCN.

117

Figure IX. Range of Hyperolius sankuruensis. Red star indicates type locality. Orange polygon shows presumed area of occurrence by IUCN, which is only the type locality. Other unspeci- fied localities were reported from the Salonga National Park, South section by Kielgast & Lötters (2011). Another locality is Mabali, Lake Tumba, reported by Schiøtz (2006) as for “Hyperolius sp.”.

Figure X. Range of Cryptothylax greshoffii. Red star indicates type locality of C. greshoffii. Blue star indicates type locality of Cryptothylax minutus Laurent, 1976. Orange polygon shows presumed area of occurrence by IUCN.

118

Figure XI. Range of Morerella cyanophthalma. Red star indicates type locality. Orange polygon shows presumed area of occurrence by IUCN, which is now known more to the west (Konan et al. 2016).

Figure XII. Range of Callixalus pictus. Red star indicates type locality. Orange polygon shows presumed area of occurrence by IUCN.

119

Figure XIII. Range of Chrysobatrachus cupreonitens. Red star indicates type locality. Orange polygon shows presumed area of occurrence by IUCN.

Table I. A list of museum abbreviations.

Museum code Name of the museum, city, country BMNH The Natural History Museum, Department of Zoology, London, U. K. California Academy of Sciences, Department of Herpetology, San Francisco, CAS California, U. S. A. FMNH Field Museum, Division of Amphibians and Reptiles, Chicago, Illinois, U. S. A. Museu Bocage, Universidade de Lisboa, Lisabon, Portugal, collections destroyed MBL during 1978 fire Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, MCZ U. S. A. MHNG Museum d'Historie Naturelle, Geneva, Switzerland MRAC Musée Royal de l'Afrique Centrale, Tervuren, Belgium Museum of Vertebrate Zoology, University of California, Berkley, California, MVZ U. S. A. NMP6V National Museum, Department of Zoology, Prague, Czech Republic SMNS Staatliches Museum für Naturkunde, Stuttgart, Germany Zoologisches Forschungsinstitut und Museum Alexander Koenig, Herpetologische ZFMK Abteilung, Bonn, Germany ZMB Universität Humboldt, Zoologisches Museum, Berlin, Germany ZMUC Universitets København, Zoologisk Museum, København, Dennmark

120

Date

25.IX.2004 27.IX.2004 25.IX.2004 24.IX.2004 24.IX.2004 24.IX.2004 27.IX.2004 27.IX.2004

7.VIII.2006 7.VIII.2006

29.VII.2006 28.VII.2006 28.VII.2006 28.VII.2006 28.VII.2006

Collector

ouo N., Talla M.

with additional information on sex, on information additional with

uang P.,uang Talla M.

Gonwouo N. Gonwouo D. Diffo C., Blackburn J., D. Blackburn C., K. Blackburn S., Blackburn Blackburn D. C., Diffo J., Blackburn D. C., Diffo J., Gonwouo N. Blackburn D. C., Diffo J., Gonwouo N. Blackburn D. C., Diffo J., Gonwouo N. Blackburn D. C., Diffo J., Gonwouo N. Blackburn D. C., Diffo J., Gonwouo N. Gonwouo N. Blackburn D. C., Diffo J., Gonwouo N. Blackburn D. C., Blackburn K. S., Gonwouo N., Talla M. Blackburn D. C., Blackburn K. S., Gonw Blackburn D. C., Blackburn K. S., Gonwouo N., Talla M. Blackburn D. C., Blackburn K. S., Gonwouo N., Talla M. Gonwouo N., Talla M. Blackburn D. C., Blackburn K. S., P.,Huang Talla M. Blackburn D. C., Blackburn K. S., H

- - - -

°E

12718 8569 12718 12719 12719 12719 8569 8569 72673 11083 11083

.

9. 9. 9.

10. 10. 10. 10. 10 10. 10. 10.

Coordinates

- - - -

°N

6614 6614

010817 661389 661389 661389 010817 010817 934533 623333 623333

5. 5.

5. 5. 5. 5. 5. 5. 5. 5. 5.

- -

Phrynobatrachus steindachneri Phrynobatrachus

a,

ountry, locality

C

n, Ouest,n, Bamboutos Mts., 2500

2100 m 2100 m 2100 m

- - -

llage

ameroon, Ouest, Mt. Mbam, SSEstream

2600m Mt. Cameroon, Manengoub Littoral, Cameroon, Ouest, Bamboutos Mts., 2500 Cameroo 2600 m Cameroon, Ouest, below Mt. Bamboutos, 2050 m Cameroon, Ouest, below Mt. Bamboutos, 2050 m Cameroon, Ouest, below Mt. Bamboutos, 2050 m Cameroon, Littoral, Mt. Manengouba, 2000 2000 Cameroon, Littoral, Mt. Manengouba, 2000 C village of Cameroon, Ouest, Mt. Mbam, NNEstream village of Cameroon, Ouest, Mt. Mbam, NNEstream village of Cameroon, Ouest, Mt. Mbam, NNEstream vi of Cameroon, Ouest, Mt. Mbam, village Cameroon, Ouest, Mt. Bamboutos, 2020 m Cameroon, Ouest, Mt. Bamboutos, 2020 m

F F F F F F F F F F F

M M M M

Sex

Mbam Mbam Mbam Mbam Mbam Mbam Mbam

Taxon

. . sp. . sp. . sp. . sp. . sp.

P.jimzimkusi P.jimzimkusi P P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P (C) P (C) P (C) P (C) (C) P. jimzimkusi P. jimzimkusi

A list of 131 examined specimens from the species complex of complex species the from specimens examined 131 of list A

.

136929 136891 136891 136892 136903 136907 136908 136928 136930 138056 138057 138058 138059 138060 138065 138066

------

II

locality, coordinates, collector, and date. Table continues on following pages. following on Tablecontinues date. and collector, coordinates, locality,

Voucher ID

Table Table (paratype) MCZ A MCZ MCZ A MCZ A (paratype) MCZ A (paratype) MCZ A (paratype) MCZ A (paratype) MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A (paratype) MCZ A (paratype)

121

II.2006

Date

7.VIII.2006 7.VIII.2006 8.VIII.2006 8.VIII.2006

16.VIII.2006 16.VIII.2006 16.VIII.2006 16.VIII.2006 16.VIII.2006 16.VIII.2006 16.VIII.2006 16.VI 16.VIII.2006 16.VIII.2006 16.VIII.2006 16.VIII.2006 16.VIII.2006

n K.n S.,

lla lla M.

Collector

, Talla M.

n D. n C., Blackburn K. S.,

Blackburn D. Blackburn C., K. Blackburn S., N., Gonwouo TallaM. Blackburn Blackburn D. C., Blackburn K. S., P.,Huang Ta P.,Huang Talla M. Blackburn D. C., Blackburn K. S., P.,Huang Talla M. Blackburn D. C., Blackbur P.,Huang Talla M. Blackburn D. C., Blackburn K. S., Gonwouo N., Talla M. Blackburn D. C., Blackburn K. S., Gonwouo N., Talla M. Blackburn D. C., Blackburn K. S., Gonwouo N., Talla M. Blackburn D. C., Blackburn K. S., Gonwouo N. Blackburn D. C., Blackburn K. S., Gonwouo N., Talla M. Blackburn D. C., Blackburn K. S., Gonwouo N., Talla M. Blackburn D. C., Blackburn K. S., Gonwouo N., Talla M. Blackburn D. C., Blackburn K. S., Gonwouo N., Talla M. Blackburn D. C., Blackburn K. S., Blackburn D. C., Blackburn K. S., Gonwouo N., Talla M. Blackbur Gonwouo N., Talla M. Blackburn D. C., Blackburn K. S., Gonwouo N., Talla M. Blackburn D. C., Blackburn K. S., Gonwouo N., Talla M.

°E

11083 12694 10328 12694 50642 50642 50642 50642 50642 50642 50642 50642 50642 50642 50642 50642 50642

0.

10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 1 10. 10. 10. 10. 10. 10.

Coordinates

°N

623333 661389 668806 661389 245917 245917 245917 245917 245917 245917 245917 245917 245917 245917 245917 245917 245917

5. 5. 5. 5. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.

stream stream

ku ku village,

900 m

Ouest, Elak Oku village, Ouest, Elak Oku village, Ouest, Elak Oku village, Ouest, Elak Oku village, Ouest, Elak Oku village, Ouest, Elak Oku village, Ouest, Elak Oku village, Ouest, Elak Oku village, Ouest, Elak Oku village, Ouest, Elak O Ouest, Elak Oku village, Ouest, Elak Oku village, Ouest, Elak Oku village,

------

rd

Country, Country, locality

stream through 1900 stream fields, m Cameroon, Ouest, Mt. Bamboutos, 2020 m Cameroon, Ouest, Mt. Bamboutos, 2050 m Cameroon, Ouest, Bamboutos Mts., grass in near field summit, 2540 m Cameroon, Ouest, Mt. Bamboutos, summit, 2540 m Cameroon, Nord throughstream 1900fields, m Cameroon, Nord throughstream 1900fields, m Cameroon, Nord throughstream 1 fields, Cameroon, Nord throughstream 1900fields, m Cameroon, Nord throughstream 1900fields, m Cameroon, No throughstream 1900fields, m Cameroon, Nord throughstream 1900fields, m Cameroon, Nord throughstream 1900fields, m Cameroon, Nord Cameroon, Nord throughstream 1900fields, m Cameroon, Nord throughstream 1900fields, m Cameroon, Nord throughstream 1900fields, m Cameroon, Nord throughstream 1900fields, m

F F F F F F F F F F F F F F

M M M

Sex

Mbam Mbam Mbam Mbam Mbam Mbam Mbam Mbam Mbam Mbam Mbam Mbam Mbam Mbam

Taxon

)

. sp. . sp. . sp. . sp. . sp. . sp. . sp. . sp. . sp. . sp. . sp. . sp. . sp.

(C) P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P (C) P (C P (C) P (C) P (C) P (C) P (C) P (C) P P (C) P (C) P (C) P (C)

38117

138072 138072 138071 138071 138075 138076 138104 138105 138106 138107 138108 138109 138110 138111 138112 138113 138114 138116 1

------

Voucher ID

MCZ MCZ A MCZ MCZ A (paratype) (paratype) MCZ A (paratype) MCZ A (paratype) MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A

122

06

Date

2005 2005 2005 2005 2005 2005 2005

14.IV.2009

17.VIII.2006 17.VIII.2006 17.VIII.2006 17.VIII.2006 17.VIII.2006 17.VIII.2006 18.VIII.20 18.VIII.2006 18.VIII.2006 18.VIII.2006 18.VIII.2006

urn K.urn S.,

Collector

Blackburn D. Blackburn C., K. Blackburn S., Blackburn Blackburn D. C., Blackburn K. S., P.,Huang Talla M. P.,Huang Talla M. Blackburn D. C., Blackburn K. S., P.,Huang Talla M. Blackburn D. C., Blackburn K. S., P.,Huang Talla M. Blackburn D. C., Blackburn K. S., P.,Huang Talla M. Blackburn D. C., Blackburn K. S., P.,Huang Talla M. Blackburn D. C., Blackburn K. S., P.,Huang Talla M. Blackburn D. C., Blackburn K. S., P.,Huang Talla M. Blackburn D. C., Blackburn K. S., P.,Huang Talla M. Blackburn D. C., Blackb P.,Huang Talla M. Blackburn D. C., Blackburn K. S., P.,Huang Talla M. Blackburn D. C. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V.

297

4596 4596 4596 4596 4596 4596

°E

52592 52592 52592 52592 52592 52225 46063 46063 46063 46063 46063 05544

10.

10. 10. 10. 10. 10. 10.

10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 11.

Coordinates

°N

2024 2024 2024 2024 2024 2038 2038 2038 2038 2038 2038 0893

.

224111 224111 224111 224111 224111 192444 098139

6. 6. 6 6. 6. 6. 6. 6. 6. 6. 6. 6.

6. 6. 6. 6. 6. 6. 7.

, at forest

om Keku,om My

Ouest, Ouest, Mt. Oku, re- forest Ouest, Mt. Oku, re- forest Ouest, Mt. Oku, re- forest Ouest, Mt. Oku, re- forest Ouest, Mt. Oku, re- forest Ouest, Mt. Oku, near Ouest, Lake Oku, at forest Ouest, Lake Oku, at forest Ouest, Lake Oku Ouest, Lake Oku, at forest Ouest, Lake Oku, at forest Ouest, Lake Oku, 2219 m Ouest, Lake Oku, 2219 m Ouest, Lake Oku, 2219 m Ouest, Lake Oku, 2219 m Ouest, Lake Oku, 2219 m Ouest, Lake Oku, 2219 m Ouest, Kedj

------

Country, Country, locality

ord

ve NE ve summit,of 2370 m

Cameroon, Nord Cameroon, Cameroon, Nord NEserve summit,of 2370 m ser Cameroon, Nord NEserve summit,of 2370 m Cameroon, Nord NEserve summit,of 2370 m Cameroon, Nord NEserve summit,of 2370 m Cameroon, Nord summit, 2800 m Cameroon, Nord edge lake, 2220of m Cameroon, Nord edge lake, 2220of m Cameroon, Nord edge lake, 2220of m Cameroon, Nord edge lake, 2220of m Cameroon, Nord edge lake, 2220of m Nigeria, Taraba, to Nyaki, Ngel streamnext at forest 1460margin, m Cameroon, Nord Cameroon, N Cameroon, Nord Cameroon, Nord Cameroon, Nord Cameroon, Nord Cameroon, Nord Ogade, summit, 2100 m

F F F F F F F F F F F F F F F F F

M M

Sex

Mbam Mbam

Taxon

. sp.

P. njiomock P. njiomock P. njiomock P. njiomock P. njiomock P. njiomock P. njiomock P. njiomock P. njiomock P. njiomock P. njiomock P (D) P. njiomock P. njiomock P. njiomock P. njiomock P. njiomock P. njiomock P. jimzimkusi

22

138118 138119 138120 138121 1381 138123 138135 138136 138137 138139 138140 139608

------

Voucher ID

MCZ MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A (paratype) MCZ A (paratype) MCZ A (paratype) MCZ A (paratype) MCZ A (paratype) MCZ A NMP6V 73382/1 NMP6V 73382/2 NMP6V 73382/3 NMP6V 73382/4 NMP6V 73382/5 NMP6V 73382/6 NMP6V 73385/1

123

Date

2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2009

2009

k V. k

ík V. ík

Collector

Gvoždík V. Gvoždík Gvožd Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždí Gvoždík V. Gvoždík V. Gvoždík V.

297 297 297 297 297 297 297 297 297

7068

7068

°E

27408 27408 27408 27408 27408 27408

10. 10. 10. 10. 10. 10. 10. 10. 10.

11.

11.

10. 10. 10. 10. 10. 10.

Coordinates

°N

0893 0893 0893 0893 0893 0893 0893 0893 0893 0398

0398

10229 10229 10229 10229 10229 10229

6. 6. 6. 6. 6. 6. 6. 6. 6. 7.

7.

6. 6. 6. 6. 6. 6.

Ouest, Kedjom Ouest, Kedjom Keku, My Ouest, Kedjom Keku, My Ouest, Kedjom Keku, My Ouest, Kedjom Keku, My Ouest, Kedjom Keku, My Ouest, Kedjom Keku, My Ouest, Kedjom Keku, My Ouest, Kedjom Keku, My Ouest, Kedjom Keku, My Ouest, Kedjom Keku, Ouest, Kedjom Keku, Ouest, Kedjom Keku, Ouest, Kedjom Keku, Ouest, Kedjom Keku, Ouest, Kedjom Keku,

------

rd

Country, Country, locality

Nigeria border, Mts., Gotel

Nigeria border, Mts., Gotel

-

-

1310 m

Cameroon Gangirwal, 2,locality 2250 m

Cameroon, Nord Cameroon, Nord Cameroon, Cameroon, Nord Ogade, summit, 2100 m Cameroon, Nord Ogade, summit, 2100 m Ogade, summit, 2100 m Cameroon, Nord Ogade, summit, 2100 m Cameroon, Nord Ogade, summit, 2100 m Cameroon, Nord Ogade, summit, 2100 m Cameroon, Nord Ogade, summit, 2100 m Cameroon, Nord Ogade, summit, 2100 m Ogade, summit, 2100 m Cameroon, No slope, 1310 m Cameroon, Nord slope, 1310 m Cameroon, Nord slope, Cameroon, Nord slope, 1310 m Cameroon, Nord slope, 1310 m Cameroon, Nord slope, 1310 m Cameroon Gangirwal, 2,locality 2250 m

F

F F F F F F F F F

M M M M M M M

Sex

Taxon

jimzimkusi

P.jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. steindachneri A P. steindachneri A

P6V 73385/5

Voucher ID

NMP6V73385/4 NMP6V NMP6V 73385/2 NMP6V 73385/3 NM NMP6V 73385/6 NMP6V 73385/7 NMP6V 73385/8 NMP6V 73385/12 73385/13 NMP6V 73390/1 NMP6V 73390/2 NMP6V 73390/3 NMP6V 73390/4 NMP6V 73390/5 NMP6V 73390/6 NMP6V 74520/1 NMP6V 74520/3

124

Date

2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009

Collector

Kodádková A., Tropek Kodádková A., R. Gvoždík Gvoždík V. Gvoždík V. Kodádková Tropek A., R. Kodádková Tropek A., R. Kodádková Tropek A., R. Kodádková Tropek A., R. Kodádková Tropek A., R. Kodádková Tropek A., R. Kodádková Tropek A., R. Kodádková Tropek A., R. Kodádková Tropek A., R. Kodádková Tropek A., R. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V.

711 711 449 449 449

4259 4436 4259 4259 4259 4259 4259 4259 2947 2947

°E

1.

0.

1 11. 10. 10. 10.

10. 10. 10. 1 10. 10. 10. 10. 10. 10. 10,2947 10,2947

89

Coordinates

°N

0488 0421 0421 2207 0488 0488 0488 0488 0488 0488 1589 1589 15 0883 0883 0883 0883

6. 7. 7. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.

, Bamenda,

Ouest, Ouest, Babungo, Ouest, Bat, Bamenda, Ouest, Lake Oku, stream Ouest, Babungo, Ouest, Babungo, Ouest, Babungo, Ouest, Babungo, Ouest, Babungo, Ouest, Babungo, Ouest, Bat Ouest, Bat, Bamenda, Ouest, Kedjom Keku, Ouest, Kedjom Keku, Ouest, Kedjom Keku, Ouest, Kedjom Keku,

------

d

Country, Country, locality

Nord

Nigeria border, Mts., Gotel Nigeria border, Mts., Gotel

- -

eroon

ameroon, Nord

Cameroon, Nord Cameroon, Nord Cameroon, "CzechBabanki" Cam Gangirwal, loc. 4, 2330 m Cameroon Gangirwal, loc. 4, 2330 m Cameroon, NW2 lakeof km on a nearby 2400hill, m Cameroon, Nord Bamenda, 1770 m Cameroon, Nord Bamenda, 1770 m Bamenda, 1770 m C Bamenda, 1770 m Cameroon, Nord Bamenda, 1770 m Cameroon, Nor Bamenda, 1770 m Cameroon, Nord Bamenda, 1770 m Cameroon, Nord 2070 m 2070 m Cameroon, Nord 2070 m Cameroon, Nord "Czech Babanki" Cameroon, Nord "Czech Babanki" Cameroon, Nord "Czech Babanki" Cameroon, Nord

F F F F F F F F F

M M M M M M M M

Sex

Taxon

mzimkusi

P.jimzimkusi P. steindachneri A P. steindachneri A P. njiomock P. jimzimkusi P. ji P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi

Voucher ID

NMP6V74525/3 NMP6V 74522/1 NMP6V 74522/2 NMP6V 74524 NMP6V 74525/1 NMP6V 74525/2 NMP6V 74525/4 NMP6V 74525/5 NMP6V 74525/6 NMP6V 74525/7 NMP6V 74526/1 NMP6V 74526/2 NMP6V 74526/3 NMP6V 74527/1 NMP6V 74527/2 NMP6V 74527/3 NMP6V 74527/4

125

Date

2009 2009 2009

III.1988 III.1988 III.1988 III.1988 III.1988 III.1988 III.1988 III.1988 III.1988 III.1988 III.1988 III.1988 III.1988 III.1988

Collector

G.

Nikolaus G. Nikolaus Gvoždík Gvoždík V. Gvoždík V. Gvoždík V. Nikolaus G. Nikolaus G. Nikolaus Nikolaus G. Nikolaus G. Nikolaus G. Nikolaus G. Nikolaus G. Nikolaus G. Nikolaus G. Nikolaus G. Nikolaus G. Nikolaus G.

7 7 7 7 7 7 7 7 7 7 7 7 7 7

1.

°E

11. 11. 11. 11. 11. 1 11. 11. 11. 11. 11. 11. 11. 11.

10,2947 10,2947 10,2741

Coordinates

°N

0883 0883 1023

033333 033333 033333 033333 033333 033333 033333 033333 033333 033333 033333 033333 033333 033333

6. 6. 6.

7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.

Gangirwal,

m

Ouest, Kedjom Keku, Ouest, Kedjom Keku, Ouest, Kedjom Keku

- - -

pool, m 2300

Country, Country, locality

banki"

Nigeria, Taraba,Nigeria, Gangirwal, Mts., Gotel Taraba,Nigeria, Gangirwal, Mts., Gotel pool, small wooded m 2300 Cameroon, Nord "Czech Ba Cameroon, Nord "Czech Babanki" Cameroon, Nord Nigeria, Taraba, Mts., Gotel Gangirwal, small wooded pool, m 2300 small wooded pool, m 2300 Nigeria, Taraba, Mts., Gotel Gangirwal, small wooded pool, m 2300 Nigeria, Taraba, Mts., Gotel Gangirwal, small wooded pool, m 2300 Nigeria, Taraba, Mts., Gotel Gangirwal, small wooded pool, m 2300 Nigeria, Taraba, Mts., Gotel Gangirwal, small wooded pool, m 2300 Nigeria, Taraba, Mts., Gotel Gangirwal, small wooded pool, m 2300 small wooded pool, 2300 Nigeria, Taraba, Mts., Gotel Gangirwal, small wooded pool, m 2300 Nigeria, Taraba, Mts., Gotel Gangirwal, small wooded Nigeria, Taraba, Mts., Gotel Gangirwal, small wooded pool, m 2300 Nigeria, Taraba, Mts., Gotel Gangirwal, small wooded pool, m 2300 Nigeria, Taraba, Mts., Gotel Gangirwal, Nigeria, Taraba, Mts., Gotel small wooded pool, m 2300

F F F F F

M M M M M M M M M M M M

Sex

Taxon

P.steindachneri P.steindachneri A P. jimzimkusi P. jimzimkusi P. jimzimkusi P. steindachneri A A P. steindachneri A P. steindachneri A P. steindachneri A P. steindachneri A P. steindachneri A A P. steindachneri A P. steindachneri A P. steindachneri A P. steindachneri A P. steindachneri P. steindachneri A

Voucher ID

ZFMK 47961 ZFMK NMP6V 74527/5 NMP6V 74527/6 NMP6V 74528 ZFMK 47959 ZFMK 47962 ZFMK 47963 ZFMK 47964 ZFMK 47965 ZFMK 47967 ZFMK 47968 ZFMK 47969 ZFMK 47970 ZFMK 47971 ZFMK 47972 ZFMK 47973 ZFMK 47974

126

Date

III.1988 III.1988 III.1988 III.1988 III.1988 III.1988 III.1988 III.1988 III.1988 III.1988 III.1988 III.1988 III.1988 III.1988 III.1988 III.1988

Collector

Nikolaus G. Nikolaus G. Nikolaus Nikolaus G. Nikolaus G. Nikolaus G. Nikolaus G. Nikolaus G. Nikolaus G. Nikolaus G. Nikolaus G. Nikolaus G. Nikolaus G. Nikolaus G. Nikolaus G. Nikolaus G. Nikolaus G.

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

°E

11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11.

Coordinates

°N

033333 033333 033333 033333 033333 033333 033333 033333 033333 033333 033333 033333 033333 033333 033333 033333

7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.

girwal,

el el Mts., Gangirwal,

l, l, m 2300

Country, Country, locality

Taraba, Mts., Gotel Gangirwal,

l l wooded pool, m 2300

small pool, small wooded m 2300 pool, small wooded m 2300 Taraba,Nigeria, Gangirwal, Mts., Gotel Nigeria, Taraba, Mts., Gotel Gangirwal, Nigeria, Taraba, Mts., Gotel Gangirwal, small wooded pool, m 2300 Nigeria, Taraba, Mts., Gotel Gangirwal, small wooded poo Nigeria, Taraba, Mts., Gotel Gangirwal, small wooded pool, m 2300 Nigeria, Taraba, Mts., Gotel Gangirwal, smal Nigeria, Taraba, Mts., Gotel Gangirwal, small wooded pool, m 2300 Nigeria, Taraba, Mts., Gotel Gan Nigeria, Taraba, Mts., Gotel Gangirwal, small wooded pool, m 2300 Nigeria, Taraba, Got small wooded pool, m 2300 Nigeria, Taraba, Mts., Gotel Gangirwal, small wooded pool, m 2300 Nigeria, small wooded pool, m 2300 Nigeria, Taraba, Mts., Gotel Gangirwal, small wooded pool, m 2300 small wooded pool, m 2300 Nigeria, Taraba, Mts., Gotel Gangirwal, small wooded pool, m 2300 Nigeria, Taraba, Mts., Gotel Gangirwal, small wooded pool, m 2300 Nigeria, Taraba, Mts., Gotel Gangirwal, small wooded pool, m 2300

F F F

M M M M M M M M M M M M M

Sex

Taxon

eindachneri

A A P.steindachneri P. steindachneri P. steindachneri A P. steindachneri A P. steindachneri A P. steindachneri A P. steindachneri A P. steindachneri P. steindachneri A P. steindachneri A P. steindachneri A P. steindachneri A P. steindachneri A A P. steindachneri A P. st A P. steindachneri A

Voucher ID

ZFMK 47981 ZFMK 47988 ZFMK ZFMK 47975 ZFMK 47976 ZFMK 47977 ZFMK 47978 ZFMK 47979 ZFMK 47980 ZFMK 47982 ZFMK 47983 ZFMK 47984 ZFMK 47985 ZFMK 47987 ZFMK 47989 ZFMK 47990 ZFMK 47991

127

------

I.2000

Date

28.I. 28.I. 28.I. 28.I. 28.I. 28.I. 28.I. 28.I.

III.1988 III.1988 III.1988 III.1988 III.1988

4.II.2000 4.II.2000 4.II.2000 4.II.2000 4.II.2000 4.I 4.II.2000 4.II.2000

, Schmitz A.,

W., Schmitz A., W., Schmitz A., W., Schmitz A., W., Schmitz A., W. W., Schmitz A., W., Schmitz A., W., Schmitz A.,

------

Collector

Nikolaus G. Nikolaus P. Herrmann A. Nikolaus G. Nikolaus G. Nikolaus G. Nikolaus G. Herrmann H. Herrmann P. A. Herrmann H. Herrmann P. A. Herrmann H. Herrmann P. A. Herrmann H. Herrmann P. A. Herrmann H. Herrmann H. Herrmann P. A. Herrmann H. Herrmann P. A. Herrmann H. Herrmann P. A.

7 7 7 7 7

°E

06611 06611 06611 06611 06611 06611 06611 06611

11. 11. 11. 11. 11.

12. 12. 12. 12. 12. 12. 12. 12.

Coordinates

°N

033333 033333 033333 033333 033333 253056 253056 253056 253056 253056 253056 253056 253056

.

7. 7 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.

l Mbabo, l 5

in gallery in

060 m

Country, Country, locality

aba, Mts., Gotel Gangirwal,

forest on southern on slope, forest 2060 m southern on slope, forest 2060 m Nigeria, Taraba, Mts., Gotel Gangirwal, small wooded pool, m 2300 Nigeria, Tar small wooded pool, m 2300 Nigeria, Taraba, Mts., Gotel Gangirwal, small wooded pool, m 2300 Nigeria, Taraba, Mts., Gotel Gangirwal, small wooded pool, m 2300 Nigeria, Taraba, Mts., Gotel Gangirwal, small wooded pool, m 2300 Cameroon, Adamaoua, Tchabal Mbabo,5 NEEkm Foungoy, from creek gallery in Cameroon, Adamaoua, Tchaba NEEkm Foungoy, from creek gallery in on forest southern slope, 2060 m Cameroon, Adamaoua, Tchabal Mbabo,5 NEEkm Foungoy, from creek on forest southern slope, 2060 m Cameroon, Adamaoua, Tchabal Mbabo,5 NEEkm Foungoy, from creek gallery in on forest southern slope, 2 Cameroon, Adamaoua, Tchabal Mbabo,5 NEEkm Foungoy, from creek gallery in Cameroon, Adamaoua, Tchabal Mbabo,5 NEEkm Foungoy, from creek gallery in on forest southern slope, 2060 m Cameroon, Adamaoua, Tchabal Mbabo,5 NEEkm Foungoy, from creek gallery in on forest southern slope, 2060 m Cameroon, Adamaoua, Tchabal Mbabo,5 NEEkm Foungoy, from creek gallery in on forest southern slope, 2060 m

F F F F F F F

M M M M M M

Sex

achneri

Taxon

B P. steindachneri A P. steindachneri A P. steindachneri A P. steindachneri A P. steindachneri A P. steind B P. steindachneri B P. steindachneri B P. steindachneri B P. steindachneri P. steindachneri B P. steindachneri B P. steindachneri B

ucher ID ucher

Vo

ZFMK 47994 ZFMK ZFMK 47995 ZFMK 47996 ZFMK 47997 ZFMK 47999 ZFMK 75705 ZFMK 75706 ZFMK 75707 ZFMK 75708 ZFMK 75709 ZFMK 75710 ZFMK 75711 ZFMK 75712

128

Date

2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018

23.IX.2012 23.IX.2012 23.IX.2012 24.IX.2012 24.IX.2012 24.IX.2012 24.IX.2012 24.IX.2012 24.IX.2012 24.IX.2012

Collector

Modrý D.,Modrý M. Jirků D.,Modrý M. Jirků D.,Modrý M. Jirků D.,Modrý M. Jirků D.,Modrý M. Jirků D.,Modrý M. Jirků D.,Modrý M. Jirků D.,Modrý M. Jirků D.,Modrý M. Jirků D.,Modrý M. Jirků Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V.

9

526

°E

22.8 22.89 22.89 22.89 22.89 22.89 22.89 22.89 22.89 22.89 22.89 22.89 22.89 22.89

16.2526 16.2526 16.2526 16.1854 16.1854 16.2 16.1854 16.1854 16.1854 16.1854

Coordinates

°N

0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21

3.2487 3.2487 3.2487 3.2815 3.2815 3.2487 3.2815 3.2815 3.2815 3.2815

with additional information on locality, coordinates, collector and date. All exam- date.All and collector coordinates, locality, on information additional with

oo Nature ooReserve Nature

Bonoboo Reserve Nature Bonoboo Reserve Nature Bonoboo Reserve Nature Bonoboo Reserve Nature Bonoboo Reserve Nature Bonoboo Reserve Nature Bonoboo Reserve Nature Bonoboo Reserve Nature Bonob Bonoboo Reserve Nature Bonoboo Reserve Nature Bonoboo Reserve Nature Bonoboo Reserve Nature Bonoboo Reserve Nature

i

ri

Hyperolius

Country, Country, locality

Sangha NP, by Monasau, road Sangha NP, by Monasau, road Sangha NP, by Monasau, road Sangha NP, Baboungue Sangha NP, Baboungue Sangha NP, by Monasau, road Sangha NP, Baboungue Sangha NP, Baboungue Sangha NP, Baboungue Sangha NP, Baboungue

------

, Dzanga

om the genus the genus om

CAR, DzangaCAR, DzangaCAR, DzangaCAR, DzangaCAR, DzangaCAR, DzangaCAR, DzangaCAR, DzangaCAR, CAR DzangaCAR, KokoloporiDRC, KokoloporiDRC, KokoloporiDRC, KokoloporDRC, KokoloporiDRC, KokoloporiDRC, KokoloporiDRC, KokoloporiDRC, KokoloporiDRC, KokoloporiDRC, KokoloporiDRC, KokolopoDRC, KokoloporiDRC, KokoloporiDRC,

Taxon

cinnamomeoventris cinnamomeoventris cinnamomeoventris cinnamomeoventris cinnamomeoventris cinnamomeoventris cinnamomeoventris cinnamomeoventris

lfouri

alfouri

cf. cf. cf. cf. cf. cf. cf. cf.

H. b H. balfouri H. balfouri H. ba H. balfouri H. balfouri H. balfouri H. balfouri H. balfouri H. balfouri H. H. H. robustus H. H. H. H. H. H. H. robustus H. robustus H. robustus H. robustus H. robustus

List of 50 examined specimens fr specimens examined of 50 List

.

III

ined specimens were males. Table continues of following page. following of continues Table males. were specimens ined

Voucher ID

D18_132

Table Table CAR_251 CAR_252 CAR_253 CAR_291 CAR_292 CAR_297 CAR_327 CAR_328 CAR_329 CAR_330 CD18_92 CD18_107 CD18_120 CD18_129 CD18_130 CD18_131 C CD18_133 CD18_134 CD18_152 CD18_153 CD18_155 CD18_156 CD18_159

129

-

Date

2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018

15.III.2015 15.III.2015 15.III.2015 15.III.2015 15.III.2015 15.III.2015 15.III.2015 15.III.2015 15.III.2015 15.III.2015

G. G. G. G. G. G. G. G. G. G.

------

A.

Boulou Boulou A. Boulou A. Boulou A. Boulou A. Boulou A. Boulou A. Boulou A. Boulou A. Boulou A.

------

Collector

Gvoždík V. Gvoždík Gvoždík Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. Gvoždík V. V.,Gvožík Zassi V.,Gvožík Zassi V.,Gvožík Zassi V.,Gvožík Zassi V.,Gvožík Zassi V.,Gvožík Zassi V.,Gvožík Zassi V.,Gvožík Zassi V.,Gvožík Zassi V.,Gvožík Zassi Schiøtz A.

-

°E

22.89 22.89 22.89 22.89 22.89 22.89 22.89 22.89 22.89 22.89 22.89 22.89 22.89 22.89 22.89

16,1961 16.1967 16.1973 16.1973 16.1973 16.1973 16.1973 16.1973 16.1973 16.1973

1

Coordinates

-

°N

0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.2 0.21 0.21 0.21 0.21 0.21 0.21 0.21

3.3207 3.3170 3.3122 3.3122 3.3122 3.3122 3.3122 3.3122 3.3122 3.3122

------

o Nature Reserveo Nature

, locality

Mafamba, Mafamba, camp

Bonoboo Nature Reserve BonobooNature Bonoboo Reserve Nature Bonoboo Reserve Nature Bonoboo Reserve Nature Bonoboo Reserve Nature Bonoboo Reserve Nature Bonoboo Reserve Nature Bonoboo Reserve Nature Bonoboo Reserve Nature Bonoboo Reserve Nature Bonobo Bonoboo Reserve Nature Bonoboo Reserve Nature Bonoboo Reserve Nature Bonoboo Reserve Nature

Country

C, KokoloporiC,

DRC, KokoloporiDRC, DRC, KokoloporiDRC, KokoloporiDRC, KokoloporiDRC, KokoloporiDRC, KokoloporiDRC, KokoloporiDRC, KokoloporiDRC, KokoloporiDRC, KokoloporiDRC, KokoloporiDRC, KokoloporiDRC, KokoloporiDRC, DR KokoloporiDRC, Rep. Congo,of Pool, 2 Mafamba, site Rep. Congo,of Pool, 1 Mafamba, site Rep. Congo,of Pool, Mafamba, camp Rep. Congo,of Pool, Mafamba, camp Rep. Congo,of Pool, Mafamba, camp Rep. Congo,of Pool, Mafamba, camp Rep. Congo,of Pool, Mafamba, camp Rep. Congo,of Pool, Rep. Congo,of Pool, Mafamba, camp Rep. Congo,of Pool, Mafamba, camp DRC

Taxon

cinnamomeoventris cinnamomeoventris

cf. cf.

H. H. phantasticus H. robustus H. phantasticus H. phantasticus H. robustus H. H. H. robustus H. phantasticus H. phantasticus H. phantasticus H. phantasticus H. phantasticus H. phantasticus H. phantasticus H. hutsebauti H. hutsebauti H. hutsebauti H. hutsebauti H. hutsebauti H. hutsebauti H. hutsebauti H. hutsebauti H. hutsebauti H. hutsebauti H. robustus

Voucher ID

CD18_258 CD18_160 CD18_192 CD18_202 CD18_255 CD18_357 CD18_358 CD18_364 CD18_492 CD18_493 CD18_518 CD18_519 CD18_526 CD18_523 CD18_528 CG15_145 CG15_146 CG15_147 CG15_150 CG15_151 CG15_153 CG15_154 CG15_156 CG15_157 CG15_160 ZMUC R.771175

130

Table IV. List of primers with respective sequences and sources.

1991

. 1991 .

. 2005

. 2007

. 2013 . 2013 . 2013 . 2013 . 2013 . 2013 . 2013 . 2013

et et al et al

et et al

et et al

et et al et al et al et al et al et al et al et al

Source Palumbi Palumbi Shen Shen Shen Shen Shen Shen Shen Shen Wiens Smith BossuytMilinkovitch& 2000 BossuytMilinkovitch& 2000

AYY TGTAYY GG

ARG GCCARG KVA CRT CYT CNC CRT T

3')

-

Sequence (5'Sequence CGC CTG TTT AAA AAC AAC AT GTCCCG TGA ACT ATCCAG T ACG CCK CTN GTN ATHGAR GAY CA TYT TRCCNG AYTTRA TNG CDA A AGG GTTTTC GTX CCA ACG ACT ACT AYC THTAYA AYC AYA AYC C TAAAGA TTTCAA GGAACA CAC CTS TAY AAN GCN GAY TGYCAY TT GGNCCN CCR CAR TAY TTR TCR TA AGG GTTTTC GTC CCA ACG TGCCYA ACA AYG CNG AGA TAAAGA TTTCAA GGG ACA CAC ANG CCA CNC TRA ACC ARA A TGTGAA GMMATY AAA TGC AAG ATG GWC CT TGG TGA CAT TTT AAA GAG TCA T GGC GGAAGA WCR TGC GATCAA GT TGCTGG CRTTCC CTC ART CCC A

1 7

- -

Primer name Primer 16S1 16SH1 F1 FICD R1 FICD F2 FICD R2 FICD KIAA2013 F1 KIAA2013 R1 KIAA2013 F2 KIAA2013 R2 POMC POMC Tyr 1C Tyr 1G

r

Gene 16S 16S FICD FICD FICD FICD KIAA2013 KIAA2013 KIAA2013 KIAA2013 POMC POMC Ty Tyr

131 Table V. List of ratios of components in PCR solutions for each used primer pair. Volume [μl].

Volume [μl] Primers Forward primer Reverse primer H2O Master mix DNA 16SL1, 16SH1 0.3 0.3 3.5 5 1 FICD F1, FICD R1 0.3 0.3 4 5 3 FICD F2, FICD R2 0.3 0.3 4 5 3 KIAA2013 F1, KIAA2013 R1 0.3 0.3 4 5 3 KIAA2013 F2, KIAA2013 R2 0.3 0.3 6 5 1 POMC-1, POMC-7 0.3 0.3 4 5 3 Tyr 1C, Tyr 1G 0.3 0.3 5.5 5 1.5

Table VI. List of PCR thermal cycles for each used primer. Temperature T [°C], time t [mm:ss].

1st step 2nd step 3rd step 4th step 6th step Primers 5th step T t T t T t T t T t 16SL1, 16SH1 94 02:00 94 00:30 55 00:30 72 01:00 back to 2nd 35x 72 10:00 FICD F1, FICD R1 94 04:00 94 00:45 43 00:40 72 02:00 back to 2nd 35x 72 10:00 FICD F2, FICD R2 94 04:00 94 00:45 50 00:40 72 1:30 back to 2nd 35x 72 10:00 KIAA2013 F1, back to 2nd 35x KIAA2013 R1 94 04:00 94 00:45 45 00:40 72 02:00 72 10:00 KIAA2013 F2, back to 2nd 35x KIAA2013 R2 94 04:00 94 00:45 50 00:40 72 1:30 72 10:00 POMC-1, POMC-7 94 02:00 94 00:30 50 00:40 72 1:20 back to 2nd 37x 72 10:00 TyrC, TyrG 95 15:00 94 00:30 57 00:30 72 1:00 back to 2nd 35x 72 10:00

132

in in

5 9 8 0 5 6 1 8 6 5 6 9 8 8 9 8 6 6 6 6 7 7 6

0. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

OMTL

given

0 4 2 4 5 5 3 2 1 2 3 4 4 4 5 1 9 9 3 0 1 2 9

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 1. 1. 1. 1. 0.

IMTL

0 2 7 5 6 5 3 2 9 8 3 4 6 8 1 8 4 8 8 1 8 1 6

13. 18. 17. 17. 17. 20. 19. 18. 17. 19. 16. 18. 16. 16. 17. 16. 15. 14. 13. 16. 17. 15. 12.

FTL

8 9 5 1 6 7 3 7 6 9 0 2 5 7 4 3 8 3 3 2 3 7 3

TL

13. 18. 17. 18. 18. 20. 19. 19. 20. 20. 18. 19. 17. 17. 18. 17. 16. 16. 15. 17. 18. 16. 14.

5 4 5 6 0 1 1 9 2 9 7 1 3 0 6 9 9 6 9 6 9 6 5

FL

12. 18. 16. 16. 17. 19. 18. 17. 18. 18. 16. 18. 16. 16. 16. 15. 14. 14. 13. 15. 16. 15. 12.

species complex. Values are are Values complex. species

6 6 1 9 8 0 3 7 6 8 7 6 7 8 0 2 3 3 7 1 9 7 1

4. 8. 7. 6. 6. 8. 7. 7. 7. 7. 6. 7. 6. 6. 7. 6. 5. 5. 5. 6. 6. 5. 5.

RL

8 5 5 1 2 8 6 5 4 8 8 7 1 3 6 3 0 6 5 0 7 6 5

4. 7. 5. 6. 6. 7. 6. 6. 6. 6. 5. 6. 6. 6. 6. 5. 5. 5. 5. 6. 6. 5. 4.

HL

P. steindachneri P.

9 8 6 8 4 6 6 7 2 4 5 6 3 8 5 7 3 1 4 2 2 0 5

1. 2. 2. 2. 2. 2. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 1.

ENL

2 4 1 4 5 3 4 7 2 3 9 1 9 4 2 9 7 2 5 5 8 3 8

SL

3. 4. 4. 4. 3. 4. 4. 3. 4. 4. 3. 4. 3. 4. 4. 3. 3. 3. 3. 3. 3. 3. 2.

5 3 2 1 1 4 4 4 5 3 7 4 1 1 1 9 9 8 8 7 2 6 5

2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 2. 3. 3. 3. 3. 2. 2. 2. 2. 2. 3. 2. 2.

IND

2 3 4 6 0 0 1 2 4 3 6 5 5 3 4 1 7 4 4 4 1 1 0

2. 3. 2. 2. 2. 3. 2. 3. 3. 3. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.

IOD

1 9 3 4 4 0 2 2 9 8 4 6 3 6 5 2 5 2 1 4 1 0 8

.

3. 3. 3. 3. 3. 4. 4. 4. 3. 3. 3. 3. 3. 3. 3. 3 3. 3. 3. 3. 3. 3. 2.

ED

4 1 5 5

4 8 4 6 2 8 7 7 2 5 7 1 5 7 8 7 8 2 4

7. 9. 9. 9. 9. 9. 8. 9. 9. 9. 9. 8. 8. 7. 7. 8. 8. 8. 7.

10. 10. 10. 10.

HDL

ured parameters on the specimens from the from specimens the on parameters ured

7 2 0 5 6 9 7 2 5 4 4 3 9 1 3

3 8 6 3 9 9 2 2

8. 9. 9. 9. 8. 9. 9. 8.

HW

11. 11. 11. 10. 11. 11. 11. 12. 12. 10. 11. 10. 10. 10. 10.

4 9 6 5 4 4 0 9 3 4 7 5 1 8 0 1 0 1 9 8 2 7 4

3.

25. 31. 31. 30. 31. 34. 3 33. 32. 34. 27. 31. 29. 28. 31. 28. 30. 28. 27. 29. 30. 27. 22.

SUL

4 1 6 8 6 1 8 1 3 3 4 1 2 2 2 0 5 8 0 3 5 1 9

26. 32. 31. 30. 31. 35. 32. 33. 32. 34. 27. 32. 29. 29. 31. 29. 30. 28. 28. 30. 30. 28. 22.

SVL

Taxon

njiomock

. jimzimkusi

P.njiomock P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P P. jimzimkusi P. njiomock P. njiomock P. njiomock P. njiomock P. njiomock P. P. njiomock

Table of values of 16 (14 + SVL and SUL) meas SUL) and SVL + (14 16 of values of Table

.

138137 138075 136891 136892 136903 136907 136908 136927 136928 136929 136930 138065 138066 138071 138072 138076 138135 138136 138139 138140 138118 138119 138120

------

VII

Voucher ID

mm and rounded to one decimal place. Table continues on the next page. next the on continues Table place. decimal one to rounded and mm

MCZ MCZ A MCZ MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A

Table Table

133

5 4 6 6 7 6 7 7 5 7 6 5 7 7 6 5 5 6 4 5 6 6 5 6 7 7

......

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OMTL

7 0 8 1 0 3 1 5 1 2 4 1 1 1 3 9 0 2 7 7 7 8 8 0 0 8

......

0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 0

IMTL

8 8 2 6 5 7 2 5 8 5 5 3 6 1 9 5 9 0 8 1 5 6 9 8 9 6

......

11 13 12 15 14 15 15 16 15 17 17 16 17 17 16 11 13 16 13 12 11 13 11 13 13 14

FTL

4 4 1 2 5 7 1 8 8 3 0 0 7 9 1 1 2 4 5 1 6 4 0 6 5 1

......

3

TL

12 14 13 15 18 16 16 16 15 18 18 17 17 17 17 12 15 17 14 13 12 14 1 14 14 16

7 2 0 5 4 2 5 4 2 2 0 5 8 7 3 7 9 0 6 3 5 0 0 4 3 3

......

FL

11 13 12 14 14 16 15 16 15 17 16 15 16 16 15 10 13 16 12 11 11 14 12 13 13 14

6 1 9 6 8 5 3 7 9 1 7 8 9 6 1 0 0 5 1 5 9 6 0 1 3 0

......

4 5 4 5 6 6 6 6 6 7 6 6 6 6 7 5 6 6 5 4 4 5 5 5 5 6

RL

3 0 5 1 0 8 7 8 7 6 5 6 0 0 0 6 2 2 0 9 8 4 0 2 7 1

......

4 5 4 5 6 5 5 5 5 6 6 6 6 7 7 4 5 6 5 4 4 5 5 5 5 6

HL

7 0 9 1 8 1 5 0 0 2 1 3 5 7 6 6 9 6 8 1 9 9 7 8 2 0

......

1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 1 2 1 1 1 1 2 2

ENL

7 5 0 4 2 6 7 2 5 8 8 5 9 3 0 5 2 0 2 0 0 0 9 4 7 6

......

SL

2 3 3 3 4 3 3 3 3 3 3 3 3 4 4 2 3 4 3 3 3 3 2 3 3 3

5 6 9 8 0 9 9 0 0 5 1 2 3 4 6 3 5 8 9 6 5 7 7 7 6 7

......

2 2 2 2 3 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2

IND

6 7 1 2 6 8 3 2 5 2 4 5 7 6 7 0 8 3 4 1 9 3 2 2 0 9

......

2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 1

IOD

5 7 7 9 0 1 4 5 6 4 5 2 8 4 3 6 1 3 8 6 4 4 9 4 6 5

......

2 2 2 2 4 4 3 3 3 3 3 3 3 3 3 2 3 3 2 2 2 3 2 3 3 3

ED

8 7 6 1 3 4 8 0 9 3 2 4 6 8 4 7 7 5 8 2 6 2 9 9 1 7

......

6 7 6 8 9 9 8 9 8 9 9 8 9 9 9 6 7 8 6 7 6 7 7 7 8 7

HDL

7 1 8 3 3 1

2 8 8 3 9 6 7 2 9 5 1 7 1 8 1 5 1 1 4 6

8. 8. 8. 9. 9. 9. 9. 9. 9. 8. 9. 9. 8. 7. 7. 9. 7. 8. 8. 8.

HW

10. 10. 10. 10. 10. 10.

6 9 6 5 7 8 7 4 7 5 3 3 9 5 6 2 2 1 0 5 9 5 4 6 7 4

20. 24. 21. 25. 30. 28. 27. 28. 29. 31. 29. 28. 30. 30. 28. 21. 25. 28. 24. 21. 20. 26. 20. 25. 25. 25.

SUL

8 8 7 8 1 9 8 5 1 5 5 0 1 2 8 3 3 1 1 4 6 1 5 4 8 6

20. 24. 21. 25. 32. 28. 27. 28. 30. 31. 29. 28. 31. 30. 28. 21. 25. 29. 24. 21. 21. 26. 20. 25. 25. 25.

SVL

C C C C C C C C C C C C C C C C C C

eri eri

neri

hneri hneri

Taxon

P.njiomock P.steindachneri P. njiomock P. njiomock P. steindachneri P. steindachneri P. steindach P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindac P. steindachneri P. steindachneri P. steindachneri P. steindac P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachn P. steindachneriD P. njiomock P. njiomock P. njiomock P. njiomock

138123 138107 138121 138122 138056 138057 138058 138059 138060 138104 138105 138106 138108 138109 138110 138111 138112 138113 138114 138116 138117 139608

------

A

Voucher ID

MCZ MCZ A MCZ A MCZ MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A MCZ A NMP6V 73382/1 NMP6V 73382/2 NMP6V 73382/3 NMP6V 73382/4

134

8 5 8 6 8 8 7 6 7 1 0 9 0 9 6 6 5 7 6 5 5 7 5 5 6 6

......

0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

OMTL

3 0 2 9 3 1 2 0 4 4 1 2 1 2 2 9 0 3 9 7 8 0 8 9 9 1

......

1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 0 0 1

IMTL

9 4 8 3 4 3 9 1 2 8 4 0 3 8 5 7 8 1 1 8 4 4 8 7 7 1

......

18 14 15 14 19 17 19 16 20 17 19 21 18 17 14 15 14 14 16 10 14 14 11 14 14 19

FTL

5 9 1 5 6 2 7 0 5 3 0 3 5 9 5 5 3 9 5 1 6 9 1 9 9 4

......

TL

20 14 17 15 19 17 19 19 21 19 20 20 19 17 15 15 16 13 16 12 15 15 14 14 15 19

6 0 0 3 8 6 4 6 6 8 8 2 9 4 5 9 2 8 1 0 6 3 5 9 6 4

......

FL

18 13 15 14 17 15 18 17 19 17 18 19 17 16 14 14 15 12 16 11 14 15 12 13 14 18

3 4 0 0 9 5 0 0 8 7 3 9 8 4 5 6 4 4 9 0 8 1 5 7 7 1

......

8 5 6 5 7 6 7 7 7 7 8 7 6 7 6 5 6 5 5 5 5 6 4 5 5 7

RL

6 6 4 5 5 4 2 8 4 6 0 4 1 3 6 3 0 5 5 7 1 0 5 1 1 9

......

7 5 6 5 7 6 7 6 8 8 8 6 7 7 5 5 6 5 5 3 6 6 4 5 6 6

HL

2 9 3 7 7 8 7 5 6 0 4 5 0 9 7 7 8 6 3 7 0 3 6 3 0 1

......

3 1 2 1 2 1 2 2 2 2 2 2 2 1 1 1 1 1 2 1 2 2 1 2 2 2

ENL

9 3 7 0 5 4 2 0 4 7 9 2 9 6 1 2 4 0 5 6 3 6 8 3 3 9

......

SL

4 3 3 3 4 3 4 4 4 3 3 4 3 3 3 3 3 3 3 2 3 3 2 3 3 3

4 7 3 0 4 0 1 9 5 0 4 3 4 2 0 0 9 6 5 3 6 7 2 4 0 0

......

3 2 3 3 3 3 3 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 3 3

IND

5 2 5 4 2 2 2 7 4 1 3 4 4 8 9 7 3 9 7 9 4 2 8 8 1 2

......

2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 1 2 1 2 2 1 1 2 2

IOD

4 4 6 7 3 5 2 2 7 1 1 3 2 6 6 3 7 8 2 8 5 8 1 3 6 1

......

4 3 3 3 4 3 4 4 4 4 4 4 4 3 3 4 3 3 3 2 3 3 3 3 3 4

ED

0 7 1 0 1

. 9 7 1 9 8 8 4 . 4 . 7 . 8 2 2 4 6 9 1 1 3 1 6 0 .

......

7 8 8 9 7 9 9 9 9 8 8 8 8 7 8 6 8 9 7 7 8

11 10 10 10 10

HDL

0 4 4 4 8 9 0 1 3 0 1 5 4

. 7 4 0 . 7 ...... 1 5 6 1 . 1 2 . 3 1 5 .

......

8 9 9 9 9 9 9 8 7 9 7 8 9

HW

13 11 11 10 11 10 11 11 11 10 10 10 10

0 6 3 3 7 8 9 2 3 3 2 6 4 8 3 5 5 7 8 9 2 5 8 8 1 1

0.

36. 24. 26. 27. 33. 26. 33. 33. 35. 29. 31. 32. 32. 28. 25. 28. 28. 23. 31. 2 29. 29. 22. 25. 29. 35.

SUL

7 3 5 8 4 2 8 5 3 1 1 3 6 4 5 4 4 6 6 4 5 6 6 0 5 6

35. 25. 26. 26. 32. 27. 33. 33. 35. 29. 31. 32. 32. 28. 25. 28. 28. 23. 31. 21. 29. 29. 23. 26. 30. 35.

SVL

A A A A

kusi

Taxon

P.jimzimkusi P.jimzimkusi P. njiomock P. njiomock P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzim P. jimzimkusi P. jimzimkusi P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. njiomock P. jimzimkusi P. jimzimkusi P. jimzimkusi

85/8

Voucher ID

NMP6V73385/6 NMP6V73390/5 NMP6V 73382/5 NMP6V 73382/6 NMP6V 73385/1 NMP6V 73385/2 NMP6V 73385/3 NMP6V 73385/4 NMP6V 73385/5 NMP6V 73385/7 NMP6V 733 NMP6V 73385/12 NMP6V 73385/13 NMP6V 73390/1 NMP6V 73390/2 NMP6V 73390/3 NMP6V 73390/4 NMP6V 73390/6 NMP6V 74520/1 NMP6V 74520/3 NMP6V 74522/1 NMP6V 74522/2 NMP6V 74524 NMP6V 74525/1 NMP6V 74525/2 NMP6V 74525/3

135

5 5 5 7 5 4 7 5 6 7 5 9 5 6 6 4 5 6 4 4 6 7 4 7 6 5

......

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OMTL

8 0 8 1 9 0 1 7 0 1 8 5 8 9 2 8 0 0 8 0 2 2 9 9 0 1

......

0 1 0 1 0 1 1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0 0 1 1

IMTL

0 6 4 4 4 2 2 4 2 4 4 8 6 6 1 3 8 2 3 3 4 8 3 0 6 9

......

8

11 16 14 17 1 16 15 12 18 18 16 17 18 17 17 14 15 16 14 14 15 13 16 15 14 16

FTL

3 7 0 7 3 4 4 8 9 6 1 4 1 6 7 1 9 4 2 1 5 9 5 7 8 5

......

TL

11 17 15 17 19 16 15 11 18 19 18 18 19 19 14 16 16 16 17 16 16 15 15 14 16 17

2 8 4 0 1 3 7 0 9 0 5 8 4 9 6 3 8 1 4 1 2 4 4 4 4 7

......

FL

10 15 13 17 18 15 14 11 16 18 16 17 18 17 13 14 15 15 16 15 15 14 15 14 15 16

5 6 0 5 2 4 3 6 5 2 4 4 7 7 1 1 9 9 6 3 1 9 5 5 6 5

......

4 6 6 7 7 6 6 4 7 7 7 7 7 7 6 7 6 5 6 6 6 5 6 6 6 6

RL

5 9 9 3 9 5 0 6 3 4 5 0 9 3 9 5 6 3 3 3 7 0 3 1 4 4

......

3 5 4 6 6 5 6 3 7 6 6 8 6 7 5 6 6 6 5 5 5 6 6 6 6 6

HL

5 7 8 4 6 1 2 4 4 0 4 5 8 3 7 8 1 4 9 1 1 6 7 9 7 0

......

1 1 1 2 2 2 2 1 2 2 2 2 2 2 1 1 2 2 1 2 2 1 1 1 1 2

ENL

6 3 4 0 2 7 6 7 1 0 6 1 1 8 0 5 5 1 7 2 4 9 6 4 1 4

......

SL

2 3 3 4 4 3 3 2 4 4 3 4 4 3 3 3 3 4 3 3 3 2 3 3 3 3

2 4 8 3 3 7 8 4 9 2 1 1 3 3 7 1 2 1 0 2 0 8 1 0 0 1

......

2 3 2 3 3 2 2 2 2 3 3 3 3 3 2 3 3 3 3 3 3 2 3 3 3 3

IND

8 7 0 2 1 1 3 1 9 0 2 8 5 6 2 5 1 7 0 3 1 6 8 9 9 6

......

1 3 2 2 2 2 2 2 1 3 2 2 2 2 2 2 2 2 3 2 3 2 2 2 3 2

IOD

8 9 4 9 9 4 1 9 7 6 9 0 6 3 3 8 8 7 1 0 9 9 4 1 4 4

......

2 3 3 3 3 3 3 2 3 4 3 4 3 4 3 3 3 3 4 4 3 3 3 3 3 3

ED

0 0 4

1 1 1 7 . 6 5 7 . . 1 6 9 2 7 5 1 7 2 3 9 1 0 8 1 6

......

6 9 8 9 8 7 6 9 9 9 9 7 9 9 9 9 8 8 7 9 7 9 9

10 10 10

HDL

3 9 8 5 0 5 7 4 1 0 0 0 0 3 0 5 2

2 . 8 . . 9 0 5 ...... 3 ...... 8 . 6 7 .

......

7 8 9 9 7 9 9 8 9

HW

11 10 10 10 11 10 10 10 10 10 10 10 11 10 10 10 11

1 1 2 5 5 1 2 4 2 3 8 0 4 4 1 4 5 0 3 1 7 1 7 4 5 7

19. 33. 27. 32. 34. 30. 26. 20. 31. 34. 29. 31. 33. 32. 24. 28. 30. 30. 30. 30. 28. 29. 28. 27. 28. 30.

SUL

2 5 0 2 1 1 5 6 9 2 6 1 3 9 8 4 0 3 7 6 9 3 8 3 1 3

20. 31. 27. 32. 35. 30. 26. 20. 31. 35. 30. 31. 33. 31. 24. 27. 30. 29. 29. 29. 27. 28. 27. 27. 28. 30.

SVL

A A A A A A A A A A A A

si

Taxon

P.jimzimkusi P.steindachneri P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimkusi P. jimzimku P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachneri

4527/2

Voucher ID

NMP6V74526/2 47959 ZFMK NMP6V 74525/4 NMP6V 74525/5 NMP6V 74525/6 NMP6V 74525/7 NMP6V 74526/1 NMP6V 74526/3 NMP6V 74527/1 NMP6V 7 NMP6V 74527/3 NMP6V 74527/4 NMP6V 74527/5 NMP6V 74527/6 NMP6V 74528 ZFMK 47961 ZFMK 47962 ZFMK 47963 ZFMK 47964 ZFMK 47965 ZFMK 47967 ZFMK 47968 ZFMK 47969 ZFMK 47970 ZFMK 47971 ZFMK 47972

136

7 6 3 5 7 5 3 6 7 5 6 7 4 5 7 7 6 7 5 5 6 5 5 6 5

......

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0

OMTL

1 6 7 0 8 1 1 0 0 9 0 2 8 0 0 9 8 8 8 6 8 6 8 0 8

......

1 0 0 1 0 1 1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0.7 0 1 0

IMTL

6 8 6 9 6 7 3 8 4 3 5 6 2 6 9 7 0 1 2 7 5 6 3 1

...... 7 ......

.

3

9 8.3

13 10 13 15 16 14 15 16 1 13 13 13 13 13 12 12 11 14 11 11 11 14 13 14

FTL

7 8 5 6 0 7 1 5 6 3 1 8 7 1 9 1 8 6 4 1 1 0 0 3 6

......

TL

9.6

14 11 14 15 16 15 16 14 15 14 14 14 13 14 13 14 12 13 14 12 12 12 16 15 15

3 4 3 6 0 4 3 0 6 6 1 9 6 2 1 8 2 9 9 0 4 7 4 6 2

......

FL

8.8

12 10 14 14 15 14 14 14 14 13 13 13 12 13 14 12 11 13 13 11 11 10 14 14 15

7 4 0 6 2 4 5 4 1 0 1 5 9 0 5 6 1 8 6 6 2 3 2 5 0

......

5 4 6 6 6 6 5 5 6 6 6 6 5 6 6 5 5 5 5 4 5 5 3.5 5 6 6

RL

9 3 2 1 2 1 1 5 6 8 2 4 7 0 4 3 4 4 9 3 5 8 4 3 1

......

5 4 5 6 6 6 6 5 6 5 5 6 5 5 5 5 4 6 6 4 5 4 3.9 5 6 6

HL

7 3 9 9 9 6 8 2 6 4 7 9 0 0 4 8 7 0 1 9 3 9 3 9 0

......

1 1 1 1 1 1 1 2 1 1 1 1 2 2 1 1 1 2 2 1 1 1 1.3 2 1 2

ENL

1 7 4 0 3 3 4 8 1 7 9 2 0 3 8 3 7 4 5 8 7 2 7 3 5

......

SL

3 2 3 3 3 3 3 3 3 2 2 3 3 3 2 3 2 3 3 2 2 3 2.5 3 3 3

4 3 0 1 0 1 3 0 8 7 9 0 9 7 1 6 7 7 8 6 0 4 0 6 9

......

2 2 3 3 3 3 3 3 2 2 2 3 2 2 3 2 2 2 2 2 2 2 1.8 3 2 2

IND

1 9 0 2 8 2 4 5 8 6 3 3 8 2 8 6 3 7 0 2 8 3 5 0 2

......

2 1 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1.6 2 2 2

IOD

8 8 1 1 4 7 9 4 4 2 3 2 2 6 5 6 5 0 6 6 9 1 8 3 0

......

3 2 3 4 3 3 3 3 3 3 3 3 3 2 3 3 3 3 2 2 2 3 1.8 3 4 4

ED

0 1 3 9 3 2 8 8 9 0 6 7 4 9 3 3 6 5 3 4 8 7 5 0 9

......

8 7 8 8 8 9 8 8 8 8 7 8 8 7 8 8 7 7 7 6 6 6 6.1 8 9 8

HDL

8 9 9 0 3 2 6 3 4 8 5 2 1 0 5 9 1 5 1 1 8 2 0 7 6

......

8 6 8 9 9 9 9 9 9 8 8 9 8 8 8 7 8 8 9 7 7 7 6.7 9 9 9

HW

2 5 7 5 8 0 5 5 9 8 6 0 6 9 8 6 2 4 7 6 5 1 0 6 0

25. 18. 26. 28. 26. 27. 28. 26. 25. 25. 24. 26. 22. 24. 25. 23. 23. 24. 25. 20. 22. 19. 16.7 29. 28. 28.

SUL

2 0 9 8 0 0 0 0 5 4 4 5 3 9 1 4 0 6 5 9 0 0 7 3 8

8.

25. 19. 26. 27. 26. 27. 2 26. 25. 25. 24. 25. 22. 24. 25. 23. 23. 24. 25. 19. 23. 19. 17.8 29. 29. 28.

SVL

A A A A A A A A A A A A A A A A A A A A A A A B B B

eri eri

Taxon

P.steindachneri P.steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachneri P. steindachn P. steindachneri P. steindachneri P. steindachneri

Voucher ID

ZFMK 47985 ZFMK 47997 ZFMK ZFMK 47973 ZFMK 47974 ZFMK 47975 ZFMK 47976 ZFMK 47977 ZFMK 47978 ZFMK 47979 ZFMK 47980 ZFMK 47981 ZFMK 47982 ZFMK 47983 ZFMK 47984 ZFMK 47986 ZFMK 47988 ZFMK 47989 ZFMK 47990 ZFMK 47993 ZFMK 47994 ZFMK 47995 ZFMK 47996 ZFMK 47999 ZFMK 75705 ZFMK 75706 ZFMK 75707

137

7 9

6 6 8 6 4

.

0 0. 0. 0. 0.

Fol

13. 13.0 14.5 13.8 14.7 12.4 13.4 13.6 11. 13.1 13.2 12.0 11.6 13.5 11.1

OMTL

8 1 0 0 9

.

TL

0 1. 1. 1. 0.

15.2 15.0 16.3 14.4 17.0 15.1 15.1 15.4 13.9 15.4 15.2 14.1 13.2 15.0 13.4

IMTL

8 2 7 5 5

.

FL

14.4 13.8 15 15. 14. 14. 10. 15.9 14.4 16.2 14.4 14.2 13.6 13.3 14.1 13.9 13.2 12.4 13.7 12.2

FTL

7 6 9 8 5

. 2 3

.2

TL

1.5 1.4 1.7 1.5 1.8 1.2 1. 1.4 1 1.4 1.3 1.3 1. 1.2 1.4

DW

15 15. 16. 14. 11.

9 9 6 3 8

. 4

FL

6.7 7.4 7.0 6.6 7.6 6.9 6.9 7.4 6. 6.8 7.2 6.2 6.2 6.6 5.8

14 14. 15. 13. 10.

HaL

. Values are given in mm and and in mm aregiven Values .

8 2 5 7 4 9

.

6.2 6.2 6 6. 6. 5. 4. 7.3 6.4 7.4 6.4 6.6 6.8 6.3 6.5 6.8 6.0 5.4 5. 5.5

RL RL

Hyperolius

8 1 3 2 2

.

5.5 5.4 6 6. 6. 6. 4. 6.1 6.0 6.3 5.5 6.4 5.8 5.2 5.2 5.3 5.5 4.9 5.0 4.7

HL HL

3 1 0 9 6 4

.

SL

3.4 3. 2 2. 1. 1. 1. 4.5 3.6 4.3 3.3 3.4 3.8 3.6 3.6 3.7 3.1 3.1 4.3 3.0

ENL

3 5 7 2 5 6 6

.

SL

2.9 2.7 3 3. 3. 3. 2. 3.1 2.7 2.8 2.5 2.6 2.9 2. 2.7 2.6 2.6 2. 2.5 2.7

IND

0 3 3 0 5 6 8

.5 .

2.5 2 3 3. 3. 3. 2. 3.5 2.4 2.8 2.4 2. 2.5 2.5 2. 2.7 2.4 2.4 3.2 2.3

IND

ENL

5 3 5 7 0 5 6 4

.

4.1 3.7 2 2. 2. 2. 2. 3.6 3.3 3.7 3.7 3. 3.8 3.3 3. 3.5 3.1 3.6 3. 3.5

ED

IOD

9 3 8 9 8 2 5

.

3.1 3. 4 3. 3. 3. 3. 3.7 3.7 3.8 3.4 3. 3.2 3.3 3.4 3.3 3.2 3.1 3.6 3.3

ED

IOD

6 1 8 3 6 8 9 7

. .2 .0

9.0 8.6 8 9. 8. 8. 6. 9.7 8.7 9 8. 9.2 9.1 8. 9.3 8.6 8.4 8.3 9. 8

HdL

HDL

9

6 8 6 9 6 5

. .9

9.9 9.8 9 9. 9. 8. 7. 9.7 9 9.6 9.8 9.3 9.0 9.

HW HW

10.5 10.1 10. 10.4 10.2 10.6

8 1 6 7 9 4 5 1

0.8

30. 29.2 28. 28. 29. 26. 21. 31.9 3 31.2 26.6 30. 30.4 28. 28.6 29.6 27.4 26.4 29.3 27.1

SUL SUL

5 3 5 8 9 5 6 7 3

31.6 30.4 28. 28. 29. 26. 20. 32. 20.9 31.5 27.5 30. 31.2 28.8 29.4 30.2 28.0 27.2 30. 28.

SVL SVL

B B B B B

Taxon Taxon

cinnamomeoventris cinnamomeoventris cinnamomeoventris cinnamomeoventris

eindachneri

cf. cf. cf. cf.

H. balfouri H. P. steindachneri P. steindachneri P. steindachneri P. st P. steindachneri H. balfouri H. balfouri H. balfouri H. balfouri H. balfouri H. balfouri H. balfouri H. balfouri H. balfouri H. H. H. robustus H.

Table of values of 16 (14 + SVL and SUL) measured parameters on five species from the genus the genus species from five on parameters measured SUL) and SVL + (14 of 16 values Tableof

.

VIII

rounded to one decimal place. Table continues on the nextpage. the on Tablecontinues place. decimal one to rounded

D18_107

Voucher ID Voucher ID

Table Table CAR_292 CD18_129 ZFMK 75708 ZFMK 75709 ZFMK 75710 ZFMK 75711 ZFMK 75712 CAR_251 CAR_252 CAR_253 CAR_291 CAR_297 CAR_327 CAR_328 CAR_329 CAR_330 CD18_92 C CD18_120 CD18_130

138

7 9

.0

51

13.8 11.2 10.5 11.3 11.2 11.7 13.8 14.6 13.8 14.3 14.8 12.9 13.4 14.0 13. 12 13. 13.3 13.3 13.7 14.3 13.7 14.1 13.8 10.1 9.

OMTL

8

5.7

15.5 13.3 13.2 13.5 12.9 13.5 15.9 17.3 16.0 16.6 16.8 14.8 15.0 15.4 15.4 14.4 1 14.9 15.1 15.3 16.6 15.0 15. 15.4 12.3 10.8

IMTL

2

14.4 12.6 12.5 12.1 12.5 13.3 15.2 16.3 15.0 15.6 16.1 14.1 14.7 14.9 14.7 13.7 15. 14.8 14.7 14.8 16.1 14.7 15.1 14.5 11.5 10.2

FTL

6

TL

1.4 1.1 1.3 1.2 1.2 1.4 1.4 1.5 1.6 1.2 1.4 1. 1.2 1.3 1.5 1.3 1.3 1.5 1.6 1.5 1.5 1.5 1.5 1.5 1.1 1.1

2 1

FL

6.9 5.9 6.3 6. 6.4 7.1 6.8 7.3 7. 6.8 7.7 7.6 7.9 6.9 8.0 7.3 6.8 7.5 7.2 8.3 7.9 7.9 8.0 7.6 4.5 5.6

6 4 3 5

.2

6.0 5.7 5.6 5.7 5. 5.6 6.2 6.7 6.2 5.9 6.5 5.8 6.0 6.3 6.6 6.0 6. 6.3 6 6.6 6. 6.0 6.3 6. 4.9 3.9

RL

6 9 4 6 2 4

5.4 4. 5.1 4. 4.8 5.3 5.4 5.6 4.8 5.4 6.0 5.0 5.5 5.2 5.5 5.2 5. 4. 4.6 5. 5.4 4.9 5. 4.9 5.1 4.1

HL

2 9

.0 .0

4.4 3.3 3.1 3.0 3.3 2.8 3.8 4.5 4.2 4. 4.1 3 3.5 3.7 3.6 2.9 4.0 3.8 3.8 3. 3.8 3.5 3.6 3.8 2 2.1

ENL

1 9 9

SL

2.9 2.6 2.3 2.3 2.6 2.7 3.2 3.1 3.0 2.7 3. 3.3 3.2 2.5 3.6 2.6 2. 3.7 3.5 3.7 3.6 3. 3.4 3.6 2.5 2.6

2 4

3.2 2.4 2.4 2.4 2.3 2.4 3.0 3.3 3.1 3.2 3.6 2.0 2.5 3.1 2.2 2.4 3.4 2. 2.4 2. 2.6 2.3 2.3 2.3 1.6 1.4

IND

5 4 5

.0

4 3.5 3.0 3.1 3.5 3.5 4.1 4. 4.9 4.4 4. 4.1 4.2 4.2 3.9 3.2 4.0 4.1 3.8 4.0 3.8 3. 3.7 3.7 2.8 3.3

IOD

9 5

.0 .1

3.6 3.0 3.4 2.9 3 3.0 4.0 4 4.1 4.1 4.0 3. 4.2 4.0 4.5 3.3 3.7 4. 4.5 4.0 4.3 4.3 4.2 4.3 2.8 3.1

ED

6 2 8 2

7 3 6

.8

8. 8.3 8.3 8.4 8. 9.4 9.3 9.4 8 9.8 9.4 9. 9.7 9.1 9.5 7.1 7.0

10.9 10.5 11. 10.3 10.7 10.7 10. 10. 10.

HDL

4 8 9 8

.8 .4 2

.5

8.8 9 9.2 9.0 9.8 8. 7.7

HW

10 10.0 10.8 11. 10.7 11.0 11.5 11. 11.4 10.6 12.0 11.3 12.4 11. 13.0 11.9 12 11. 12.2

4 3 4 1

.0

31.7 26.8 25.7 25.9 26 26.4 32.2 31. 31.8 32.6 31.8 30.3 28.3 30.2 30.7 27.3 30. 30.4 29.3 31.6 31.6 30. 31.4 30.3 23. 23.3

SUL

3 1 4 1 4 7

.0

32.5 27.7 27 26.6 27.0 27.5 32.9 32.2 32.9 33. 33.1 31. 29.8 31. 32.3 28. 32.5 31.7 31.2 33.4 33. 31. 32.9 32.1 23.9 23.6

SVL

ris

Taxon

cinnamomeoventris cinnamomeovent cinnamomeoventris cinnamomeoventris cinnamomeoventris cinnamomeoventris

cf. cf. cf. cf. cf. cf.

. robustus

H. H. robustus H. H. H. H. H. H. robustus H. robustus H. robustus H H. robustus H. phantasticus H. phantasticus H. robustus H. phantasticus H. H. robustus H. phantasticus H. phantasticus H. phantasticus H. phantasticus H. phantasticus H. phantasticus H. phantasticus H. hutsebauti H. hutsebauti

_145

18_364

Voucher ID

CD18_153 CD18_357 CD18_131 CD18_132 CG18_133 CD18_134 CD18_152 CD18_155 CD18_156 CD18_159 CD18_160 CD18_192 CD18_202 CD18_255 CD18_258 CD18_358 CD CD18_492 CD18_493 CD18_518 CD18_519 CD18_523 CD18_526 CD18_528 CG15 CG15_146

139

.0

7

51

9. 9.7

MTL

10.8 9. 10.5 11.3 12 11.2 14.6

O

12.5 11.2 12.4 11.6 12.5 11.2 13.2 12.6 17.1

IMTL

9

10.7 10.7 11.2 11.2 12.3 10.4 12.3 11.5 15.

FTL

1

TL

1.3 1.1 1.1 1.0 1.1 1.1 1.0 1. 1.4

FL

5.5 5.2 4.8 4.8 6.0 5.1 6.5 5.5 7.7

4.9 4.8 5.0 4.6 5.5 4.7 5.4 5.2 6.4

RL

8

4.6 4.8 4.3 4.1 5.3 3. 4.8 5.0 6.1

HL

3

2.4 2.4 2.1 2.4 2.1 2. 2.6 2.5 4.0

ENL

SL

2.6 2.6 2.4 2.6 2.5 2.6 2.8 2.6 2.9

1.4 1.3 1.4 1.5 1.4 1.4 1.7 1.7 3.2

IND

3

3.6 3.3 3.2 3.1 3. 3.6 3.4 3.3 5.0

IOD

7

2.8 3.0 2.9 3.1 2.9 2. 3.0 3.1 4.1

ED

1 2 .0

7.2 6.4 6.4 6.9 7. 6.9 7.4 7.

11

HDL

3

8.6 8.1 8.0 7.7 8. 8.0 8.5 8.9

HW

11.8

9

23.5 23.5 24.2 22. 23.3 22.3 25.2 25.4 32.9

SUL

24.7 23.7 24.4 24.2 24.5 22.8 26.3 26.0 33.7

SVL

Taxon

us

H. H. hutsebauti H. hutsebauti H. hutsebauti H. hutsebauti H. hutsebauti H. hutsebauti H. hutsebauti H. hutsebauti H. robust

Voucher ID

CG15_154 CG15_147 CG15_150 CG15_151 CG15_153 CG15_156 CG15_157 CG15_160 ZMUC_771175

140