Comparative Risk Assessment of Three Native Heliotropium Species in Israel

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Risk Assessment of Three Native Heliotropium Species in Israel molecules Article Comparative Risk Assessment of Three Native Heliotropium Species in Israel Jakob A. Shimshoni 1,* , Shimon Barel 2 and Patrick P. J. Mulder 3 1 Department of Food Quality & Safety, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeTsyion 753593, Israel 2 Department of Toxicology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; [email protected] 3 Wageningen Food Safety Research, Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands; [email protected] * Correspondence: [email protected]; Tel.: +972-50-6243961; Fax: +972-3-9681730 Abstract: Pyrrolizidine alkaloids (PAs) are genotoxic carcinogenic phytotoxins mostly prevalent in the Boraginaceae, Asteraceae and Fabaceae families. Heliotropium species (Boraginaceae) are PA-producing weeds, widely distributed in the Mediterranean region, that have been implicated with lethal intoxications in livestock and humans. In Israel, H. europaeum, H. rotundifolium and H. suaveolens are the most prevalent species. The toxicity of PA-producing plants depends on the PA concentration and composition. PAs occur in plants as mixtures of dozens of various PA congeners. Hence, the risk arising from simultaneous exposure to different congeners has to be evaluated. The comparative risk evaluation of the three Heliotropium species was based on recently proposed interim relative potency (iREP) factors, which take into account certain structural features as well as in vitro and in vivo toxicity data obtained for several PAs of different classes. The aim of the present study was to determine the PA profile of the major organ parts of H. europaeum, H. rotundifolium and H. suaveolens in order to assess the plants’ relative toxic potential by utilizing the iREP concept. In total, 31 different PAs were found, among which 20 PAs were described for the first time for Citation: Shimshoni, J.A.; Barel, S.; H. rotundifolium and H. suaveolens. The most prominent PAs were heliotrine-N-oxide, europine-N- Mulder, P.P.J. Comparative Risk oxide and lasiocarpine-N-oxide. Europine-N-oxide displayed significant differences among the three Assessment of Three Native species. The PA levels ranged between 0.5 and 5% of the dry weight. The flowers of the three species Heliotropium Species in Israel. were rich in PAs, while the PA content in the root and flowers of H. europaeum was higher than that Molecules 2021, 26, 689. https:// of the other species. H. europaeum was found to pose a higher risk to mammals than H. rotundifolium, 10.3390/molecules26030689 whereas no differences were found between H. europaeum and H. suaveolens as well as H. suaveolens and H. rotundifolium. Academic Editor: Stefano Dall’Acqua Received: 15 December 2020 Keywords: Heliotropium europaeum; suaveolens; rotundifolium; pyrrolizidine alkaloids; interim Accepted: 25 January 2021 Published: 28 January 2021 relative potency factor Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affil- 1. Introduction iations. Pyrrolizidine alkaloids (PAs) are secondary plant metabolites that function as chemical defense compounds against various herbivores [1–3]. They are highly prevalent in the plant families of Boraginaceae, Asteraceae (Senecio and Eupatorieae tribes) and Fabaceae (Crotalarieae tribe). More than 660 PA and PA-N-oxides have been identified and these Copyright: © 2021 by the authors. have been estimated to occur in over 6000 plants [1–3]. PAs are composed of a saturated or Licensee MDPI, Basel, Switzerland. 1,2-unsaturated necine base esterified with one or two necic acids [1,2]. Common PA types This article is an open access article occurring in the Heliotropium genus are depicted in Figure1[ 3]. In general, PAs occur in distributed under the terms and two forms, namely, as the free tertiary base and their corresponding N-oxide. conditions of the Creative Commons Many PAs exhibit genotoxic effects in humans and farm animals targeting mainly Attribution (CC BY) license (https:// the liver [4–7]. Most 1,2-dehydro PAs are pro-toxins, requiring metabolic activation by creativecommons.org/licenses/by/ cytochrome P450 to generate a pyrrolic ester as the reactive electrophilic intermediate that 4.0/). Molecules 2021, 26, 689. https://doi.org/10.3390/molecules26030689 https://www.mdpi.com/journal/molecules Molecules 2021, 26, 689 2 of 12 subsequently reacts with proteins and nucleic acids [6,7]. Since, upon ingestion, PA-N- oxides are reduced in the gut/liver to their corresponding free bases, both PA forms are considered to be toxic [2,7,8]. The toxicity of PA-producing plants mostly depends on the absolute PA concentration but also on the plants’ PA composition, as the toxic potential of Molecules 2021, 26, 689 individual PAs and their N-oxides widely differs [4,7]. The structural features determining2 of 14 the toxic potencies of PAs have been extensively studied and reviewed [2,4,9]. 1 1 R R 5' CH 3 CH3 CH3 CH3 O 3' O O O 1 2 2' R OH R O CH3 9 OH OH OH OH O O O HO O H HO H HO H H 7 1 6 2 N N N N 5 3 R1 = H Supinine (1) Echinatine (3)RR1 = H, R2= OH Rinderine (4) 1 = H Heliotrine (7) R1 = OH Heleurine (2) R1 = H, R2 = OAc 3'-Acetylrinderine (5) R1 = OH Europine (8) R1 = OH, R2 = OH 5'-Hydroxyrinderine (6) R1 = OAc 5'-Acetyleuropine (9) 1 1 OH R R CH3 CH3 CH3 O O O O O O 1 R O CH3 O CH3 O OH O OH O OH O H O H O H N N N R1 = OH Heliosupine (10) R1 = H 7-Angeloylheliotrine (12) R1 = OH 7-Tigloyleuropine (15) R1 = OAc 3'-Acetylheliosupine (11) R1 = OH Lasiocarpine (13) R1 = OAc 5'-Acetyl-7-tigloyleuropine (16) R1 = OAc 5'-Acetyllasiocarpine (14) OH OH O O CH 3 CH3 CH3 CH3 CH3 O O O O O OH OH CH OH OH O CH3 OH O 3 HO OH HO OH HO OH HO OH HO OH Angelic acid (-)-Viridifloric acid (+)-Trachelantic acid Tiglic acid Heliotric acid Echimidinic acid Lasiocarpic acid FigureFigure 1. PyrrolizidinePyrrolizidine alkaloids alkaloids (PAs) (PAs) and and corresponding corresponding necic necic acids acids commonly commonly found found in Heliotropium in Heliotropium species.species. The cor- The correspondingresponding PA- PA-N-oxideN-oxide forms forms are arenot not shown. shown. ManyPA-containing PAs exhibit plants genotoxic commonly effects grow in inhu pasturesmans and and farm agricultural animals targeting fields, resulting mainly in theoccasional liver [4–7]. cross-contamination Most 1,2-dehydro of PAs crops are and pro- agriculturaltoxins, requiring produce metabolic [1,3,4]. As activation PAs occur by as cytochromemixtures of P450 dozens to generate of various a pyrrolic PA congeners, ester as the the risk reactive arising electrophilic from simultaneous intermediate exposure that subsequentlyto different congeners reacts with has prot toeins be evaluatedand nucleic [9 acids,10]. [6,7]. Although Since, the upon genotoxic ingestion, potency PA-N- of oxidesdifferent are congeners reduced in may the varygut/liver substantially to their corresponding by several orders free bases, of magnitude, both PA forms the current are consideredapproach to to assess be toxic the [2,7,8]. risk of The PA toxicity mixtures of in PA-producing a sample is to plants assign mostly to all ofdepends them the on samethe absolutepotency PA as the concentration most toxic but congeners also on (namely,the plants’ lasiocarpine PA composition, or riddelliine), as the toxic resulting potential in a ofclear individual risk over-estimation PAs and their [9 ,N10-oxides]. widely differs [4,7]. The structural features deter- miningRecently, the toxic Merz potencies and Schrenkof PAs have suggested been extensively assigning studied interim and relative reviewed potency [2,4,9]. (iREP) factorsPA-containing to PA congeners plants of certaincommonly structural grow in features pastures [9]. and In brief, agricultural this approach fields, isresulting based on instructural occasional considerations cross-contamination together of with crops acute and toxicity agricultural data produce from rodents, [1,3,4]. cytotoxicity As PAs occur data asin mixtures mammalian of dozens cell cultures of various and PA genotoxicity congeners, data the risk in Drosophila, arising from obtained simultaneous for a expo- limited surenumber to different of PAs. congeners The iREP has factors to be range evalua fromted [9,10]. 1.0 for Although the most the toxic genotoxic PAs to potency 0.01 for of the differentleast toxic congeners congeners may [9]. vary The substantially limited available by severalin vivo ordersand in of vitro magnitude,toxicity datathe current indicate approach to assess the risk of PA mixtures in a sample is to assign to all of them the same potency as the most toxic congeners (namely, lasiocarpine or riddelliine), resulting in a clear risk over-estimation [9,10]. Recently, Merz and Schrenk suggested assigning interim relative potency (iREP) fac- tors to PA congeners of certain structural features [9]. In brief, this approach is based on structural considerations together with acute toxicity data from rodents, cytotoxicity data Molecules 2021, 26, 689 3 of 12 that cyclic PA di-esters and 7S-open-chained PA di-esters (compounds 10–16 in Figure1) are markedly more toxic than 7R-open-chained di-esters followed by 7S PA mono-esters (compounds 1–9)[3,9,10]. Heliotropium species are PA-producing weeds, widely distributed in the Mediter- ranean region, that have been implicated with lethal PA intoxications in livestock and humans [11–18]. In Israel, 14 different Heliotropium species have been reported, with H. europaeum, H. rotundifolium and H. suaveolens being frequently found in pastures [19–21]. During February 2014, a herd of 73 replacement mixed breed beef cattle (15–18 months old) from the Galilee region of Israel were fed for six weeks a total mixed ration containing hay contaminated with 15% Heliotropium europaeum, resulting in a mortality rate of 33% over a period of 63 days [17].
Recommended publications
  • Anchusa L. and Allied Genera (Boraginaceae) in Italy
    Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology Official Journal of the Societa Botanica Italiana ISSN: 1126-3504 (Print) 1724-5575 (Online) Journal homepage: http://www.tandfonline.com/loi/tplb20 Anchusa L. and allied genera (Boraginaceae) in Italy F. SELVI & M. BIGAZZI To cite this article: F. SELVI & M. BIGAZZI (1998) Anchusa L. and allied genera (Boraginaceae) in Italy, Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 132:2, 113-142, DOI: 10.1080/11263504.1998.10654198 To link to this article: http://dx.doi.org/10.1080/11263504.1998.10654198 Published online: 18 Mar 2013. Submit your article to this journal Article views: 29 View related articles Citing articles: 20 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tplb20 Download by: [Università di Pisa] Date: 05 November 2015, At: 02:31 PLANT BIOSYSTEMS, 132 (2) 113-142, 1998 Anchusa L. and allied genera (Boraginaceae) in Italy F. SEL VI and M. BIGAZZI received 18 May 1998; revised version accepted 30 July 1998 ABSTRACT - A revision of the Italian entities of Anchusa and of the rdated genera Anchusella, Lycopsis, Cynoglottis, Hormuzakia and Pentaglottis was carried out in view of the poor systematic knowledge of some entities of the national flora. The taxonomic treatment relies on a wide comparative basis, including macro- and micromorphological, karyological, chorological and ecological data. After a general description of some poorly known microCharacters of vegetative and reproductive structures, analytical keys, nomenclatural types, synonymies, descriptions, distribution maps and iconographies are provided for each entity.
    [Show full text]
  • Comparative Analysis of Five Heliotropium Species in Phenotypic Correlations, Biochemical Constituents and Antioxidant Properties
    CATRINA (2020), 21(1): 1-8 © 2020 BY THE EGYPTIAN SOCIETY FOR ENVIRONMENTAL SCIENCES Comparative Analysis of Five Heliotropium species in Phenotypic Correlations, Biochemical Constituents and Antioxidant Properties Deya El-deen M.Radwan1, 2, Ahmed E. El-shabasy1 1. Biology Department, Faculty of Science, Jazan University, KSA 2. Botany Department, Faculty of Science, Sohag University, Egypt. ABSTRACT This study aims to compare five species of Heliotropium collected from Jazan region, Kingdom of Saudi Arabia. This comparison was carried out on basis of morphology, pigments content, proteins, total phenolics, flavonoids as well as their antioxidant activity. According to similarity matrix and cluster analysis, H. longiflorum and H. zeylanicum were closely related while H. pterocarpum and H. zeylanicum were distantly related species. The variation in pigments content of the five studied species of Heliotropium was obvious. H. zeylanicum recorded the highest content of pigments while H. bacciferum was the lowest. Moreover, H. jizanense and H. pterocarpum had almost similar pigments content. Proteins, phenolics and flavonoids showed noticeable variation among the tested species. In other words, H. zeylanicum and H. bacciferum had the highest contents of proteins, phenolics and flavonoids and H. jizanense had lowest and the difference was significant. Meanwhile, the total antioxidant activity was variable among species. Higher antioxidant activity was detected in H. zeylanicum (93%) and H. bacciferum (84%) while H. pterocarpum (34.5%). Keywords: Heliotropium, Boraginaceae, pigments content, proteins content, phenolic compounds, flavonoids, antioxidant activity. INTRODUCTION characteristics because of variation in content and type of pigments; chlorophyll, carotenoids, other pigments Heliotropium with its different species is considered which together constitute the spectral characters of a as valuable medicinal plant worldwide.
    [Show full text]
  • Blue Heliotrope
    NSW DPI primefacts PROFITABLE & SUSTAINABLE PRIMARY INDUSTRIES www.dpi.nsw.gov.au JULY 2008 PRIMEFact 653 (REPLACES AGFact P7.6.57) Blue heliotrope JJ Dellow Former Weeds Agronomist, Orange Agricultural Institute CA Bourke Principal Research Scientist (Poisonous Plants), Orange Agricultural Institute AC McCaffery Project Officer (Weeds), Orange Agricultural Institute Introduction Blue heliotrope (Heliotropium amplexicaule Vahl) is a summer-growing perennial herb. It is extremely drought-hardy, which increases its ability to persist and spread, and has made it a major agricultural weed in NSW. Blue heliotrope belongs to the Boraginaceae family which includes forget-me-nots (Myosotis spp), comfrey (Symphytum officinale), Paterson’s Figure 1. Blue heliotrope flower. Photo: J. Kidston curse (Echium plantagineum) and yellow burrweed (Amsinckia spp). to a wide range of soil and climate types. It occupies Blue heliotrope is a native of South America, and was more than 110 000 hectares in NSW. probably introduced to Australia as an ornamental plant in the latter part of the 19th century. It was first reported in NSW in 1908 in the Hunter Valley, and Habitat since then has colonised large areas of NSW. Blue heliotrope is often found along roadsides, in Blue heliotrope is a noxious weed in many local waterways, on non-arable country, in degraded control areas of NSW. pastures and on fallowed cultivation. Major infestations occur in areas receiving more than 500 mm of rainfall per year, although it is also Impact established in low-rainfall areas, such as the western Blue heliotrope competes with desirable pasture districts of NSW. plants and causes toxicity to stock.
    [Show full text]
  • Identity of Mertensia Oblongifolia (Nutt.) G. Don (Boraginaceae) and Its Allies in Western North America
    Great Basin Naturalist Volume 58 Number 1 Article 4 1-30-1998 Identity of Mertensia oblongifolia (Nutt.) G. Don (Boraginaceae) and its allies in western North America Ahmed M. Warfa Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Warfa, Ahmed M. (1998) "Identity of Mertensia oblongifolia (Nutt.) G. Don (Boraginaceae) and its allies in western North America," Great Basin Naturalist: Vol. 58 : No. 1 , Article 4. Available at: https://scholarsarchive.byu.edu/gbn/vol58/iss1/4 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Great Basin Naturalist 58(1), © 1998, pp. 38-44 IDENTITY OF MERTENSIA OBLONGIFOLIA (NUTT) G. DON (BORAGINACEAE) AND ITS ALLIES IN WESTERN NORTH AMERICA Ahmed M. Warfal ABSTRACT.-The current status of Mertensia oblongifoUa (Nutt.) G. Don and its allied taxa is surveyed. On the bases of continuously coherent morphological characters and/or regionally correlated variations, more than 30 taxa, including species, subspecies, varieties, and 1 forma, previously considered different from M. oblongifolia, are now placed under synonymy of this species. Those taxa currently known as M. fusiformis Greene, M. bakeri Greene, and M. bakeri var. osterhoutii Williams are among the new synonyms. Typification, taxonomy, and morphological problems ofM. oblongifo­ lia are discussed. Key words: Mertensia oblongifolia, typification, Wxorwmy, morphology, allied taxa. Nuttall (1834) described and depicted Pul­ represents an important additional morpholog­ monaria oblongifolia from a collection ofplants ical feature in the taxon.
    [Show full text]
  • Ethnopharmacology in the Work of the British Botanist Arthur Francis George Kerr (1877 ÂŒ 1942)
    ORIGINAL ARTICLES Institute of Pharmaceutical Chemistry, Department Biochemistry, Chemistry, and Pharmacy, Goethe University, Frankfurt am Main, Germany Ethnopharmacology in the work of the British botanist Arthur Francis George Kerr (1877 – 1942) A. HELMSTÄDTER Received August 29, 2016, accepted September 23, 2016 Prof. Dr. Axel Helmstädter, Institut für Pharmazeutische Chemie, Biozentrum, Goethe-Universität, Max-von-Laue- Str. 9, 60438 Frankfurt am Main, Germany [email protected] Pharmazie 72: 58–64 (2017) doi: 10.1691/ph.2017.6817 Reports on traditional use of medicinal plants may be used as starting points for phytochemical and pharmaco- logical research. As has recently been shown, publications, letters, diaries and reports of exploring botanists are a valuable source of historical ethnopharmacological information. In this study, the heritage of the British botanist Arthur Francis George Kerr (1877–1942), mainly working in Thailand, was screened for information about tradi- tionally used medicinal plants. Information given was compared to state-of-the-art scientific knowledge about these species. Many historical uses could be confirmed, some did not, while a number of species reported to be traditionally used have not been sufficiently investigated so far. These, strongly suggested for further research, include Kurrimia robusta, Alpinia siamensis, Amomum krervanh (A. testaceum), Trichosanthes integrifolia (= Gymnopetalum scabrum), Croton cumingii (= C. cascarilloides), Lobelia radicans (= L. chinensis), Willughbeia sp., Nyctanthes arbor-tristis, Pluchea indica, Heliotropum indicum, as well as some fungi and woods. 1. Introduction A considerable part of newly developed pharmacologically active agents is of natural origin, derived from nature or has at least some relationship to naturally occurring compounds (Newman and Cragg 2016).
    [Show full text]
  • Tournefortia Y Heliotropium (Boraginaceae S.L
    Desde el Herbario CICY 6: 45 –47 (14/Mayo/2014) Herbario CICY, Centro de Investigación Científica de Yucatán, A. C. (CICY) http://www.cicy.mx/sitios/desde_herbario/ TOURNEFORTIA Y HELIOTROPIUM (BORAGINACEAE S.L. ): ¿CÓMO DIFERENCIAR ESTOS DOS GÉNEROS CON INFLORESCENCIAS ESCORPIOIDES? RICARDO BALAM -NARVÁEZ & IVÁN RAMÍREZ -ARRAZOLA Área de Sistemática y Florística. Escuela de Ciencias, Universidad Autónoma “Benito Juárez” de Oaxaca, Av. Universidad s.n., Ex-Hacienda de 5 Señores, C.P. 68120, Oaxaca, Oaxaca, México. [email protected] Identificar una planta en particular re-quiere de un conocimiento botánico y del uso de claves taxonómicas como herramientas tradicionales en la identificación. En la ac- tualidad, se concibe al taxónomo como una persona encerrada en un herbario o museo y que se encarga de la descripción e identificación de uno o varios taxa. Sin embargo, ser un taxónomo requiere de mucha paciencia, conocimiento botánico y evolutivo del grupo de su especialidad. Para adquirir los conocimientos antes 2012). La clasificación de la familia ha mencionados, es necesario pasar horas y sido controversial y análisis filogenéticos horas estudiando muestras botánicas (en- sugieren una naturaleza parafilética (APG tre otras fuentes de información) con el III 2009). Tradicionalmente se divide en fin de entender la variabilidad morfológi- cuatro subfamilias: Ehretioideae, Cordioi- ca de un taxón, ¿y por qué no? también su deae, Heliotropioideae y Boraginoideae ecología y patrones de distribución, todo (p. ej. Thaktajan 1996), pero recientemen- con la finalidad de identificar caracteres te se han propuesto clasificaciones dife- taxonómicos útiles (diagnósticos) para la rentes (Cohen 2013), con el reconoci- delimitación de los taxa.
    [Show full text]
  • Phenotypic Landscape Inference Reveals Multiple Evolutionary Paths to C4 Photosynthesis
    RESEARCH ARTICLE elife.elifesciences.org Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis Ben P Williams1†, Iain G Johnston2†, Sarah Covshoff1, Julian M Hibberd1* 1Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom; 2Department of Mathematics, Imperial College London, London, United Kingdom Abstract C4 photosynthesis has independently evolved from the ancestral C3 pathway in at least 60 plant lineages, but, as with other complex traits, how it evolved is unclear. Here we show that the polyphyletic appearance of C4 photosynthesis is associated with diverse and flexible evolutionary paths that group into four major trajectories. We conducted a meta-analysis of 18 lineages containing species that use C3, C4, or intermediate C3–C4 forms of photosynthesis to parameterise a 16-dimensional phenotypic landscape. We then developed and experimentally verified a novel Bayesian approach based on a hidden Markov model that predicts how the C4 phenotype evolved. The alternative evolutionary histories underlying the appearance of C4 photosynthesis were determined by ancestral lineage and initial phenotypic alterations unrelated to photosynthesis. We conclude that the order of C4 trait acquisition is flexible and driven by non-photosynthetic drivers. This flexibility will have facilitated the convergent evolution of this complex trait. DOI: 10.7554/eLife.00961.001 Introduction *For correspondence: Julian. The convergent evolution of complex traits is surprisingly common, with examples including camera- [email protected] like eyes of cephalopods, vertebrates, and cnidaria (Kozmik et al., 2008), mimicry in invertebrates and †These authors contributed vertebrates (Santos et al., 2003; Wilson et al., 2012) and the different photosynthetic machineries of equally to this work plants (Sage et al., 2011a).
    [Show full text]
  • Missouriensis Volume 28 / 29
    Missouriensis Volume 28/29 (2008) In this issue: Improved Status of Auriculate False Foxglove (Agalinis auriculata) in Missouri in 2007 Tim E. Smith, Tom Nagel, and Bruce Schuette ......................... 1 Current Status of Yellow False Mallow (Malvastrum hispidum) in Missouri Tim E. Smith.................................................................................... 5 Heliotropium europaeum (Heliotropiaceae) New to Missouri Jay A. Raveill and George Yatskievych ..................................... 10 Melica mutica (Poaceae) New for the Flora of Missouri Alan E. Brant ................................................................................. 18 Schoenoplectus californicus (Cyperaceae) New to Missouri Timothy E. Vogt and Paul M. McKenzie ................................. 22 Flora of Galloway Creek Nature Park, Howell County, Missouri Bill Summers .................................................................................. 27 Journal of the Missouri Native Plant Society Missouriensis, Volume 28/29 2008 1 IMPROVED STATUS OF AURICULATE FALSE FOXGLOVE (AGALINIS AURICULATA) IN MISSOURI IN 2007 Tim E. Smith Missouri Department of Conservation P.O. Box 180, Jefferson City, MO 65102-0180 Tom Nagel Missouri Department of Conservation 701 James McCarthy Drive St. Joseph, MO 64507-2194 Bruce Schuette Missouri Department of Natural Resources Cuivre River State Park 678 State Rt. 147 Troy, MO 63379 Populations of annual plant species are known to have periodic “boom” and “bust” years as well as years when plant numbers more closely approach long-term averages. In tracking populations of plant species of conservation concern (Missouri Natural Heritage Program, 2007), there are sometimes also boom years in the number of reports of new populations. Because of reports of five new populations and a surge in numbers of plants at some previously-known sites, 2007 provided encouraging news for the conservation of the auriculate false foxglove [Agalinis auriculata (Michx.) Blake] in Missouri.
    [Show full text]
  • Cordia Subcordata Lam. C
    Cordia subcordata Lam. C JAMES A. ALLEN Paul Smiths College Paul Smiths, NY BORAGINACEAE (BORAGE FAMILY) No synonyms Kou, sea trumpet (Corner 1988, Little and Skolmen 1989) The genus Cordia contains about 250 species. They occur in may begin within 3 to 5 years of age. The fruit is drupaceous, tropical to warm temperate regions throughout the world, almost round, green when young, and brown and hard at matu- with the greatest diversity of species in the Neotropics (Wagn- rity. The fruits (capsules) are approximately 2.5 cm long, and er and others 1990). Cordia subcordata is apparently native to contain up to four white seeds, each about 10 to 13 mm long. Malesia but has been spread throughout the Pacific and along The fruits can be collected from the ground or picked Indian Ocean shores. The species can be found on seashores directly from the trees by hand or with a pruning pole. Specif- and adjacent lowlands from east Africa to Polynesia. Cordia ic recommendations for storing C. subcordata seed are unavail- subcordata closely resembles C. sebestena L., a better-known able. Seeds of other Cordia species can retain some viability for species frequently planted as an ornamental along tropical and up to 1 year when stored in airtight containers (Mandal and subtropical coasts (Little and Skolmen 1989, Wagner and oth- others 1985), but sowing fresh seed is recommended. Because ers 1990). the seeds are very difficult to extract without damage, whole Cordia subcordata is a moderately fast-growing, small capsules are generally sowed. evergreen tree with a broad, dense crown.
    [Show full text]
  • Boraginaceae) Taxa from Turkey
    Pak. J. Bot., 42(4): 2231-2247, 2010. MORPHOLOGICAL, ANATOMICAL AND NUMERICAL STUDIES ON SOME ANCHUSA L. (BORAGİNACEAE) TAXA FROM TURKEY TULAY AYTAS AKCIN1*, SENAY ULU1 AND ADNAN AKCIN2 1Department of Biology, Faculty of Art and Science, University of Ondokuz Mayıs, 55139 Samsun, Turkey 2Department of Biology, Faculty of Art and Science, University of Amasya, 05100 Amasya, Turkey Abstract This study used numerical methods to illustrate, describe and assess the taxonomic significance of morphological and anatomical features of three Anchusa species,, Anchusa undulata subsp. hybrida (Ten.) Coutinho, A. azurea Miller var. azurea and A. pusilla Guşul., collected from Northern Turkey. In this morphological study, it was determined that the ratio of calyx lobe to the calyx length and the arrangement of the anthers in the corolla tube were important characters in separating the taxa morphologically. Anatomical studies supported these morphological observations. Further, statistical analysis showed that corolla tube length was not important as a taxonomic character. However, the ratio of calyx lobe length to calyx length was the most significant character in distinguishing the taxa. The first two principal components explained 45.69 % of the total variance. Principal component analysis showed that no separation could be obtained among the species, although A. azurea specimens tended to compose a different group. Introduction Anchusa L., (Boraginaceae) is one of the major genera of flowering plants, consisting of about 170 taxa native to temperate and subtropical areas of the Old World. The major diversity centre of Anchusa is the southern part of the Balkan Peninsula (Selvi & Bigazzi, 2003). The present great form diversity in this heterogeneous genus has generated variable interpretations at both species and generic level (Guşuleac, 1927, 1928, 1929; Chater, 1972; Greuter et al., 1984; Brummit, 1992; Selvi & Bigazzi, 1998).
    [Show full text]
  • Flora Mediterranea 26
    FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M.
    [Show full text]
  • Diversity and Evolution of Asterids!
    Diversity and Evolution of Asterids! . mints and snapdragons . ! *Boraginaceae - borage family! Widely distributed, large family of alternate leaved plants. Typically hairy. Typically possess helicoid or scorpiod cymes = compound monochasium. Many are poisonous or used medicinally. Mertensia virginica - Eastern bluebells *Boraginaceae - borage family! CA (5) CO (5) A 5 G (2) Gynobasic style; not terminal style which is usual in plants; this feature is shared with the mint family (Lamiaceae) which is not related Myosotis - forget me not 2 carpels each with 2 ovules are separated at maturity and each further separated into 1 ovuled compartments Fruit typically 4 nutlets *Boraginaceae - borage family! Echium vulgare Blueweed, viper’s bugloss adventive *Boraginaceae - borage family! Hackelia virginiana Beggar’s-lice Myosotis scorpioides Common forget-me-not *Boraginaceae - borage family! Lithospermum canescens Lithospermum incisium Hoary puccoon Fringed puccoon *Boraginaceae - borage family! pin thrum Lithospermum canescens • Lithospermum (puccoon) - classic Hoary puccoon dimorphic heterostyly *Boraginaceae - borage family! Mertensia virginica Eastern bluebells Botany 401 final field exam plant! *Boraginaceae - borage family! Leaves compound or lobed and “water-marked” Hydrophyllum virginianum - Common waterleaf Botany 401 final field exam plant! **Oleaceae - olive family! CA (4) CO (4) or 0 A 2 G (2) • Woody plants, opposite leaves • 4 merous actinomorphic or regular flowers Syringa vulgaris - Lilac cultivated **Oleaceae - olive family! CA (4)
    [Show full text]