Overview of Software Development Environments
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Software Development Career Pathway
Career Exploration Guide Software Development Career Pathway Information Technology Career Cluster For more information about NYC Career and Technical Education, visit: www.cte.nyc Summer 2018 Getting Started What is software? What Types of Software Can You Develop? Computers and other smart devices are made up of Software includes operating systems—like Windows, Web applications are websites that allow users to contact management system, and PeopleSoft, a hardware and software. Hardware includes all of the Apple, and Google Android—and the applications check email, share documents, and shop online, human resources information system. physical parts of a device, like the power supply, that run on them— like word processors and games. among other things. Users access them with a Mobile applications are programs that can be data storage, and microprocessors. Software contains Software applications can be run directly from a connection to the Internet through a web browser accessed directly through mobile devices like smart instructions that are stored and run by the hardware. device or through a connection to the Internet. like Firefox, Chrome, or Safari. Web browsers are phones and tablets. Many mobile applications have Other names for software are programs or applications. the platforms people use to find, retrieve, and web-based counterparts. display information online. Web browsers are applications too. Desktop applications are programs that are stored on and accessed from a computer or laptop, like Enterprise software are off-the-shelf applications What is Software Development? word processors and spreadsheets. that are customized to the needs of businesses. Popular examples include Salesforce, a customer Software development is the design and creation of Quality Testers test the application to make sure software and is usually done by a team of people. -
Object Oriented Programming
No. 52 March-A pril'1990 $3.95 T H E M TEe H CAL J 0 URN A L COPIA Object Oriented Programming First it was BASIC, then it was structures, now it's objects. C++ afi<;ionados feel, of course, that objects are so powerful, so encompassing that anything could be so defined. I hope they're not placing bets, because if they are, money's no object. C++ 2.0 page 8 An objective view of the newest C++. Training A Neural Network Now that you have a neural network what do you do with it? Part two of a fascinating series. Debugging C page 21 Pointers Using MEM Keep C fro111 (C)rashing your system. An AT Keyboard Interface Use an AT keyboard with your latest project. And More ... Understanding Logic Families EPROM Programming Speeding Up Your AT Keyboard ((CHAOS MADE TO ORDER~ Explore the Magnificent and Infinite World of Fractals with FRAC LS™ AN ELECTRONIC KALEIDOSCOPE OF NATURES GEOMETRYTM With FracTools, you can modify and play with any of the included images, or easily create new ones by marking a region in an existing image or entering the coordinates directly. Filter out areas of the display, change colors in any area, and animate the fractal to create gorgeous and mesmerizing images. Special effects include Strobe, Kaleidoscope, Stained Glass, Horizontal, Vertical and Diagonal Panning, and Mouse Movies. The most spectacular application is the creation of self-running Slide Shows. Include any PCX file from any of the popular "paint" programs. FracTools also includes a Slide Show Programming Language, to bring a higher degree of control to your shows. -
Software Tools: a Building Block Approach
SOFTWARE TOOLS: A BUILDING BLOCK APPROACH NBS Special Publication 500-14 U.S. DEPARTMENT OF COMMERCE National Bureau of Standards ] NATIONAL BUREAU OF STANDARDS The National Bureau of Standards^ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to pro- mote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the ! Office of Experimental Technology Incentives Program. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consist- ent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essen- tial services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, and the following center and divisions: Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Center for Radiation Research — Lab- oratory Astrophysics^ — Cryogenics^ — Electromagnetics^ — Time and Frequency*. THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measure- ment, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational insti- tutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. -
Employee Management System
School of Mathematics and Systems Engineering Reports from MSI - Rapporter från MSI Employee Management System Kancho Dimitrov Kanchev Dec MSI Report 06170 2006 Växjö University ISSN 1650-2647 SE-351 95 VÄXJÖ ISRN VXU/MSI/DA/E/--06170/--SE Abstract This report includes a development presentation of an information system for managing the staff data within a small company or organization. The system as such as it has been developed is called Employee Management System. It consists of functionally related GUI (application program) and database. The choice of the programming tools is individual and particular. Keywords Information system, Database system, DBMS, parent table, child table, table fields, primary key, foreign key, relationship, sql queries, objects, classes, controls. - 2 - Contents 1. Introduction…………………………………………………………4 1.1 Background……………………………………………………....................4 1.2 Problem statement ...…………………………………………………….....5 1.3 Problem discussion………………………………………………………....5 1.4 Report Overview…………………………………………………………...5 2. Problem’s solution……………………………………………….....6 2.1 Method...…………………………………………………………………...6 2.2 Programming environments………………………………………………..7 2.3 Database analyzing, design and implementation…………………………10 2.4 Program’s structure analyzing and GUI constructing…………………….12 2.5 Database connections and code implementation………………………….14 2.5.1 Retrieving data from the database………………………………....19 2.5.2 Saving data into the database……………………………………...22 2.5.3 Updating records into the database………………………………..24 2.5.4 Deleting data from the database…………………………………...26 3. Conclusion………………………………………………………....27 4. References………………………………………………………...28 Appendix A: Programming environments and database content….29 Appendix B: Program’s structure and code Implementation……...35 Appendix C: Test Performance…………………………………....56 - 3 - 1. Introduction This chapter gives a brief theoretical preview upon the database information systems and goes through the essence of the problem that should be resolved. -
2015 State of the Software Supply Chain Report: HIDDEN SPEED BUMPS on the ROAD to “CONTINUOUS”
2015 State of the Software Supply Chain Report: HIDDEN SPEED BUMPS ON THE ROAD TO “CONTINUOUS” Foreword by Gene Kim, Gareth Rushgrove, John Willis, Jez Humble, and Nigel Simpson RESEARCH REPORT TABLE OF CONTENTS Foreword . 3 Introduction . 5 Why All Modern Software Development Relies on a Software Supply Chain . 6 SUPPLIERS: Open Source Projects . 7 Public Repositories (The Warehouses) . 8 Choosing the Best Suppliers (Sourcing) . .. 9 PARTS: Open Source Components . 12 Repository Management (Local Warehouses) . 15 MANUFACTURERS: Assembled Software Development . 19 Technical Debt: Assembly Line Inefficiencies . .. 21 FINISHED GOODS: Software Applications . 22 The Volume of Elective Re-work and Risk . 22 Software Bill of Materials . 23 Quality Controls: OWASP, PCI, FS-ISAC, U .S . Congress . 23 Lessons Learned from Traditional Manufacturing Supply Chains . 25 Automation: How To Improve Software Supply Chains . 26 Appendix . 28 Figure 1: The Volume and Size of the Global Software Supply Chain Figure 2: Target Benchmarks for Software Supply Chain Practices - Quality Control Figure 3: Target Benchmarks for Software Supply Chain Practices - Efficient Distribution Figure 4: Analysis of Components Used within Applications Figure 5: Multiple Versions of Parts Often Downloaded by the Largest Development Teams Figure 6: Volume of Defective Parts Used Figure 7: Comparison of Impact of Supply Chain Complexity on Prius versus Volt Figure 8: Efficient Sourcing Practices By Manufacturers 2015 State of the Software Supply Chain Report: Hidden Speed Bumps on the Road to “Continuous” Page 2 FOREWORD Gene Kim, Co-author of “The Phoenix Project: A Novel About IT, DevOps, and Helping Your Business Win” and upcoming “DevOps Cookbook” “Anyone who believes, as I do, that we can learn valuable lessons from manufacturing and supply chains on how to better manage technology work will love this report . -
Software Requirements Specification to Distribute Manufacturing Data
NIST Advanced Manufacturing Series 300-2 Software Requirements Specification to Distribute Manufacturing Data Thomas Hedberg, Jr. Moneer Helu Marcus Newrock This publication is available free of charge from: https://doi.org/10.6028/NIST.AMS.300-2 NIST Advanced Manufacturing Series 300-2 Software Requirements Specification to Distribute Manufacturing Data Thomas Hedberg, Jr. Moneer Helu Systems Integration Division Engineering Laboratory Marcus Newrock Office of Data and Informatics Material Measurement Laboratory This publication is available free of charge from: https://doi.org/10.6028/NIST.AMS.300-2 December 2017 U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary National Institute of Standards and Technology Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology SRS to Distribute Manufacturing Data Hedberg, Helu, and Newrock ______________________________________________________________________________________________________ Contents 1 Introduction 1 1.1 Purpose ...................................... 1 1.2 Disclaimer ..................................... 1 This publication is available free of charge from: https://doi.org/10.6028/NIST.AMS.300-2 1.3 Scope ....................................... 1 1.4 Acronyms and abbreviations ........................... 1 1.5 Verbal Forms ................................... 3 1.5.1 Must .................................... 3 1.5.2 Should ................................... 3 1.5.3 May .................................... 3 1.6 References .................................... -
The Evolution of Lisp
1 The Evolution of Lisp Guy L. Steele Jr. Richard P. Gabriel Thinking Machines Corporation Lucid, Inc. 245 First Street 707 Laurel Street Cambridge, Massachusetts 02142 Menlo Park, California 94025 Phone: (617) 234-2860 Phone: (415) 329-8400 FAX: (617) 243-4444 FAX: (415) 329-8480 E-mail: [email protected] E-mail: [email protected] Abstract Lisp is the world’s greatest programming language—or so its proponents think. The structure of Lisp makes it easy to extend the language or even to implement entirely new dialects without starting from scratch. Overall, the evolution of Lisp has been guided more by institutional rivalry, one-upsmanship, and the glee born of technical cleverness that is characteristic of the “hacker culture” than by sober assessments of technical requirements. Nevertheless this process has eventually produced both an industrial- strength programming language, messy but powerful, and a technically pure dialect, small but powerful, that is suitable for use by programming-language theoreticians. We pick up where McCarthy’s paper in the first HOPL conference left off. We trace the development chronologically from the era of the PDP-6, through the heyday of Interlisp and MacLisp, past the ascension and decline of special purpose Lisp machines, to the present era of standardization activities. We then examine the technical evolution of a few representative language features, including both some notable successes and some notable failures, that illuminate design issues that distinguish Lisp from other programming languages. We also discuss the use of Lisp as a laboratory for designing other programming languages. We conclude with some reflections on the forces that have driven the evolution of Lisp. -
College of Fine and Applied Arts Annual Meeting 5:00P.M.; Tuesday, April 5, 2011 Temple Buell Architecture Gallery, Architecture Building
COLLEGE OF FINE AND APPLIED ARTS ANNUAL MEETING 5:00P.M.; TUESDAY, APRIL 5, 2011 TEMPLE BUELL ARCHITECTURE GALLERY, ARCHITECTURE BUILDING AGENDA 1. Welcome: Robert Graves, Dean 2. Approval of April 5, 2010 draft Annual Meeting Minutes (ATTACHMENT A) 3. Administrative Reports and Dean’s Report 4. Action Items – need motion to approve (ATTACHMENT B) Nominations for Standing Committees a. Courses and Curricula b. Elections and Credentials c. Library 5. Unit Reports 6. Academic Professional Award for Excellence and Faculty Awards for Excellence (ATTACHMENT C) 7. College Summary Data (Available on FAA Web site after meeting) a. Sabbatical Requests (ATTACHMENT D) b. Dean’s Special Grant Awards (ATTACHMENT E) c. Creative Research Awards (ATTACHMENT F) d. Student Scholarships/Enrollment (ATTACHMENT G) e. Kate Neal Kinley Memorial Fellowship (ATTACHMENT H) f. Retirements (ATTACHMENT I) g. Notable Achievements (ATTACHMENT J) h. College Committee Reports (ATTACHMENT K) 8. Other Business and Open Discussion 9. Adjournment Please join your colleagues for refreshments and conversation after the meeting in the Temple Buell Architecture Gallery, Architecture Building ATTACHMENT A ANNUAL MEETING MINUTES COLLEGE OF FINE AND APPLIED ARTS 5:00P.M.; MONDAY, APRIL 5, 2010 FESTIVAL FOYER, KRANNERT CENTER FOR THE PERFORMING ARTS 1. Welcome: Robert Graves, Dean Dean Robert Graves described the difficulties that the College faced in AY 2009-2010. Even during the past five years, when the economy was in better shape than it is now, it had become increasingly clear that the College did not have funds or personnel sufficient to accomplish comfortably all the activities it currently undertakes. In view of these challenges, the College leadership began a process of re- examination in an effort to find economies of scale, explore new collaborations, and spur creative thinking and cooperation. -
How Era Develops Software
How eRA Develops Software Executive Summary: In an organized, iterative, carefully documented manner, eRA has built a dense infrastructure of methodology, standards, and procedures to underpin the development of a reliable enterprise system for electronic research administration. For software development and quality assurance, NIH has relied thus far solely on contractors. Now the retirement of the legacy IMPAC system is freeing up NIH programmers to join the development team. eRA’s methodology combines the classical Waterfall method and the prototype-oriented Spiral method. It proceeds in three phases: 1. Definition Phase: systems analysis and software development analysis; 2. Development Phase: software design, code generation, and testing; and 3. Maintenance Phase: perfective maintenance and other kinds of maintenance, documentation, and training. To capture the needs of users at every step, eRA employs focus groups, user groups, and the group advocates. Key features of the process are the use of database and tools technology from Oracle and reliance on a strongly modular approach that permits systematic upgrading of modules on a regular basis. End Summary ***** For eRA, developing software is a mission-critical business. With some 576,000,000 transactions taking place annually in IMPAC II and Commons, the functioning of NIH’s extramural grant and contract system relies on a dependable and effective software development process. eRA has built a dense project infrastructure (see figure) to ensure the overall integrity of the system. Other features of the project also contribute: •= for database technology, we rely on Oracle, a leading vendor with robust products; •= our strongly modular approach has enabled us better to target the needs of particular user groups while reducing the complexity of each piece of the project; and •= we have moved ever farther toward empowering users and involving them at every step. -
Secure Database Development
Secure Database Development Jan Jurjens (1) and Eduardo B. Fernandez (2) (1) Computing Department, The Open University, Milton Keynes, MK7 8LA GB http://www.jurjens.de/jan (2) Dept. of Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA http://www.cse.fau.edu/~ed Synonyms Secure DBMS development, secure database design DEFINITION This entry considers how to build secure database system software. In particular, it describes how to build a general-purpose database management system where security is an important design parameter. For the database community the words secure database design may refer to the schema design to produce a database for a specific application with some level of security properties. There is a large amount of literature on this latter subject and a related section in this encyclopedia (Database security). This section concentrates mostly on how to build the software of a DBMS such that it exhibits security properties, which is called secure database development. Both approaches are contrasted so that the reader can decide which one of these problems applies to her specific case but more space is dedicated to the general secure database development problem. HISTORICAL BACKGROUND While there is a large number of papers on security models including authorization and other security aspects of databases [2, 4, 6], there is little work on how to implement a secure Database Management System (DBMS). It is true that many proposals for secure multilevel databases include details of implementation but most of them are ad hoc architectures that cannot be generalized to databases using different models or even to other multilevel databases with different requirements. -
Basic Concepts of Operating Systems
✐ ✐ “26341˙CH01˙Garrido” — 2011/6/2 — 12:58 — page1—#3 ✐ ✐ © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Chapter© Jones & 1 Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Basic Concepts of © JonesOperating & Bartlett Learning, Systems LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION 1.1 ©Introduction Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION The operating system is an essential part of a computer system; it is an intermediary component between the application programsand the hardware. The ultimate purpose of an operating system is twofold: (1) to provide various services to users’ programs © Jones & Bartlettand (2) toLearning, control the LLC functioning of the computer© system Jones hardware & Bartlett in an Learning, efficient and LLC NOT FOR SALEeffective OR manner.DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Thischapter presentsthe basicconceptsand the abstract views of operating sys- tems. This preliminary material is important in understanding more clearly the com- plexities of the structure of operating systems and how the various services are provided. General and brief referencesto Unix and Windowsare included throughout the chapter. © Jones & Bartlett Learning,Appendix LLC A presents a detailed explanation© Jones & of theBartlett Linux commands.Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION 1.1.1 Software Components A program is a sequence of instructions that enables a computer to execute a specific task. -
Chapter 3 Software Design
CHAPTER 3 SOFTWARE DESIGN Guy Tremblay Département d’informatique Université du Québec à Montréal C.P. 8888, Succ. Centre-Ville Montréal, Québec, Canada, H3C 3P8 [email protected] Table of Contents references” with a reasonably limited number of entries. Satisfying this requirement meant, sadly, that not all 1. Introduction..................................................................1 interesting references could be included in the recom- 2. Definition of Software Design .....................................1 mended references list, thus the list of further readings. 3. Breakdown of Topics for Software Design..................2 2. DEFINITION OF SOFTWARE DESIGN 4. Breakdown Rationale...................................................7 According to the IEEE definition [IEE90], design is both 5. Matrix of Topics vs. Reference Material .....................8 “the process of defining the architecture, components, 6. Recommended References for Software Design........10 interfaces, and other characteristics of a system or component” and “the result of [that] process”. Viewed as a Appendix A – List of Further Readings.............................13 process, software design is the activity, within the software development life cycle, where software requirements are Appendix B – References Used to Write and Justify the analyzed in order to produce a description of the internal Knowledge Area Description ....................................16 structure and organization of the system that will serve as the basis for its construction. More precisely, a software design (the result) must describe the architecture of the 1. INTRODUCTION system, that is, how the system is decomposed and This chapter presents a description of the Software Design organized into components and must describe the interfaces knowledge area for the Guide to the SWEBOK (Stone Man between these components. It must also describe these version).