Adaptations of the Reed Frog Hyperolius Yiridibayus (Amphibia: Anura: Hyperoliidae) to Its Arid Environment

Total Page:16

File Type:pdf, Size:1020Kb

Adaptations of the Reed Frog Hyperolius Yiridibayus (Amphibia: Anura: Hyperoliidae) to Its Arid Environment J Comp Physiol B (1992) 162:314-326 Joumalof " Biochemical, Compa rat lYe :~:~:';'n­ Physiology B =Iogy © Springer-Verlag 1992 Adaptations of the reed frog Hyperolius yiridiBayus (Amphibia: Anura: Hyperoliidae) to its arid environment VI. The iridophores in the skin as radiation reflectors F. Kobelt and K.E. Linsenmair* Zoologisches Institut HI, Biozentrum, Am Hubland, W-8700 Wiirzburg, FRG Accepted November 26, 1991 Summary. Hyperolius viridiflavus possesses one complete Introduction layer ofiridophores in the stratum spongiosum of its skin at about 8 days after metamorphosis. The high reflec­ Members of the "super" species Hyperolius viridiflavus tance of this thin layer is almost certainly the result of (Schi0tz 1971) inhabit seasonally very hot and dry Afri­ multilayer interference reflection. In order to reflect a can savannas. During dry seasons, these small reed frogs mean of about 35% of the incident radiation across a aestivate unhidden mostly on dry plants. Some aspects spectrum of 300-2900 nm only 30 layers of well-arranged of their water and energy economy and of nitrogen me­ crystals are required, resulting in a layer 10.5 ~m thick. tabolism have been reported in Geise and Linsenmair These theoretical values are in good agreement with (1986, 1988), Schmuck and Linsenmair (1988) and the actual mean diameter of single iridophores Schmuck et al. (1988). (15.0 ± 3.0 ~m), the number of stacked platelets (40-100) As indicated by the "climate space" parameters (Gates and the measured reflectance of one complete layer of 1980), in dry seasons a skin reflectance higher than 0.7 these cells (32.2 ± 2.3 %). Iridescence colours typical of is vital during the hottest hours around noon; frogs are multilayer interference reflectors were seen after severe exposed to a heavy solar radiation load and air tem­ dehydration. The skin colour turned from white (0-10% peratures between 38°C and 43 °C (Kobelt and Linsen­ weight loss) through a copper-like iridescence (10-25% mair 1986). During acclimatization to dry season con­ weight loss) to green iridescence (25--42%). In dry season ditions a very conspicuous change in the wet-adapted, state, H. viridiflavus needs a much higher reflectance to yellow-brownish colour pattern of juvenile frogs can be cope with the problems of high solar radiation load seen. Skin colour is brownish-white or grey at air tem­ during long periods with severe dehydration stress. Dry­ peratures below 35 cc and becomes much paler at air adapted skin contains about 4-6 layers of iridophores. temperatures over 35-37 cc. As acclimatization pro­ The measured reflectance (up to 60% across the solar gresses this colour approaches brilliant white. These spectrum) of this thick layer (over 60 /-lm) is not in keep­ changes are accompanied by a thickening of the layer of ing with the results obtained by applying the multilayer light-reflecting iridophores (Bagnara 1976) in most parts interference theory. Light, scattered independently of of the skin from 15 /-lm up to 80 /-lm (Ko belt and Linsen­ wavelength from disordered crystals, superimposes on mair 1986) and a corresponding increase in the amount the multilayer-induced spectral reflectance. The initial of skin-deposited purines (Schmuck et al. 1988). parallel shift of the multi layer curves with increasing Even as long as a century ago it was assumed that light thickness and the almost constant ("white") reflectance interference was involved in the reflectance of the irido­ of layers exceeding 60 /-lm clearly point to a changing phores ["Interferenzzellen": Biedermann (1892); van physical basis with increasing layer thickness. Rynberk (1906)]. Denton (1970), in work on the irides­ cence colours of fish scales, and Land (1966, 1972) in Key words: Arid environment - Aestivation - Irido­ studies on the eyes of the scallop Pecten maximus, came phores - Skin reflectance - Frog, Hyperolius viridiflavus to the conclusion that iridophores in general might be taeniatus multilayer interference reflectors [see also Rohrlich and Porter (1972), Menter et al. (1979) and Frost and Robin­ son (1984)]. Huxley (1966) developed a method to cal­ culate the reflectance of these biological structures. Some morphological aspects of dermal anuran iridophores re­ * To whom offprint requests should be sent semble the structure of Huxley's reflectors and hence F. Kobelt and K.E. Linsenmair: Adaptations of H. viridiflavus to its arid environment 315 suggest that the reflectance of the anuran skin might be The multilayer interference theory explained by this theory. Many platelets in the iridophores are arranged in The multilayer interference theory for biological systems stacks of 3-20 crystals. In recently metamorphosed wet­ has been developed by Huxley (1966) and Land (1966). adapted H. viridiflavus these stacks are distributed in an A detailed description of this theory is given in Appen­ irregular mode. In dry-adapted H. viridiflavus, however, dix B. The reflectance (R) of a multilayer interference a significant alignment is evident, many stacks being structure is given by Eqs. 9a and 9b in Appendix B. From arranged more or less parallel to the surface (Kobelt and this theory the spectral distribution of the reflected light Linsenmair 1986). However, the reflectance of multi layer can be calculated. Comparing them with the measured structures is wavelength selective, and if iridophores are spectral distribution of the light reflected from the skin pure multilayer interference reflectors their reflected light may provide clues to whether the reflecting layer has the should be coloured and not white. physical properties of a multilayer interference structure. Some investigators described three groups of irido­ phores in fishes (Ballowitz 1912; Connolly 1925; Becher 1929; Foster 1933, 1937; Odiorne 1933; Shanes and Nigrelli 1941; Fries 1942, 1958). One group of cells, Materials and methods leucophores, is situated in the dermis above the bony scale and reflects white light due to scattering of poorly Specimen treatment. Frogs were kept in terraria at 28/24 QC, ordered platelets. Two other groups, iridophores, one in 70/100% relative humidity (day/night) and a light regime of the dermis beneath the bony scale and another one still IlL: 13D to simulate "wet season conditions" (spraying of water and feeding daily) and "transitional conditions" (spraying and deeper and above the muscles, are iridescent due to paral­ feeding three times a week). "Dry season conditons" were simulated lel-ordered platelets (Denton 1970). These findings sug­ in an incubator at 30/20 QC, 30/70% relative humidity and IlL: 13D gest that two possible physical mechanisms are involved without feeding. Detailed descriptions of specimen treatment of in the high reflectance of light via iridophores: light H. v. taeniatus for inducing wet and dry season physiological states scattering and multilayer interference. in the laboratory have been presented elsewhere (Geise and Linsen­ Both physical mechanisms of reflectance provide ad­ mair 1988; Schmuck and Linsenmair 1988; Schmuck et aI. 1988). vantages and disadvantages: (1) Multilayer interference White reflectance measurements. For these measurements freshly structures can be manufactured very fast and at low transformed froglets were maintained under wet season conditions energy and material costs. Layers of not more than for 2 days and divided into two experimental groups. The amount 10 ~m are highly efficient light reflectors in a given spec­ of guanine in the skin of these froglets is less variable than in the tral range but are not very efficient across the whole solar juvenile frogs of group 3 which may have access to conditions spectrum. (2) Structures that scatter light independent of inducing dry season acclimatization. wavelength are much more effective reflectors across the Group 1: 14 froglets were kept wet-acclimatized by hydrating them every 24 h for 60 min with 500 III double-distilled water. whole solar spectrum but need much more energy and Group 2: 20 froglets were dry-acclimatized. 500 III of double­ material. This investigation was performed to decide distilled water was supplied for 15 min only when water losses which physical model best explains the high skin reflec­ exceeded 30-35% of body weight. All froglets needed a first water tance in fully dry-adapted H. viridiflavus. supply between day 10 and 12. A second supply had to be given with great individual differences mostly between day 30 and day 50 (90% of the froglets). Only about 10% received a second supply before day 30. The Kubelka-M unk-Theory Spectral reflectance measurements. For these measurements wet­ acclimatized juvenile H. v. taeniatus were used (age 2-4 months after Scattering of white light can be calculated according to metamorphosis). These frogs possess 1-2 complete reflecting layers the Kubelka-Munk-Theory. A summary of theories deal­ of dermal iridophores. Thus, errors due to iridophore-independent absorption of light deep in the body of the animal, resulting from ing with the optical characteristics of powder layers, in gaps in the reflecting layer which may be present in freshly trans­ which the layer is considered a continuum, has been formed froglets, are negligible. given by Kortiim (1966). (A detailed description of the Group 3: 16 juvenile frogs were maintained under transition state model and definitions of symbols are given in Appen­ conditions for 2 weeks and kept under dry season conditions after­ dix A). When S is estimated from animal data and Ro is wards. Measurement started at the beginning of the dry season measured, the thickness d of a scattering layer in the skin treatment. can be calculated from: Group 4: Ten juvenile frogs were acclimatized and kept for 2-3 months under dry season conditions before measurement. During 1 ) l-R'R this period they developed 4--6 iridophore layers, thereby matching S . d· -- R = In 0 w (4) ( Rw w Ro animals which had been collected in the field after spending a dry 1-- season of comparable duration.
Recommended publications
  • Amphibian Diversity in Shimba Hills National Reserve, Kenya: a Comprehensive List of Specimens and Species
    Journal of East African Natural History 106(1): 19–46 (2017) AMPHIBIAN DIVERSITY IN SHIMBA HILLS NATIONAL RESERVE, KENYA: A COMPREHENSIVE LIST OF SPECIMENS AND SPECIES Beryl A. Bwong Biogeography Research Group, Department of Environmental Sciences University of Basel, 4056 Basel , Switzerland & Herpetology Section, Zoology Department, National Museums of Kenya P.O Box 40658, 00100 Nairobi, Kenya [email protected] Joash O. Nyamache, Patrick K. Malonza, Domnick V. Wasonga, Jacob M. Ngwava Herpetology Section, Zoology Department, National Museums of Kenya P.O Box 40658, 00100 Nairobi, Kenya [email protected]; [email protected]; [email protected], [email protected] Christopher D. Barratt, Peter Nagel Biogeography Research Group, Department of Environmental Sciences University of Basel, 4056 Basel , Switzerland [email protected]; [email protected] Simon P. Loader Biogeography Research Group, Department of Environmental Sciences University of Basel, 4056 Basel , Switzerland & Life Sciences, The Natural History Museum, London SW7 5BD, UK [email protected] ABSTRACT We present the first annotated amphibian checklist of Shimba Hills National Reserve (SHNR). The list comprises of 30 currently known amphibians (28 anurans and two caecilians), which includes 11 families and 15 genera. In addition, individual records per species, distribution in the reserve and brief remarks about the species are presented. The checklist is based on information from museum collections, field guides, unpublished reports and newly collected field data. We are able to confirm the presence of two Eastern Afromontane species in the SHNR: Scolecomorphus cf. vittatus and Callulina cf. kreffti. The latter has not been recorded since the original collection of a single specimen over 50 years ago.
    [Show full text]
  • Congolius, a New Genus of African Reed Frog Endemic to The
    www.nature.com/scientificreports OPEN Congolius, a new genus of African reed frog endemic to the central Congo: A potential case of convergent evolution Tadeáš Nečas1,2*, Gabriel Badjedjea3, Michal Vopálenský4 & Václav Gvoždík1,5* The reed frog genus Hyperolius (Afrobatrachia, Hyperoliidae) is a speciose genus containing over 140 species of mostly small to medium-sized frogs distributed in sub-Saharan Africa. Its high level of colour polymorphism, together with in anurans relatively rare sexual dichromatism, make systematic studies more difcult. As a result, the knowledge of the diversity and taxonomy of this genus is still limited. Hyperolius robustus known only from a handful of localities in rain forests of the central Congo Basin is one of the least known species. Here, we have used molecular methods for the frst time to study the phylogenetic position of this taxon, accompanied by an analysis of phenotype based on external (morphometric) and internal (osteological) morphological characters. Our phylogenetic results undoubtedly placed H. robustus out of Hyperolius into a common clade with sympatric Cryptothylax and West African Morerella. To prevent the uncovered paraphyly, we place H. robustus into a new genus, Congolius. The review of all available data suggests that the new genus is endemic to the central Congolian lowland rain forests. The analysis of phenotype underlined morphological similarity of the new genus to some Hyperolius species. This uniformity of body shape (including cranial shape) indicates that the two genera have either retained ancestral morphology or evolved through convergent evolution under similar ecological pressures in the African rain forests. African reed frogs, Hyperoliidae Laurent, 1943, are presently encompassing almost 230 species in 17 genera.
    [Show full text]
  • Taxonomy of the Super-Cryptic Hyperolius Nasutus Group of Long Reed Frogs of Africa (Anura: Hyperoliidae), with Descriptions of Six New Species
    TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 3620 (3): 301–350 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3620.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:03B8D237-7C7D-4E79-A020-4305ACF119B7 Taxonomy of the super-cryptic Hyperolius nasutus group of long reed frogs of Africa (Anura: Hyperoliidae), with descriptions of six new species A. CHANNING1,11, A. HILLERS2,3, S. LÖTTERS4, M.-O. RÖDEL2, S. SCHICK4, W. CONRADIE5, D. RÖDDER6, V. M ERC URIO 2, P. WAGNER7, J.M. DEHLING8, L.H. DU PREEZ9, J. KIELGAST10 & M. BURGER1 1Biodiversity and Conservation Biology Department, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa 2Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Herpetology, Invalidenstr. 43, 10115 Berlin, Germany 3Across the River – a Transboundary Peace Park for Sierra Leone and Liberia, The Royal Society for the Protection of Birds, 164 Dama Road, Kenema, Sierra Leone 4Trier University, Biogeography Department, Universitätsring 15, 54295 Trier, Germany 5Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood, Port Elizabeth 6013, South Africa 6Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, D-53113 Bonn, Germany 7Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, USA 8Institut für Integrierte Naturwissenschaften, Abteilung Biologie, Universität Koblenz-Landau, Universitätsstraße 1, 56070 Koblenz, Germany 9School of Environmental; Sciences and Development, North-West University, Private Bag X6001, Potchefstroom 2531, South Africa 10Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark 11Corresponding author.
    [Show full text]
  • On the Identities of Two Enigmatic Reed Frog Taxa from South Sudan, Rappia Papyri Werner , 1908 and Rappia Pachyderma Werner , 1908 (Anura: Hyperoliidae)
    modified_Dehling_on the identities of two enigmatic frog taxa from South Sudan_HerPeToZoA.qxd 28.07.2015 14:59 Seite 1 HerPeToZoA 28 (1/2): 39 - 47 39 Wien, 30. Juli 2015 on the identities of two enigmatic reed frog taxa from South Sudan, Rappia papyri Werner , 1908 and Rappia pachyderma Werner , 1908 (Anura: Hyperoliidae) über die Identitäten zweier rätselhafter riedfroschtaxa aus dem Südsudan, Rappia papyri Werner , 1908 und Rappia pachyderma Werner , 1908 (Anura: Hyperoliidae) J. m AxImIlIAn DeHlInG KUrZFASSUnG Die Identitäten zweier riedfroschtaxa werden neubewertet. es wird gezeigt, daß Rappia papyri Werner , 1908 eine eigenständige und valide Art in der H.-nasutus -Gruppe der Gattung Hyperolius ist. Rappia pachyderma Werner , 1908 wird aus der Synonymie mit Hyperolius viridiflavus (DUmérIl & B IBron , 1841) herausgenommen und in die Synonymie von H. papyri gestellt. ABSTrACT The identities of two reed frog taxa are re-assessed. Rappia papyri Werner , 1908 is shown to represent a distinct and valid species in the H. nasutus group of the genus Hyperolius . Rappia pachyderma Werner , 1908 is removed from the synonymy of Hyperolius viridiflavus (DUmérIl & B IBron , 1841) and referred to the synonymy of H. papyri . KeY WorDS Amphibia: Anura: Hyperoliidae; Rappia papyri , Rappia pachyderma , Hyperolius nasutus , Hyperolius viridi - flavus , synonymy, systematics, taxonomy, Anglo-egyptian Sudan, South Sudan, Uganda, ethiopia InTroDUCTIon In 1905, Franz Werner conducted a had “not been able to find among the more zoological expedition to the Anglo-egypt - than fifty described species of this large and ian Sudan (“Ägyptischen Sudan”) and the difficult genus the three Sudanese represen - north of the British Protectorate of Uganda tatives” and he had “to assume that they (“nord-Uganda”).
    [Show full text]
  • Miocene Plio-Pleistocene Oligocene Eocene Paleocene Cretaceous
    Phrynomantis microps Hemisus sudanensis Hemisus marmoratus Balebreviceps hillmani Breviceps mossambicus Breviceps adspersus Breviceps montanus Breviceps fuscus Breviceps gibbosus Breviceps macrops Breviceps namaquensis Breviceps branchi Spelaeophryne methneri Probreviceps loveridgei Probreviceps uluguruensis Probreviceps durirostris Probreviceps sp. Nguru Probreviceps sp. Rubeho Probreviceps sp. Kigogo Probreviceps sp. Udzungwa Probreviceps rungwensis Probreviceps macrodactylus Callulina shengena Callulina laphami Callulina dawida Callulina kanga Callulina sp lowland Callulina sp Rubeho Callulina hanseni Callulina meteora Callulina stanleyi Callulina kisiwamsitu Callulina kreffti Nyctibates corrugatus Scotobleps gabonicus Astylosternus laticephalus Astylosternus occidentalis Trichobatrachus robustus Astylosternus diadematus Astylosternus schioetzi Astylosternus batesi Leptodactylodon mertensi Leptodactylodon erythrogaster Leptodactylodon perreti Leptodactylodon axillaris Leptodactylodon polyacanthus Leptodactylodon bicolor Leptodactylodon bueanus Leptodactylodon ornatus Leptodactylodon boulengeri Leptodactylodon ventrimarmoratus Leptodactylodon ovatus Leptopelis parkeri Leptopelis macrotis Leptopelis millsoni Leptopelis rufus Leptopelis argenteus Leptopelis yaldeni Leptopelis vannutellii Leptopelis susanae Leptopelis gramineus Leptopelis kivuensis Leptopelis ocellatus Leptopelis spiritusnoctis Leptopelis viridis Leptopelis aubryi Leptopelis natalensis Leptopelis palmatus Leptopelis calcaratus Leptopelis brevirostris Leptopelis notatus
    [Show full text]
  • Addis Ababa University Science Faculty School of Graduate Studies Department of Environmental Science Zoology Module
    ADDIS ABABA UNIVERSITY SCIENCE FACULTY SCHOOL OF GRADUATE STUDIES DEPARTMENT OF ENVIRONMENTAL SCIENCE ZOOLOGY MODULE AN INVESTIGATION OF AMPHIBIAN DIVERSITY AND ABUNDANCE IN RELATION TO ENVIRONMENTAL CHANGE IN HARENNA FOREST, BALE MOUNTAINS NATIONAL PARK, ETHIOPIA A Thesis Submitted to the School of Graduate Studies of Addis Ababa University, in Partial Fulfillment of the Requirements for the Degree of Master of Environmental Science By Roman Kassahun Advisors: Professor Samy A.Saber, A.A.U. Ethiopia Dr. Simon Loader, Institute of Biogeography, Basel, Switzerland July, 2009 ADDIS ABABA UNIVERSITY SCHOOL OF GRADUATE STUDIES An investigation of Amphibian diversity and abundance in relation to environmental change in Harenna Forest, Bale Mountains National Park. By Roman Kassahun A Thesis presented to the School of Graduate Studies of Addis Ababa University, in partial fulfillment of the requirements for the Degree of Master of Environmental Science Approved by Examining Board: _______________________ _____________ _____________________________ ________________ _____________________________ ________________ ______________________________ ________________ Acknowledgement I owe my sincere gratitude to my adviser Prof Samy A. Saber for his advice and encouragement prior to the start of research work and for his enormously consistent and valuable guidance and advice without which this research project would not have been realized. I am also grateful to my Co-advisor Dr. Simon Loader from the University of Basel, for the logistical support and great help during the wet season of the project, for his guidance in the identifications of the specimens and for giving me this opportunity in the first place. My gratitude also goes to the Ethiopian Wild Life Conservation Authority (EWCA) for allowing me to pursue the M.S.C.
    [Show full text]
  • Protected Area Management Plan Development - SAPO NATIONAL PARK
    Technical Assistance Report Protected Area Management Plan Development - SAPO NATIONAL PARK - Sapo National Park -Vision Statement By the year 2010, a fully restored biodiversity, and well-maintained, properly managed Sapo National Park, with increased public understanding and acceptance, and improved quality of life in communities surrounding the Park. A Cooperative Accomplishment of USDA Forest Service, Forestry Development Authority and Conservation International Steve Anderson and Dennis Gordon- USDA Forest Service May 29, 2005 to June 17, 2005 - 1 - USDA Forest Service, Forestry Development Authority and Conservation International Protected Area Development Management Plan Development Technical Assistance Report Steve Anderson and Dennis Gordon 17 June 2005 Goal Provide support to the FDA, CI and FFI to review and update the Sapo NP management plan, establish a management plan template, develop a program of activities for implementing the plan, and train FDA staff in developing future management plans. Summary Week 1 – Arrived in Monrovia on 29 May and met with Forestry Development Authority (FDA) staff and our two counterpart hosts, Theo Freeman and Morris Kamara, heads of the Wildlife Conservation and Protected Area Management and Protected Area Management respectively. We decided to concentrate on the immediate implementation needs for Sapo NP rather than a revision of existing management plan. The four of us, along with Tyler Christie of Conservation International (CI), worked in the CI office on the following topics: FDA Immediate
    [Show full text]
  • Water Relations of the Burrowing Sandhill Frog, Arenophryne Rotunda (Myobatrachidae)
    J Comp Physiol B (2005) DOI 10.1007/s00360-005-0051-x ORIGINAL PAPER V. A. Cartledge Æ P. C. Withers Æ G. G. Thompson K. A. McMaster Water relations of the burrowing sandhill frog, Arenophryne rotunda (Myobatrachidae) Received: 24 July 2005 / Revised: 17 October 2005 / Accepted: 26 October 2005 Ó Springer-Verlag 2005 Abstract Arenophryne rotunda is a small (2–8 g) terres- Keywords Arid Æ Dehydration Æ Osmolality Æ trial frog that inhabits the coastal sand dunes of central Rehydration Æ Soil water potential Western Australia. While sand burrowing is a strategy employed by many frog species inhabiting Australia’s Abbreviations EWL: Evaporative water loss semi-arid and arid zones, A. rotunda is unique among burrowing species because it lives independently of free water and can be found nocturnally active on the dune Introduction surface for relatively extended periods. Consequently, we examined the physiological factors that enable this Despite the low and irregular rainfall, frogs are found in unique frog to maintain water balance. A. rotunda was most Australian desert regions and are often the most not found to have any special adaptation to reduce EWL abundant vertebrate species in a given area (Main 1968; (being equivalent to a free water surface) or rehydrate Read 1999). Most frogs inhabiting Australia’s semi-arid from water (having the lowest rehydration rate mea- and arid regions burrow into the soil to reduce desic- sured for 15 Western Australian frog species), but it was cation. Some of these burrowing frogs (Neobatrachus able to maintain water balance in sand of very low and Cyclorana spp.) form a cocoon by accumulating moisture (1–2%).
    [Show full text]
  • 3Systematics and Diversity of Extant Amphibians
    Systematics and Diversity of 3 Extant Amphibians he three extant lissamphibian lineages (hereafter amples of classic systematics papers. We present widely referred to by the more common term amphibians) used common names of groups in addition to scientifi c Tare descendants of a common ancestor that lived names, noting also that herpetologists colloquially refer during (or soon after) the Late Carboniferous. Since the to most clades by their scientifi c name (e.g., ranids, am- three lineages diverged, each has evolved unique fea- bystomatids, typhlonectids). tures that defi ne the group; however, salamanders, frogs, A total of 7,303 species of amphibians are recognized and caecelians also share many traits that are evidence and new species—primarily tropical frogs and salaman- of their common ancestry. Two of the most defi nitive of ders—continue to be described. Frogs are far more di- these traits are: verse than salamanders and caecelians combined; more than 6,400 (~88%) of extant amphibian species are frogs, 1. Nearly all amphibians have complex life histories. almost 25% of which have been described in the past Most species undergo metamorphosis from an 15 years. Salamanders comprise more than 660 species, aquatic larva to a terrestrial adult, and even spe- and there are 200 species of caecilians. Amphibian diver- cies that lay terrestrial eggs require moist nest sity is not evenly distributed within families. For example, sites to prevent desiccation. Thus, regardless of more than 65% of extant salamanders are in the family the habitat of the adult, all species of amphibians Plethodontidae, and more than 50% of all frogs are in just are fundamentally tied to water.
    [Show full text]
  • First Characterization of Toxic Alkaloids and Volatile Organic Compounds
    Gonzalez et al. Frontiers in Zoology (2021) 18:39 https://doi.org/10.1186/s12983-021-00420-1 RESEARCH Open Access First characterization of toxic alkaloids and volatile organic compounds (VOCs) in the cryptic dendrobatid Silverstoneia punctiventris Mabel Gonzalez1* , Pablo Palacios-Rodriguez2 , Jack Hernandez-Restrepo2 , Marco González-Santoro2 , Adolfo Amézquita2, Andrés E. Brunetti3,4 and Chiara Carazzone1* Abstract Background: Poison frogs are known for the outstanding diversity of alkaloid-based chemical defences with promising therapeutic applications. However, current knowledge about chemical defences in Dendrobatoidea superfamily has two sources of bias. First, cryptic, brown-colored species have been neglected in comparison to those conspicuously colored, and second, there has been little interest in characterizing metabolites other than alkaloids mediating defensive functions. In an effort to contribute to fill the gap of knowledge about cryptic species and broadening the spectrum of compounds analyzed we have applied head-space solid phase microextraction coupled to gas chromatography and mass spectrometry (HS-SPME/GC-MS) for extracting amphibian alkaloids and volatile organic compounds (VOCs) from Silverstoneia punctiventris. Results: Using the skin from 8 specimens in 4 biological replicates we have found 33 different compounds. Twenty of them were classified as VOCs into 15 chemical classes including alkanes, alcohols, carbonyl compounds, methylpyridines, benzothiazoles, N-alkylpyrrolidines, pyrazines, and sesquiterpenoids, some of which were previously reported as repellents, defence compounds or defence pheromones in other organisms, and as sex pheromones in a treefrog. Interestingly, six of the remaining compounds were identified as alkaloids previously reported in other toxic/unpalatable dendrobatid frogs. Conclusions: This is the first report of alkaloids and VOCs found in the Silverstoneia genus, which has been assumed for decades as non-chemically defended.
    [Show full text]
  • BOA5.1-2 Frog Biology, Taxonomy and Biodiversity
    The Biology of Amphibians Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) Phyllomedusidae: Agalychnis annae 5.1-2: Frog Biology, Taxonomy & Biodiversity Part 2, Neobatrachia Hylidae: Dendropsophus ebraccatus CLassification of Order: Anura † Triadobatrachus Ascaphidae Leiopelmatidae Bombinatoridae Alytidae (Discoglossidae) Pipidae Rhynophrynidae Scaphiopopidae Pelodytidae Megophryidae Pelobatidae Heleophrynidae Nasikabatrachidae Sooglossidae Calyptocephalellidae Myobatrachidae Alsodidae Batrachylidae Bufonidae Ceratophryidae Cycloramphidae Hemiphractidae Hylodidae Leptodactylidae Odontophrynidae Rhinodermatidae Telmatobiidae Allophrynidae Centrolenidae Hylidae Dendrobatidae Brachycephalidae Ceuthomantidae Craugastoridae Eleutherodactylidae Strabomantidae Arthroleptidae Hyperoliidae Breviceptidae Hemisotidae Microhylidae Ceratobatrachidae Conrauidae Micrixalidae Nyctibatrachidae Petropedetidae Phrynobatrachidae Ptychadenidae Ranidae Ranixalidae Dicroglossidae Pyxicephalidae Rhacophoridae Mantellidae A B † 3 † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus 2 Anura Sub Orders Super Families (including Apoda Urodela Prosalirus †) 1 Archaeobatrachia A Hyloidea 2 Mesobatrachia B Ranoidea 1 Anura Salientia 3 Neobatrachia Batrachia Lissamphibia *Gerobatrachus may be the sister taxon Salientia Temnospondyls
    [Show full text]
  • Herpetological Survey in the Volta Region, Eastern Ghana Mark-Oliver Rödel1 and Alex Cudjoe Agyei2
    Herpetological survey in the Volta region, Eastern Ghana Mark-Oliver Rödel1 and Alex Cudjoe Agyei2 1Department of Animal Ecology and Tropical Biology (Zoology III); Biocenter of the University; Am Hubland; D-97074 Würzburg, Germany; 2Wildlife Division, P.B. M239, Accra, Ghana; [email protected] Herpetological survey in the Volta region, Eastern Ghana Mark-Oliver RÖDEL1 and Alex Cudjoe AGYEI2 1Department of Animal Ecology and Tropical Biology (Zoology III); Biocenter of the University; Am Hubland; D-97074 Würzburg, Germany; 2Wildlife Division, P.B. M239, Accra, Ghana; [email protected] Contents 1 Introduction ......................................................................................................................... 2 2 Study sites ........................................................................................................................... 3 2.1 Wli and Liati-Wote Waterfalls Region, Southeast of Hohoe....................................... 4 2.2 Kyabobo National Park, Shiare and Nkwanta.............................................................. 4 2.3 Apesokubi area and Northern Lake Volta.................................................................... 4 3 Sampling methods and sampling effort............................................................................... 5 4 Sampling efficiency............................................................................................................. 6 5 Species account: amphibians..............................................................................................
    [Show full text]