Regional Catch Assesment Survey of 2019 for Lakes Edward and Albert (D.R Congo and Uganda)

Total Page:16

File Type:pdf, Size:1020Kb

Regional Catch Assesment Survey of 2019 for Lakes Edward and Albert (D.R Congo and Uganda) REGIONAL CATCH ASSESMENT SURVEY OF 2019 FOR LAKES EDWARD AND ALBERT (D.R CONGO AND UGANDA) NELSAP Technical Reports: Basin Development Series 2020 - 04 JUNE 2020 MULTINATIONAL LAKES EDWARD AND ALBERT INTEGRATED FISHERIES AND WATER RESOURCES MANAGEMENT (LEAF II) PROJECT Regional Technical Report of Catch Assessment Surveys (CAS) of Lake Edward and Lake Albert was conducted by the National Service for the promotion and development of fisheries / Service National de Promotion et de Développement de la Pêche (SENADEP) of the Democratic Republic of Congo (DRC) and the National Fisheries Resources Research Institute (NaFIRRI) of Uganda on the Democratic Republic of Congo (DRC) and Ugandan sides of lakes Edward and Albert between July and August 2019. This report was prepared by the Regional Catch Assessment Survey Working Group (RWG) composed of technicl experts from DRC, UGANDA and NELSAP LEAF II Project. December 2019 The purpose of the technical report series is to support informed stakeholder dialogue and decision making in order to achieve sustainable socio-economic development through equitable utilization of, and benefit from, the shared Nile Basin water resources. Project: Multinational Lakes Edward And Albert Integrated Fisheries And Water Resources Management (LEAF II) Project Funding Source: The African Development Bank (AfDB) and Global Environment Facility (GEF) Project Number: Disclaimer The views expressed in this publication are not necessarily those of NBI’s Member States or its development partners. Trademark names and symbols are used in an editorial fashion and no intention of infringement on trade mark or copyright laws. While every care has been exercised in compiling and publishing the information and data contained in this document, the NBI regrets any errors or omissions that may have been unwittingly made in this publication. The NBI is not an authority on International Administrative Boundaries. All country boundaries used in this publication are based on FAO Global Administrative Unit Layers (GAUL). © 2019 Nile Equatorial Lakes Subsidiary Action Program (NELSAP-CU) / Nile Basin Initiative (NBI) 2 CONTRIBUTORS TO THIS REPORT 3 ACKNOWLEDGEMENTS The Regional Catch Assessment Survey Working Group (RWG) is grateful to the NELSAP LEAF II Project Regional Implementation Unit for supporting the fisheries monitoring surveys particularly, the Frame and Catch Assessment Surveys on lakes Edward and Albert. The contribution towards planning and implementation of these surveys by the LEAF II national coordination offices in Uganda and DRC is also acknowledged. The fisheries personnel from the riparian districts, territories and provinces of lakes Edward and Albert are equally appreciated for their contribution into the planning and mobilization of enumerators and riparian communities. The field enumerators who undertook the actual field data collection are highly appreciated for the job well done. The fisher communities, particularly those at the CAS landing sites in the two lakes are highly appreciated for the good cooperation during the field data collection exercise. In the same spirit, we extend our sincere appreciation to the landing site management and administrative committees for publicizing the CAS activity and encouraging active participation of the respective communities. Sincere gratitude goes to the governments of the DRC and Uganda for their commitment to strengthening the bond of cooperation within the framework of the implementation of the LEAF II Project in the two countries. The Directorates of Fisheries Resources (DiFR) in the respective countries are particularly recognised for the continued support towards the implementation of fisheries surveys on lakes Edward and Albert. The media are also appreciated for their publicity role and professional services that created mass awareness and promotion of the 2018 Frame Survey (FS) exercise resulting into the successful CAS implementation. The various hotels are thanked for the conference facilities and catering services that enabled the successful conduct of CAS national planning, training, and validation workshops. Lastly, the technical and administrative staff of NaFIRRI and SENADEP are sincerely appreciated for the various contributions (planning, coordination, and implementation) made towards the successful implementation of the 2019 CAS. Monitoring fish stocks in relation to species composition, abundance, distribution, catch, and fishing effort is required for sound management of the fisheries resources. Catch Assessment Surveys (CASs) in particular are important tools for monitoring trends in the fish catches and exploitation patterns to inform development planning and management decisions. Catch Assessment Surveys on lakes Albert and Edward have been characterized with inconsistences due to inadequate financial and logistical support. The available information on the size of fish populations, fishing effort and the level of fishing pressure that the fisheries can support on these lakes is limited and yet these data are essential for effective management of the fisheries resources. 4 EXECUTIVE SUMMARY The 2019 CASs on the two systems (Edward and Albert) were supported by the Nile Basin Initiative / Nile Equatorial Lakes Subsidiary Action Program (NELSAP) under the Multinational Lakes Edward and Albert Integrated Fisheries and Water Resources Management (LEAF II) Project. The NELSAP Coordination Unit (NELSAP-CU) signed service contracts with the National Fisheries Resources Research Institute (NaFIRRI) in Uganda and the National Service for the Promotion and Development of Fisheries (SENADEP) of the Democratic Republic of Congo (DRC), conduct CASs on the sections of lakes Edward and Albert. The CASs were carried out at 56 landing sites (41 on Albert and 15 on Edward) between July and August 2019. In DRC, 29 landing sites were sampled (19 on Albert and 10 on Edward) while in Uganda 27 landing sites were sampled (22 on Albert and 5 on Edward). A total of 141 CAS enumerators (87 DRC; 54 Uganda) were recruited from selected CAS landing sites on the two water systems and were trained in CAS field sampling protocols. The enumerators were provided with CAS logistics and they undertook the actual field data collection under the direct supervision of Sub-County/District (Uganda) and Province (DRC) Fisheries Officers (FOs), with the overall coordination provided by NaFIRRI/DiFR (Uganda) and SENADEP (DRC). The CASs were implemented following the Standard Operating Procedures (SOPs) agreed upon and harmonized by the two countries sharing both lakes. Capacity building of enumerators selected from the fishing communities and their participation in fisheries data collection is considered one of the avenues for sustainable data collection. This report presents key findings of the CASs conducted in the waters of lakes Edward and Albert of the respective countries. For Lake Edward, the annual total of 32,092.8 tons (29,347.2 tons (91.4%) DRC; 2,744 tons (8.6%) Uganda) of fish was estimated. In DRC, the catch was dominated byTilapia spp 10,881.6 tons, 36.7%), followed by Bagrus spp (9,584.4 tons, 32.3%) and Haplochromis spp (3,135 tons, 11.6%) while in Uganda, Bagrus docmak (919.3 tons, 33%) dominated, followed by Protopterus aethiopicus (489.2 tons, 18%) and Tilapia spp (463.1 tons, 18%). The 32,092.8 tons of fish from Lake Edward generated an annual revenue of USD 62,702.7, dominated by DRC (USD 57,216.7; 91.3%) and Uganda (USD 5.4; 8.75%). Lake Albert on the other hand recorded a total annual catch of 31,384.8 tons (3.428.5 tons (10.9%) DRC; 27,956.3 tons (89.1%) Uganda) with Lates spp contributing 22.8 % of the annual catch on the DRC side, followed by Synodontis spp (12.8%) and Tilapia spp (9.1 %). In Uganda, Engraulicypris bredoi and Brycinus nurse contributed 56.2% of the annual catch. The total annual catch was valued at USD 278,513.5 at beach value with DRC contributing (USD 70,673.5; 25.4 %) and Uganda (USD 207,840; 74.62 %) to the annual gross revenue. The results indicated an improvement in catches on lakes Edward and Albert. Although this is the first time since 1987 when FAO conducted such studies on the DRC side of these lakes, the CASs revealed an increase in production which could be explained by improved patrolling and enforcement of fisheries regulations and this has to some extent aided the recovery of fish species. Similarly, in Uganda, the improvement in catches on Lake Edward is attributed to the improved enforcement of the fisheries regulations by the Fish Protection Unit (FPU), an enforcement arm of the Uganda Peoples Defence Force (UPDF) instituted by H.E. the President of the Republic of Uganda to curb illegal fishing practices on the major lakes in the country. However, the observations on the Ugandan waters of Lake Albert should be treated with caution as majority of the catch was harvested and landed in the illegal destructive gears which not only provides short term benefits, but also severely compromises the sustainability of the Lake fisheries. Management efforts should therefore be directed towards total removal of illegal fishing effort from the commercial fisheries of Lake Albert. The results also showed that the economic importance of the large sized species, particularly Nile perch annual beach revenue far superseded that of the dominant small pelagic; E. bredoi and B. nurse on the Uganda portion of Lake Albert. There is urgent call for concerted efforts to protect the large bodied fish species from illegal practices such
Recommended publications
  • Lates Niloticus) Ecological Risk Screening Summary
    U.S. Fish and Wildlife Service Nile Perch (Lates niloticus) Ecological Risk Screening Summary Web Version – September 2014 Photo: © Biopix: N Sloth 1 Native Range, and Status in the United States Native Range From Schofield (2011): “Much of central, western and eastern Africa: Nile River (below Murchison Falls), as well as the Congo, Niger, Volga, Senegal rivers and lakes Chad and Turkana (Greenwood 1966 [cited by Schofield (2011) but not accessed for this report]). Also present in the brackish Lake Mariot near Alexandria, Egypt.” Lates niloticus Ecological Risk Screening Summary U.S. Fish and Wildlife Service – Web Version - 8/14/2012 Status in the United States From Schofield (2011): “Scientists from Texas traveled to Tanzania in 1974-1975 to investigate the introduction potential of Lates spp. into Texas reservoirs (Thompson et al. 1977 [cited by Schofield (2011) but not accessed for this report]). Temperature tolerance and trophic dynamics were studied for three species (L. angustifrons, L. microlepis and L. mariae). Subsequently, several individuals of these three species were shipped to Heart of the Hills Research Station (HOHRS) in Ingram, Texas in 1975 (Rutledge and Lyons 1976 [cited by Schofield (2011) but not accessed for this report]). Also in 1975, Nile perch (L. niloticus) were transferred from Lake Turkana, Kenya, to HOHRS. All fishes were held in indoor, closed-circulating systems (Rutledge and Lyons 1976).” “From 1978 to 1985, Lates spp. was released into various Texas reservoirs (Howells and Garrett 1992 [cited by Schofield (2011) but not accessed for this report]). Almost 70,000 Lates spp. larvae were stocked into Victor Braunig (Bexar Co.), Coleto Creek (Goliad Co.) and Fairfield (Freestone Co.) reservoirs between 1978 and 1984.
    [Show full text]
  • "A Revision of the Freshwater Crabs of Lake Kivu, East Africa."
    Northern Michigan University NMU Commons Journal Articles FacWorks 2011 "A revision of the freshwater crabs of Lake Kivu, East Africa." Neil Cumberlidge Northern Michigan University Kirstin S. Meyer Follow this and additional works at: https://commons.nmu.edu/facwork_journalarticles Part of the Biology Commons Recommended Citation Cumberlidge, Neil and Meyer, Kirstin S., " "A revision of the freshwater crabs of Lake Kivu, East Africa." " (2011). Journal Articles. 30. https://commons.nmu.edu/facwork_journalarticles/30 This Journal Article is brought to you for free and open access by the FacWorks at NMU Commons. It has been accepted for inclusion in Journal Articles by an authorized administrator of NMU Commons. For more information, please contact [email protected],[email protected]. This article was downloaded by: [Cumberlidge, Neil] On: 16 June 2011 Access details: Access Details: [subscription number 938476138] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Journal of Natural History Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713192031 The freshwater crabs of Lake Kivu (Crustacea: Decapoda: Brachyura: Potamonautidae) Neil Cumberlidgea; Kirstin S. Meyera a Department of Biology, Northern Michigan University, Marquette, Michigan, USA Online publication date: 08 June 2011 To cite this Article Cumberlidge, Neil and Meyer, Kirstin S.(2011) 'The freshwater crabs of Lake Kivu (Crustacea: Decapoda: Brachyura: Potamonautidae)', Journal of Natural History, 45: 29, 1835 — 1857 To link to this Article: DOI: 10.1080/00222933.2011.562618 URL: http://dx.doi.org/10.1080/00222933.2011.562618 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes.
    [Show full text]
  • Monophyly and Interrelationships of Snook and Barramundi (Centropomidae Sensu Greenwood) and five New Markers for fish Phylogenetics ⇑ Chenhong Li A, , Betancur-R
    Molecular Phylogenetics and Evolution 60 (2011) 463–471 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Monophyly and interrelationships of Snook and Barramundi (Centropomidae sensu Greenwood) and five new markers for fish phylogenetics ⇑ Chenhong Li a, , Betancur-R. Ricardo b, Wm. Leo Smith c, Guillermo Ortí b a School of Biological Sciences, University of Nebraska, Lincoln, NE 68588-0118, USA b Department of Biological Sciences, The George Washington University, Washington, DC 200052, USA c The Field Museum, Department of Zoology, Fishes, 1400 South Lake Shore Drive, Chicago, IL 60605, USA article info abstract Article history: Centropomidae as defined by Greenwood (1976) is composed of three genera: Centropomus, Lates, and Received 24 January 2011 Psammoperca. But composition and monophyly of this family have been challenged in subsequent Revised 3 May 2011 morphological studies. In some classifications, Ambassis, Siniperca and Glaucosoma were added to the Accepted 5 May 2011 Centropomidae. In other studies, Lates + Psammoperca were excluded, restricting the family to Available online 12 May 2011 Centropomus. Recent analyses of DNA sequences did not solve the controversy, mainly due to limited taxonomic or character sampling. The present study is based on DNA sequence data from thirteen Keywords: genes (one mitochondrial and twelve nuclear markers) for 57 taxa, representative of all relevant Centropomidae species. Five of the nuclear markers are new for fish phylogenetic studies. The monophyly of Centrop- Lates Psammoperca omidae sensu Greenwood was supported by both maximum likelihood and Bayesian analyses of a Ambassidae concatenated data set (12,888 bp aligned). No support was found for previous morphological hypothe- Niphon spinosus ses suggesting that ambassids are closely allied to the Centropomidae.
    [Show full text]
  • Description of Two New Species of Sea Bass (Teleostei: Latidae: Lates) from Myanmar and Sri Lanka
    Zootaxa 3314: 1–16 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Description of two new species of sea bass (Teleostei: Latidae: Lates) from Myanmar and Sri Lanka ROHAN PETHIYAGODA1 & ANTHONY C. GILL1,2 1Australian Museum, 6 College Street, Sydney NSW 2010, Australia. E-mail: [email protected] 2Macleay Museum and School of Biological Sciences, Macleay Building A12, University of Sydney, Sydney NSW 2006, Australia. E-mail: [email protected] Abstract Two new species of Lates Cuvier are described. Lates lakdiva, new species, from western Sri Lanka, differs from its Indo- Pacific congeners by its lesser body depth, 26.6‒27.6% SL; 5 rows of scales in transverse line between base of third dorsal- fin spine and lateral line; 31‒34 serrae on the posterior edge of the preoperculum; third anal-fin spine longer than second; 47‒52 lateral-line scales on body; and greatest depth of maxilla less than eye diameter. Lates uwisara, new species, from eastern Myanmar, is distinguished by possessing 7 scales in transverse line between base of third dorsal-fin spine and lat- eral line; eye diameter 4.4‒4.7% SL; body depth 28.4‒34.5% SL; and third anal-fin spine shorter than the second. Despite substantial genetic variation, L. calcarifer sensu lato is widely distributed, from tropical Australia through Indonesia, Sin- gapore and Thailand, westwards to at least the west coast of India. Caution is urged in translocating Lates in the Indo- Pacific region as other yet unrecognized species likely exist.
    [Show full text]
  • Assessment of the Status of Lates Stappersii (Centropomidae) Stock in Lift-Net Fishery in Lake Tanganyika, Kigoma, Tanzania
    ASSESSMENT OF THE STATUS OF LATES STAPPERSII (CENTROPOMIDAE) STOCK IN LIFT-NET FISHERY IN LAKE TANGANYIKA, KIGOMA, TANZANIA 1IA Kimirei and 2YD Mgaya 1Tanzania Fisheries Research Institute, Box 90, Kigoma Tanzania. [email protected] 2Faculty of Aquatic Sciences and Technology, University of Dar es Salaam, P.O. Box 60091, Dar es Salaam, Tanzania. [email protected] (Corresponding author) ABSTRACT An assessment of the status of Lates stappersii (Boulenger, 1914) stock in the lift-net fishery in Lake Tanganyika, Kigoma area, was carried out from January to December 2003. Results indicated that breeding is seasonal with peaks in February, July-August and December, and so was catch composition, with peaks in March, May and July–August that followed the abundance of its prey, Stolothrissa tanganicae. Catch per unit effort was similar between wet and dry seasons and peaked synchronously at all study sites probably as an indication of its abundance during those months; but also it could mean that the fishes were caught from the same general area. The unselective nature of the lift-net, a common fishing gear in the lake, could be exerting pressure on the pelagic resource, that leads to local over-fishing if not controlled. There is need to institute minimum fish size and mesh size limits and licensing, on a lake-wide basis, as fisheries management measures to safeguard against overexploitation of this highly variable and mobile yet important pelagic fish resource. INTRODUCTION stappersii is now important in the southern There are four endemic Lates species to Lake sector of the lake (Zambia) (Coenen et al.
    [Show full text]
  • The Fishesof Uganda-I
    1'0 of the Pare (tagu vaIley.': __ THE FISHES OF UGANDA-I uku-BujukUf , high peaks' By P. H. GREENWOOD Fons Nilus'" East African Fisheries Research Organization ~xplorersof' . ;ton, Fresh_ CHAPTER I I\.bruzzi,Dr: knowledge : INTRODUCTION ~ss to it, the ,THE fishes of Uganda have been subject to considerable study. Apart from .h to take it many purely descriptive studies of the fishes themselves, three reports have . been published which deal with the ecology of the lakes in relation to fish and , fisheries (Worthington (1929a, 1932b): Graham (1929)).Much of the literature is scattered in various scientific journals, dating back to the early part of the ; century and is difficult to obtain iIi Uganda. The more recent reports also are out of print and virtually unobtainable. The purpose .of this present survey is to bring together the results of these many researches and to present, in the light of recent unpublished information, an account of the taxonomy and biology of the many fish species which are to be found in the lakes and rivers of Uganda. Particular attention has been paid to the provision of keys, so that most of the fishesmay be easily identified. It is hardly necessary to emphasize that our knowledge of the East African freshwater fishes is still in an early and exploratory stage of development. Much that has been written is known to be over-generalized, as conclusions were inevitably drawn from few and scattered observations or specimens. From the outset it must be stressed that the sections of this paper dealing with the classification and description of the fishes are in no sense a full tax- onomicrevision although many of the descriptions are based on larger samples than were previously available.
    [Show full text]
  • Biodiversity in Sub-Saharan Africa and Its Islands Conservation, Management and Sustainable Use
    Biodiversity in Sub-Saharan Africa and its Islands Conservation, Management and Sustainable Use Occasional Papers of the IUCN Species Survival Commission No. 6 IUCN - The World Conservation Union IUCN Species Survival Commission Role of the SSC The Species Survival Commission (SSC) is IUCN's primary source of the 4. To provide advice, information, and expertise to the Secretariat of the scientific and technical information required for the maintenance of biologi- Convention on International Trade in Endangered Species of Wild Fauna cal diversity through the conservation of endangered and vulnerable species and Flora (CITES) and other international agreements affecting conser- of fauna and flora, whilst recommending and promoting measures for their vation of species or biological diversity. conservation, and for the management of other species of conservation con- cern. Its objective is to mobilize action to prevent the extinction of species, 5. To carry out specific tasks on behalf of the Union, including: sub-species and discrete populations of fauna and flora, thereby not only maintaining biological diversity but improving the status of endangered and • coordination of a programme of activities for the conservation of bio- vulnerable species. logical diversity within the framework of the IUCN Conservation Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitoring 1. To participate in the further development, promotion and implementation the status of species and populations of conservation concern. of the World Conservation Strategy; to advise on the development of IUCN's Conservation Programme; to support the implementation of the • development and review of conservation action plans and priorities Programme' and to assist in the development, screening, and monitoring for species and their populations.
    [Show full text]
  • Reduction of the “Ngege”, Oreochromis Esculentus (Teleostei: Cichlidae) Populations, and Resultant Population Genetic Status in the Lake Victoria Region
    Uganda Journal of Agricultural Sciences, 2012, 13 (2): 65-82 ISSN 1026-0919 Printed in Uganda. All rights reserved © 2012, National Agricultural Research Organisation Reduction of the “ngege”, Oreochromis esculentus (Teleostei: Cichlidae) populations, and resultant population genetic status in the Lake Victoria Region W. Waiswa Mwanja1, P.A. Fuerst2 and L. Kaufman3 1Department of Fisheries Resources, P.O. Box 4 Entebbe, Uganda 2Department of Molecular Genetics, Ohio State University, 386 Aronoff Laboratory, 318 West 12th Avenue, Columbus, OH 43210 3Boston University Department of Biology 5 Cummington Mall Boston, MA 02215 Author for correspondence: [email protected] Abstract Ngege, Oreochromis esculentus, originally formed the mainstay of the Lake Victoria Region (LVR) fisheries. Together with its indigenous congener O. variabilis, it was displaced from Lakes Victoria and Kyoga of LVR and was found to survive as isolated small populations within the peripheral minor lakes and reservoirs around the two lakes. Displacement of the two LVR indigenous tilapiines was thought to be principally driven by changed lake environment and predation by the introduced Nile perch, but also competition and genetic swamping by the closely related introduced and comparatively more ecologically versatile tilapine species. In a study carried out in the LVR between 1993 and 2003, micro satellites and RAPD markers were used to analyse the remnant populations so as to establish the population structure and extant genetic diversity of O. esculentus. Analyses indicated that the surviving O. esculentus retained a high proportion of genetic diversity with high differentiation between units an indication of genetic exchange between indigenous and introduced Nile tilapia where the two forms co-existed.
    [Show full text]
  • NILE PERCH Biodiversity As a Spinoff of Btb Control Will Then Be Lost
    of problem organisms is refl ected in the effort of commu- Atkinson, I. A. E., and E. K. Cameron. 1993. Human infl uence on the nity groups working on private and public lands to remove terrestrial biota and biotic communities of New Zealand. Trends in Ecology and Evolution 12: 447–451. pests and weeds and to restore and replant native species. Fukami, T., D. A. Wardle, P. J. Bellingham, C. P. H. Mulder, D. R. Towns, However, this more aggressive stand toward invasive spe- G. W. Yeates, K. I. Bonner, M. S. Durrett, M. N. Grant-Hoffman, cies, especially mammals, can lead to polarized attitudes and W. M. Williamson. 2006. Above- and below-ground impacts of introduced predators in seabird-dominated island ecosystems. Ecology within local communities. For example, the control of Letters 9: 1299–1307. possums and associated by-kill of deer spawned a coor- Hosking, G., J. Clearwater, J. Handisides, M. Kay, J. Ray, and N. Simmons. dinated campaign against compound 1080 and the agen- 2003. Tussock moth eradication: A success story from New Zealand. International Journal of Pest Management 49: 17–24. cies that use it; this has even included threats to sabotage King, C. M., ed. 2005. The Handbook of New Zealand Mammals, 2nd ed. conservation sites through the deliberate release of pests. Melbourne: Oxford University Press. Furthermore, within Auckland, attitudes to the spread of McDowall, R. M. 1994. Gamekeepers for the Nation: The Story of Btk against introduced moths differed between suburbs, New Zealand’s Acclimatisation Societies, 1861–1990. Christchurch: Canterbury University Press. with orchestrated campaigns of resistance to its use in west- Montague, T.
    [Show full text]
  • Best of Uganda 8- Days / 2015
    GREAT LAKES SAFARIS LTD Where the journey into the wild begins…! BEST OF UGANDA 8- DAYS / 2015 Chimp tracking in Kibale NP • Boat safari to the Queen Elizabeth National Park• • Unforgettable Hot Air Ballooning and Game- viewing drives in Queen Elizabeth NP • • •Accommodation in intimate safari lodges• Your Safari in brief: Date Destination Accommodation Nights Category Day 1 Kampala Kampala Serena Hotel 1 Deluxe room Day 2 Kibale Forest NP Primate Lodge Kibale 2 Luxury Cottage Day 3 Day 4 2 Queen Elizabeth NP Mweya Safari Lodge Standard room Day 5 Day 6 Entebbe 2 Lake Victoria Serena Deluxe room Day 7 Day 8 DEPART GREAT LAKES SAFARIS LTD Where the journey into the wild begins…! DAY 1: ARRIVAL/ KAMPALA (40 km / 1 Hour) Upon arrival at Entebbe International Airport, you will be met by a Great Lakes Safaris’ representative and drive for about 40 km/ 1 hour to your hotel for dinner on own account and overnight at your hotel. Hotel Serena, Kampala – Standard Room Meal Plan: Full Board DAY 2: Kibale Forest National Park is an KAMPALA - KIBALE FOREST NATIONAL PARK (400km /7- 8 hours extensive Biodiversity National Enjoy a hearty breakfast and depart Kampala with your guide and head Park in South Uganda and also to Kibale National Park, with (packed) lunch en route. Kibale rests in known as the “Primate Paradise” has one of the greatest variety the shadow of the fabled ‘Mountains of the Moon’ and is famous for and concentration of primates in the many tea plantations. In the evening we will join an optional night Africa including our famous forest walk and go in search of the bush babies, pottos and other cousin, the Chimpanzee, the red nocturnal animals.
    [Show full text]
  • Deformation and Sedimentary Evolution of the Lake Albert Rift (Uganda, East African Rift System)
    Deformation and sedimentary evolution of the Lake Albert Rift (Uganda, East African Rift System) Brendan Simon, François Guillocheau, Cécile Robin, Olivier Dauteuil, Thierry Nalpas, Martin Pickford, Brigitte Senut, Philippe Lays, Philippe Bourges, Martine Bez To cite this version: Brendan Simon, François Guillocheau, Cécile Robin, Olivier Dauteuil, Thierry Nalpas, et al.. Defor- mation and sedimentary evolution of the Lake Albert Rift (Uganda, East African Rift System). Ma- rine and Petroleum Geology, Elsevier, 2017, 86, pp.17-37. 10.1016/j.marpetgeo.2017.05.006. insu- 01519685 HAL Id: insu-01519685 https://hal-insu.archives-ouvertes.fr/insu-01519685 Submitted on 9 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Deformation and sedimentary evolution of the Lake Albert Rift (Uganda, East African Rift System) Brendan Simon, François Guillocheau, Cécile Robin, Olivier Dauteuil, Thierry Nalpas, Martin Pickford, Brigitte Senut, Philippe Lays, Philippe Bourges, Martine Bez PII: S0264-8172(17)30166-6 DOI: 10.1016/j.marpetgeo.2017.05.006 Reference: JMPG 2898 To appear in: Marine and Petroleum Geology Received Date: 19 November 2016 Revised Date: 29 March 2017 Accepted Date: 1 May 2017 Please cite this article as: Simon, B., Guillocheau, Franç., Robin, Cé., Dauteuil, O., Nalpas, T., Pickford, M., Senut, B., Lays, P., Bourges, P., Bez, M., Deformation and sedimentary evolution of the Lake Albert Rift (Uganda, East African Rift System), Marine and Petroleum Geology (2017), doi: 10.1016/ j.marpetgeo.2017.05.006.
    [Show full text]
  • PPCR SPCR for Uganda
    PPCR/SC.20/6 May 11, 2017 Meeting of the PPCR Sub-Committee Washington D.C. Thursday, June 8, 2017 Agenda Item 6 PPCR STRATEGIC PROGRAM FOR CLIMATE RESILIENCE FOR UGANDA PROPOSED DECISION The PPCR Sub-Committee, having reviewed the document PPCR/SC.20/6, Strategic Program for Climate Resilience for Uganda [endorses] the SPCR. The Sub-Committee encourages the Government of Uganda and the MDBs to actively seek resources from other bilateral or multilateral sources to fund further development and implementation of the projects foreseen in the strategic plan. Uganda Strategic Program for Climate Resilience (Uganda SPCR) Republic of Uganda STRATEGIC PROGRAM FOR CLIMATE RESILIENCE: UGANDA PILOT PROGRAM FOR CLIMATE RESILIENCE (PPCR) Prepared for the Pilot Program for Climate Resilience (PPCR) 2 May, 2017 i Uganda Strategic Program for Climate Resilience (Uganda SPCR) Foreword The Government of Uganda recognizes the effects of climate change and the need to address them within the national and international strategic frameworks. This Strategic Program for Climate Resilience (SPCR) is a framework for addressing the challenges of climate change that impact on the national economy including development of resilience by vulnerable communities. The overall objective of the SPCR is to ensure that all stakeholders address climate change impacts and their causes in a coordinated manner through application of appropriate measures, while promoting sustainable development and a green economy. This SPCR will build on and catalyzes existing efforts in climate resilience-building Programs in Uganda, and will address key identified barriers and constraints, in order to accelerate the transformative accumulation of benefits of climate resilience and sustainable socio-economic development in the targeted sectors and areas.
    [Show full text]