SOUTHERN CALIFORNIA HORTICULTURAL SOCIETY Where Passionate Gardeners Meet to Share Knowledge and Learn from Each Other
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sinningia, Information About the First Webinar, and Some New Hybrids
Gleanings a monthly newsletter from The Gesneriad Society, Inc. (articles and photos selected from chapter newsletters, our journal Gesneriads, and original sources) Volume 6, Number 12 December 2015 Welcome to the latest issue of Gleanings! This issue includes photos from a visit to Mollie Howell's growing areas, Paul Susi's report of Ray Coyle's talk on Sinningia, information about the first webinar, and some new hybrids. Hope you enjoy Gleanings! !!Mel Grice, Editor Paul Susi of South Huntington, NY, USA sent these photos of Petrocosmea parryorum. Top photo was taken at the Northeast Regional Convention and the photo on the right was taken a few weeks later when the plant was in full bloom at home. http://gesneriadsociety.org/!!!!!December 2015 ! page 1 A Visit to Mollie Howell's Mollie Howell [email protected] Clearwater, FL, USA growing areas Alsobia punctata Mollie Howell, Carolyn Ripps, and Mike Horton outside Mollie's lath house. Mel Grice photos Inside the lath house http://gesneriadsociety.org/!!!!!December 2015 ! page 2 xRhytidoneria 'Ako Cardinal Flight' Mel Grice photos http://gesneriadsociety.org/!!!!!December 2015 ! page 3 Sinningia bullata Smithiantha 'An's Rich Girl' Lath house is behind the pool on the right Mel Grice photos http://gesneriadsociety.org/!!!!!December 2015 ! page 4 Sinningia a report on the September program Paul Susi [email protected] South Huntington, NY, USA Ray Coyle spoke to us at the September meeting about one of his gesneriad passions, the genus Sinningia. Ray is a member of The Gesneriad Society and the Long Island Gesneriad Society, where he is a director and handles plant sales. -
Sinningia Speciosa Sinningia Speciosa (Buell "Gloxinia") Hybrid (1952 Cover Image from the GLOXINIAN)
GESNERIADS The Journal for Gesneriad Growers Vol. 61, No. 3 Third Quarter 2011 Sinningia speciosa Sinningia speciosa (Buell "Gloxinia") hybrid (1952 cover image from THE GLOXINIAN) ADVERTISERS DIRECTORY Arcadia Glasshouse ................................49 Lyndon Lyon Greenhouses, Inc.............34 Belisle's Violet House ............................45 Mrs Strep Streps.....................................45 Dave's Violets.........................................45 Out of Africa..........................................45 Green Thumb Press ................................39 Pat's Pets ................................................45 Kartuz Greenhouses ...............................52 Violet Barn.............................................33 Lauray of Salisbury ................................34 6GESNERIADS 61(3) Once Upon a Gloxinia … Suzie Larouche, Historian <[email protected]> Sixty years ago, a boy fell in love with a Gloxinia. He loved it so much that he started a group, complete with a small journal, that he called the American Gloxinia Society. The Society lived on, thrived, acquired more members, studied the Gloxinia and its relatives, gesneriads. After a while, the name of the society changed to the American Gloxinia and Gesneriad Society. The journal, THE GLOXINIAN, grew thicker and glossier. More study and research were conducted on the family, more members and chapters came in, and the name was changed again – this time to The Gesneriad Society. Nowadays, a boy who falls in love with the same plant would have to call it Sinningia speciosa. To be honest, the American Sinningia Speciosa Society does not have the same ring. So in order to talk "Gloxinia," the boy would have to talk about Gloxinia perennis, still a gesneriad, but a totally different plant. Unless, of course, he went for the common name of the spec- tacular Sinningia and decided to found The American Florist Gloxinia Society. -
Hippeastrum Reticulatum (Amaryllidaceae): Alkaloid Profiling, Biological Activities and Molecular Docking
molecules Article Hippeastrum reticulatum (Amaryllidaceae): Alkaloid Profiling, Biological Activities and Molecular Docking Luciana R. Tallini 1 ID , Edison H. Osorio 2, Vanessa Dias dos Santos 3, Warley de Souza Borges 3, Marcel Kaiser 4,5, Francesc Viladomat 1, José Angelo S. Zuanazzi 6 ID and Jaume Bastida 1,* 1 Group of Natural Products, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII, 27-31, 08028-Barcelona, Spain; [email protected] (L.R.T.); [email protected] (F.V.) 2 Department of Basic Sciences, Catholic University Luis Amigó, SISCO, Transversal 51 A No. 67B-90, Medellín, Colombia; [email protected] 3 Department of Chemistry, Federal University of Espírito Santo, Av. Fernando Ferrari 514, 29075-915 Vitória ES, Brazil; [email protected] (V.D.d.S.); [email protected] (W.d.S.B.) 4 Medicinal Parasitology and Infection Biology, Swiss Tropical Institute, Socinstrasse 57, 4051 Basel, Switzerland; [email protected] 5 University of Basel, Petersplatz 1, 4001 Basel, Switzerland 6 Faculty of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre RS, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +34-934-020-268 Received: 24 October 2017; Accepted: 7 December 2017; Published: 9 December 2017 Abstract: The Amaryllidaceae family has proven to be a rich source of active compounds, which are characterized by unique skeleton arrangements and a broad spectrum of biological activities. The aim of this work was to perform the first detailed study of the alkaloid constituents of Hippeastrum reticulatum (Amaryllidaceae) and to determine the anti-parasitological and cholinesterase (AChE and BuChE) inhibitory activities of the epimers (6α-hydroxymaritidine and 6β-hydroxymaritidine). -
A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname
Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname Editors: Leeanne E. Alonso and Trond H. Larsen 67 CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed RAP (Grensgebergte and Kasikasima) of Southeastern Suriname Bulletin of Biological Assessment 67 Editors: Leeanne E. Alonso and Trond H. Larsen CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION The RAP Bulletin of Biological Assessment is published by: Conservation International 2011 Crystal Drive, Suite 500 Arlington, VA USA 22202 Tel : +1 703-341-2400 www.conservation.org Cover photos: The RAP team surveyed the Grensgebergte Mountains and Upper Palumeu Watershed, as well as the Middle Palumeu River and Kasikasima Mountains visible here. Freshwater resources originating here are vital for all of Suriname. (T. Larsen) Glass frogs (Hyalinobatrachium cf. taylori) lay their -
Plethora of Plants – Collections of the Botanical Garden, Faculty Of
Nat. Croat. Vol. 24(2), 2015 361 NAT. CROAT. VOL. 24 No 2 361–397* ZAGREB December 31, 2015 professional paper / stručni članak – museal collections / muzejske zbirke DOI: 10.302/NC.2015.24.26 PLETHORA OF PLANTS – ColleCtions of the BotaniCal Garden, faCulty of ScienCe, university of ZaGreB (1): temperate Glasshouse exotiCs – HISTORIC OVERVIEW Sanja Kovačić Botanical Garden, department of Biology, faculty of science, university of Zagreb, marulićev trg 9a, HR-10000 Zagreb, Croatia (e-mail: [email protected]) Kovačić, S.: Plethora of plants – collections of the Botanical garden, Faculty of Science, Univer- sity of Zagreb (1): Temperate glasshouse exotics – historic overview. Nat. Croat., Vol. 24, No. 2, 361–397*, 2015, Zagreb due to the forthcoming obligation to thoroughly catalogue and officially register all living and non-living collections in the european union, an inventory revision of the plant collections in Zagreb Botanical Garden of the faculty of science (university of Zagreb, Croatia) has been initiated. the plant lists of the temperate (warm) greenhouse collections since the construction of the first, exhibition Glasshouse (1891), until today (2015) have been studied. synonymy, nomenclature and origin of plant material have been sorted. lists of species grown (or that presumably lived) in the warm greenhouse conditions during the last 120 years have been constructed to show that throughout that period at least 1000 plant taxa from 380 genera and 90 families inhabited the temperate collections of the Garden. today, that collection holds 320 exotic taxa from 146 genera and 56 families. Key words: Zagreb Botanical Garden, warm greenhouse conditions, historic plant collections, tem- perate glasshouse collection Kovačić, S.: Obilje bilja – zbirke Botaničkoga vrta Prirodoslovno-matematičkog fakulteta Sve- učilišta u Zagrebu (1): Uresnice toplog staklenika – povijesni pregled. -
Gardens and Stewardship
GARDENS AND STEWARDSHIP Thaddeus Zagorski (Bachelor of Theology; Diploma of Education; Certificate 111 in Amenity Horticulture; Graduate Diploma in Environmental Studies with Honours) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy October 2007 School of Geography and Environmental Studies University of Tasmania STATEMENT OF AUTHENTICITY This thesis contains no material which has been accepted for any other degree or graduate diploma by the University of Tasmania or in any other tertiary institution and, to the best of my knowledge and belief, this thesis contains no copy or paraphrase of material previously published or written by other persons, except where due acknowledgement is made in the text of the thesis or in footnotes. Thaddeus Zagorski University of Tasmania Date: This thesis may be made available for loan or limited copying in accordance with the Australian Copyright Act of 1968. Thaddeus Zagorski University of Tasmania Date: ACKNOWLEDGEMENTS This thesis is not merely the achievement of a personal goal, but a culmination of a journey that started many, many years ago. As culmination it is also an impetus to continue to that journey. In achieving this personal goal many people, supervisors, friends, family and University colleagues have been instrumental in contributing to the final product. The initial motivation and inspiration for me to start this study was given by Professor Jamie Kirkpatrick, Dr. Elaine Stratford, and my friend Alison Howman. For that challenge I thank you. I am deeply indebted to my three supervisors Professor Jamie Kirkpatrick, Dr. Elaine Stratford and Dr. Aidan Davison. Each in their individual, concerted and special way guided me to this omega point. -
Lamiales – Synoptical Classification Vers
Lamiales – Synoptical classification vers. 2.6.2 (in prog.) Updated: 12 April, 2016 A Synoptical Classification of the Lamiales Version 2.6.2 (This is a working document) Compiled by Richard Olmstead With the help of: D. Albach, P. Beardsley, D. Bedigian, B. Bremer, P. Cantino, J. Chau, J. L. Clark, B. Drew, P. Garnock- Jones, S. Grose (Heydler), R. Harley, H.-D. Ihlenfeldt, B. Li, L. Lohmann, S. Mathews, L. McDade, K. Müller, E. Norman, N. O’Leary, B. Oxelman, J. Reveal, R. Scotland, J. Smith, D. Tank, E. Tripp, S. Wagstaff, E. Wallander, A. Weber, A. Wolfe, A. Wortley, N. Young, M. Zjhra, and many others [estimated 25 families, 1041 genera, and ca. 21,878 species in Lamiales] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near- term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA. -
Pollination Biology of Paliavana Tenuiflora
Acta bot. bras. 24(4): 972-977. 2010. Pollination biology of Paliavana tenuifl ora (Gesneriaceae: Sinningeae) in Northeastern Brazil Patrícia Alves Ferreira 1,2 and Blandina Felipe Viana 1 Recebido em 22/10/2009. Aceito em 26/08/2010 RESUMO – (Biologia da polinização de Paliavana tenuifl ora (Gesneriaceae: Sinningeae) no nordeste do Brasil). No presente estudo a biologia fl oral, o sistema reprodutivo, os visitantes e os polinizadores de Paliavana tenuifl ora foram analisados em campos rupestres na Chapada Diamanti- na, Mucugê, Bahia, Brasil. Paliavana tenuifl ora é um arbusto com fl ores campanulares azul-violeta, com antese às 11:00 h, e duração das fl ores por aproximadamente seis dias. Grandes quantidades de néctar são produzidas (médias de volume 15,5µl, concentração 22,7% e teor de açúcar 5,0 mg μL -1 ). A produção de néctar não está relacionada com o período do dia, mas a concentração variou com o volume. A espécie é autocompatível, mas a formação de frutos depende de polinizadores. Apesar do néctar estar disponível de dia e de noite, P. tenuifl ora se encaixa na síndrome de polinização por abelhas e, de fato, é polinizada por Bombus brevivillu s. Entretanto, o beija-fl or Phaethornis pretrei pode ser considerado polinizador ocasional, devido a seu comportamento e a baixa freqüência de visitas. Os resultados sugerem um sistema de polinização misto, porém a importância de P. pretrei como polinizador precisa ser mais bem avaliada. Palavras-chave : Campos rupestres, polinização, sistema reprodutivo, Bombus brevivillus , Phaethornis pretrei , Bahia ABSTRACT – (Pollination biology of Paliavana tenuifl ora (Gesneriaceae: Sinningeae) in Northeastern Brazil). -
6 Improved Shoot Organogenesis of Gloxinia (Sinningia Speciosa)
POJ 5(1):6-9 (2012) ISSN:1836-3644 Improved shoot organogenesis of gloxinia ( Sinningia speciosa ) using silver nitrate and putrescine treatment Eui-Ho Park 1, Hanhong Bae 1, Woo Tae Park 2, Yeon Bok Kim 2, Soo Cheon Chae 3* and Sang Un Park 2* 1School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea 2Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, 79 Daehangno, Yuseong-gu, Daejeon, 305-764, Korea 3Department of Horticultural Science, College of Industrial Sciences, Kongju National University, 1 Daehoe-ri, Yesan-kun, Chungnam, 340-720, Korea *Corresponding Author: [email protected]; [email protected] Abstract An improved method for shoot organogenesis and plant regeneration in Sinningia speciosa was established. Leaf explants were cultured on Murashige and Skoog (MS) medium supplemented with different combinations of benzylaminopurine (BAP) and naphthalene-acetic acid (NAA) for shoot induction. MS media including BAP (2 mg/L) and NAA (0.1 mg/L) resulted in the highest efficiency in shoot regeneration per explant (12.3 ± 0.8) and in the greatest shoot growth (1.2 ± 0.1 cm) after 6 weeks. For improving shoot induction, the ethylene inhibitor silver nitrate and the polyamine putrescine were added to the regeneration medium. The addition of silver nitrate (7 mg/L) increased the shoot number (23.9 ± 1.6) and length (1.7 ± 0.2 cm) after 6 weeks. Similarly, putrescine (50 mg/L) improved the shoot number (19.2 ± 1.6) and growth (1.7 ± 0.2 cm). The rooted plants were hardened and transferred to soil with a 90% survival rate. -
Three New Species of Sinningia (Gesneriaceae) Endemic to Espírito Santo, Brazil
Three new species of Sinningia (Gesneriaceae) endemic to Espírito Santo, Brazil Alain Chautems, Valquíria F. Dutra, André P. Fontana, Mauro Peixoto, Mathieu Perret & Josiene Rossini Abstract CHAUTEMS, A., V.F. DUTRA, A.P. FONTANA, M. PEIXOTO, M. PERRET & J. ROSSINI (2019). Three new species of Sinningia (Gesneriaceae) endemic to Espírito Santo, Brazil. Candollea 74: 33 – 42. In English, English abstract. DOI: http://dx.doi.org/10.15553/c2019v741a5 Three new species of Sinningia Nees (Gesneriaceae) occurring in eastern Brazil and endemic to the state of Espírito Santo are described and illustrated: Sinningia flammea Chautems & Rossini, Sinningia hoehnei Chautems, A.P. Fontana & Rossini and Sinningia stapelioides Chautems & M. Peixoto. Sinningia flammea is unique within the genus by its tubular bright orange corolla with a greenish-yellow throat. Sinningia hoehnei is characterized by white corollas that are laterally and ventrally inflated for most of their length with a yellow throat marked by vinaceous streaks. Sinningia stapelioides strikingly differs from any other species by the combination of a pauciflorous inflorescence borne directly on the tuber that produce large tubular-campanulate corollas, dull red orange outside, inside greenish-cream with a dense network of vinaceous streaks. Comments on morphologic and phylogenetic relationships within the subtribe Ligeriinae are provided, as well as a distribution map and the IUCN conservation status. Keywords GESNERIACEAE – LIGERIINAE – Sinningia – Neotropical flora – Atlantic forest – Biodiversity – Taxonomy Addresses of the authors: AC, MPer: Conservatoire et Jardin botaniques de la Ville de Genève, C.P. 71, 1292 Chambésy, Switzerland. E-mail: [email protected] VFD: Universidade Federal do Espírito Santo, Centro de Ciencias Humanas e Naturais, Departamento de Ciências Biológicas. -
Floral Visitors of Paliavana Tenuiflora in Mucugê - Bahia - Brasil
FLORAL VISITORS OF PALIAVANA TENUIFLORA IN MUCUGÊ - BAHIA - BRASIL Ferreira, P.¹, Horn, M.² & Glemser, E.². 1: Graduate program of Ecology and Biomonitoring. Instituto de Biologia. Universidade Federal da Bahia. Salvador, Bahia, Brazil. [email protected]: University of Guelph, Guelph, Ontario, Canada INTRODUCTION over a 24-hour period in areas of rocky outcrops in Mucugê, Bahia, Brazil. The Gesneriaceae family includes 135 genera and approximately 3,000 species of flowering plants MATERIAL AND METHODS which are distributed predominantly in the tropics. Two hundred species from 23 genera are found in This study was carried out from April to May 2007, Brazil (Araújo et al. 2005). The family is represented as part of the activities of III Pollination Course, mainly by grasses, sub-shrubs, terrestrial organized by “REPOL, Rede Baiana de epiphytes, vines and shrubs (Araújo et al. 2005). In Polinizadores”. The work was completed in The this family the Sinningieae tribe is composed of Municipal Park of Mucugê, located four kilometers the genera Sinningia, Vanhouttea, and Paliavana. from the City of Mucugê in Bahia, Brazil. The park Bees and hummingbirds pollinate almost 93% of contains rocky outcrop vegetation at an elevation the species of the Sinningieae tribe. The Sinningia more than 800 meters and is home to a high and Vanhouttea generas both present an numbers of endemic species. The area includes ornithophilous syndrome whereas Paliavana are vegetation native to humid forests, savannas and pollinated primarily by large bees and bats (Perret caatinga. Flower samples were collected for et al. 2001; Sanmartin-Gajardo & Sazima 2005). The identification and preservation as material Paliavana genus is mainly represented by shrubs, certification, in Alexandre Leal Costa Herbarium occasionally small trees, and includes six species (ALCB) - UFBA. -
Confirmation of Hybrid Origin of Cyrtanthus Based on the Sequence
Scientia Horticulturae 144 (2012) 153–160 Contents lists available at SciVerse ScienceDirect Scientia Horticulturae journa l homepage: www.elsevier.com/locate/scihorti Confirmation of hybrid origin of Cyrtanthus based on the sequence analysis of internal transcribed spacer a b c d d,∗ Ae Kyung Lee , Jeong Hong , Gary R. Bauchan , Se Hee Park , Young Hee Joung a Department of Environmental Horticulture, College of Bio-Resources Science, Dankook University, Cheonan, Chungnam, South Korea b Department of Horticulture, Division of Environmental & Life Science, Seoul Women’s University, Nowon-Ku, South Korea c USDA, ARS, BARC-East, Electron and Confocal Microscope Unit, 10300 Baltimore Avenue, Beltsville, MD 20705-2350, USA d School of Biological Science & Technology, Chonnam National University, Gwangju, South Korea a r t i c l e i n f o a b s t r a c t Article history: The objectives of this study were to create interspecific hybrids between Cyrtanthus elatus and C. san- Received 31 May 2012 guineus and to confirm the hybrid origin of the progeny based on morphological characters and using Received in revised form 4 July 2012 molecular markers. The tip of the leaves, the shape and size of cells, and stomata distribution in abaxial Accepted 5 July 2012 and adaxial surface of leaf epidermis were analyzed by low temperature scanning electron microscope (LT-SEM). Molecular markers generated from random amplification polymorphic DNA (RAPD) and single Keywords: nucleotide polymorphisms (SNPs) analysis of internal transcribed spacer 1 and 2 of rRNA gene (ITS 1, 2) Amaryllidaceae were also analyzed to confirm hybrid status. Putative C.