Comparative Risk Assessment of Three Native Heliotropium Species in Israel
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Anchusa L. and Allied Genera (Boraginaceae) in Italy
Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology Official Journal of the Societa Botanica Italiana ISSN: 1126-3504 (Print) 1724-5575 (Online) Journal homepage: http://www.tandfonline.com/loi/tplb20 Anchusa L. and allied genera (Boraginaceae) in Italy F. SELVI & M. BIGAZZI To cite this article: F. SELVI & M. BIGAZZI (1998) Anchusa L. and allied genera (Boraginaceae) in Italy, Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 132:2, 113-142, DOI: 10.1080/11263504.1998.10654198 To link to this article: http://dx.doi.org/10.1080/11263504.1998.10654198 Published online: 18 Mar 2013. Submit your article to this journal Article views: 29 View related articles Citing articles: 20 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tplb20 Download by: [Università di Pisa] Date: 05 November 2015, At: 02:31 PLANT BIOSYSTEMS, 132 (2) 113-142, 1998 Anchusa L. and allied genera (Boraginaceae) in Italy F. SEL VI and M. BIGAZZI received 18 May 1998; revised version accepted 30 July 1998 ABSTRACT - A revision of the Italian entities of Anchusa and of the rdated genera Anchusella, Lycopsis, Cynoglottis, Hormuzakia and Pentaglottis was carried out in view of the poor systematic knowledge of some entities of the national flora. The taxonomic treatment relies on a wide comparative basis, including macro- and micromorphological, karyological, chorological and ecological data. After a general description of some poorly known microCharacters of vegetative and reproductive structures, analytical keys, nomenclatural types, synonymies, descriptions, distribution maps and iconographies are provided for each entity. -
Comparative Analysis of Five Heliotropium Species in Phenotypic Correlations, Biochemical Constituents and Antioxidant Properties
CATRINA (2020), 21(1): 1-8 © 2020 BY THE EGYPTIAN SOCIETY FOR ENVIRONMENTAL SCIENCES Comparative Analysis of Five Heliotropium species in Phenotypic Correlations, Biochemical Constituents and Antioxidant Properties Deya El-deen M.Radwan1, 2, Ahmed E. El-shabasy1 1. Biology Department, Faculty of Science, Jazan University, KSA 2. Botany Department, Faculty of Science, Sohag University, Egypt. ABSTRACT This study aims to compare five species of Heliotropium collected from Jazan region, Kingdom of Saudi Arabia. This comparison was carried out on basis of morphology, pigments content, proteins, total phenolics, flavonoids as well as their antioxidant activity. According to similarity matrix and cluster analysis, H. longiflorum and H. zeylanicum were closely related while H. pterocarpum and H. zeylanicum were distantly related species. The variation in pigments content of the five studied species of Heliotropium was obvious. H. zeylanicum recorded the highest content of pigments while H. bacciferum was the lowest. Moreover, H. jizanense and H. pterocarpum had almost similar pigments content. Proteins, phenolics and flavonoids showed noticeable variation among the tested species. In other words, H. zeylanicum and H. bacciferum had the highest contents of proteins, phenolics and flavonoids and H. jizanense had lowest and the difference was significant. Meanwhile, the total antioxidant activity was variable among species. Higher antioxidant activity was detected in H. zeylanicum (93%) and H. bacciferum (84%) while H. pterocarpum (34.5%). Keywords: Heliotropium, Boraginaceae, pigments content, proteins content, phenolic compounds, flavonoids, antioxidant activity. INTRODUCTION characteristics because of variation in content and type of pigments; chlorophyll, carotenoids, other pigments Heliotropium with its different species is considered which together constitute the spectral characters of a as valuable medicinal plant worldwide. -
Blue Heliotrope
NSW DPI primefacts PROFITABLE & SUSTAINABLE PRIMARY INDUSTRIES www.dpi.nsw.gov.au JULY 2008 PRIMEFact 653 (REPLACES AGFact P7.6.57) Blue heliotrope JJ Dellow Former Weeds Agronomist, Orange Agricultural Institute CA Bourke Principal Research Scientist (Poisonous Plants), Orange Agricultural Institute AC McCaffery Project Officer (Weeds), Orange Agricultural Institute Introduction Blue heliotrope (Heliotropium amplexicaule Vahl) is a summer-growing perennial herb. It is extremely drought-hardy, which increases its ability to persist and spread, and has made it a major agricultural weed in NSW. Blue heliotrope belongs to the Boraginaceae family which includes forget-me-nots (Myosotis spp), comfrey (Symphytum officinale), Paterson’s Figure 1. Blue heliotrope flower. Photo: J. Kidston curse (Echium plantagineum) and yellow burrweed (Amsinckia spp). to a wide range of soil and climate types. It occupies Blue heliotrope is a native of South America, and was more than 110 000 hectares in NSW. probably introduced to Australia as an ornamental plant in the latter part of the 19th century. It was first reported in NSW in 1908 in the Hunter Valley, and Habitat since then has colonised large areas of NSW. Blue heliotrope is often found along roadsides, in Blue heliotrope is a noxious weed in many local waterways, on non-arable country, in degraded control areas of NSW. pastures and on fallowed cultivation. Major infestations occur in areas receiving more than 500 mm of rainfall per year, although it is also Impact established in low-rainfall areas, such as the western Blue heliotrope competes with desirable pasture districts of NSW. plants and causes toxicity to stock. -
Identity of Mertensia Oblongifolia (Nutt.) G. Don (Boraginaceae) and Its Allies in Western North America
Great Basin Naturalist Volume 58 Number 1 Article 4 1-30-1998 Identity of Mertensia oblongifolia (Nutt.) G. Don (Boraginaceae) and its allies in western North America Ahmed M. Warfa Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Warfa, Ahmed M. (1998) "Identity of Mertensia oblongifolia (Nutt.) G. Don (Boraginaceae) and its allies in western North America," Great Basin Naturalist: Vol. 58 : No. 1 , Article 4. Available at: https://scholarsarchive.byu.edu/gbn/vol58/iss1/4 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Great Basin Naturalist 58(1), © 1998, pp. 38-44 IDENTITY OF MERTENSIA OBLONGIFOLIA (NUTT) G. DON (BORAGINACEAE) AND ITS ALLIES IN WESTERN NORTH AMERICA Ahmed M. Warfal ABSTRACT.-The current status of Mertensia oblongifoUa (Nutt.) G. Don and its allied taxa is surveyed. On the bases of continuously coherent morphological characters and/or regionally correlated variations, more than 30 taxa, including species, subspecies, varieties, and 1 forma, previously considered different from M. oblongifolia, are now placed under synonymy of this species. Those taxa currently known as M. fusiformis Greene, M. bakeri Greene, and M. bakeri var. osterhoutii Williams are among the new synonyms. Typification, taxonomy, and morphological problems ofM. oblongifo lia are discussed. Key words: Mertensia oblongifolia, typification, Wxorwmy, morphology, allied taxa. Nuttall (1834) described and depicted Pul represents an important additional morpholog monaria oblongifolia from a collection ofplants ical feature in the taxon. -
Ethnopharmacology in the Work of the British Botanist Arthur Francis George Kerr (1877 Œ 1942)
ORIGINAL ARTICLES Institute of Pharmaceutical Chemistry, Department Biochemistry, Chemistry, and Pharmacy, Goethe University, Frankfurt am Main, Germany Ethnopharmacology in the work of the British botanist Arthur Francis George Kerr (1877 – 1942) A. HELMSTÄDTER Received August 29, 2016, accepted September 23, 2016 Prof. Dr. Axel Helmstädter, Institut für Pharmazeutische Chemie, Biozentrum, Goethe-Universität, Max-von-Laue- Str. 9, 60438 Frankfurt am Main, Germany [email protected] Pharmazie 72: 58–64 (2017) doi: 10.1691/ph.2017.6817 Reports on traditional use of medicinal plants may be used as starting points for phytochemical and pharmaco- logical research. As has recently been shown, publications, letters, diaries and reports of exploring botanists are a valuable source of historical ethnopharmacological information. In this study, the heritage of the British botanist Arthur Francis George Kerr (1877–1942), mainly working in Thailand, was screened for information about tradi- tionally used medicinal plants. Information given was compared to state-of-the-art scientific knowledge about these species. Many historical uses could be confirmed, some did not, while a number of species reported to be traditionally used have not been sufficiently investigated so far. These, strongly suggested for further research, include Kurrimia robusta, Alpinia siamensis, Amomum krervanh (A. testaceum), Trichosanthes integrifolia (= Gymnopetalum scabrum), Croton cumingii (= C. cascarilloides), Lobelia radicans (= L. chinensis), Willughbeia sp., Nyctanthes arbor-tristis, Pluchea indica, Heliotropum indicum, as well as some fungi and woods. 1. Introduction A considerable part of newly developed pharmacologically active agents is of natural origin, derived from nature or has at least some relationship to naturally occurring compounds (Newman and Cragg 2016). -
Tournefortia Y Heliotropium (Boraginaceae S.L
Desde el Herbario CICY 6: 45 –47 (14/Mayo/2014) Herbario CICY, Centro de Investigación Científica de Yucatán, A. C. (CICY) http://www.cicy.mx/sitios/desde_herbario/ TOURNEFORTIA Y HELIOTROPIUM (BORAGINACEAE S.L. ): ¿CÓMO DIFERENCIAR ESTOS DOS GÉNEROS CON INFLORESCENCIAS ESCORPIOIDES? RICARDO BALAM -NARVÁEZ & IVÁN RAMÍREZ -ARRAZOLA Área de Sistemática y Florística. Escuela de Ciencias, Universidad Autónoma “Benito Juárez” de Oaxaca, Av. Universidad s.n., Ex-Hacienda de 5 Señores, C.P. 68120, Oaxaca, Oaxaca, México. [email protected] Identificar una planta en particular re-quiere de un conocimiento botánico y del uso de claves taxonómicas como herramientas tradicionales en la identificación. En la ac- tualidad, se concibe al taxónomo como una persona encerrada en un herbario o museo y que se encarga de la descripción e identificación de uno o varios taxa. Sin embargo, ser un taxónomo requiere de mucha paciencia, conocimiento botánico y evolutivo del grupo de su especialidad. Para adquirir los conocimientos antes 2012). La clasificación de la familia ha mencionados, es necesario pasar horas y sido controversial y análisis filogenéticos horas estudiando muestras botánicas (en- sugieren una naturaleza parafilética (APG tre otras fuentes de información) con el III 2009). Tradicionalmente se divide en fin de entender la variabilidad morfológi- cuatro subfamilias: Ehretioideae, Cordioi- ca de un taxón, ¿y por qué no? también su deae, Heliotropioideae y Boraginoideae ecología y patrones de distribución, todo (p. ej. Thaktajan 1996), pero recientemen- con la finalidad de identificar caracteres te se han propuesto clasificaciones dife- taxonómicos útiles (diagnósticos) para la rentes (Cohen 2013), con el reconoci- delimitación de los taxa. -
Phenotypic Landscape Inference Reveals Multiple Evolutionary Paths to C4 Photosynthesis
RESEARCH ARTICLE elife.elifesciences.org Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis Ben P Williams1†, Iain G Johnston2†, Sarah Covshoff1, Julian M Hibberd1* 1Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom; 2Department of Mathematics, Imperial College London, London, United Kingdom Abstract C4 photosynthesis has independently evolved from the ancestral C3 pathway in at least 60 plant lineages, but, as with other complex traits, how it evolved is unclear. Here we show that the polyphyletic appearance of C4 photosynthesis is associated with diverse and flexible evolutionary paths that group into four major trajectories. We conducted a meta-analysis of 18 lineages containing species that use C3, C4, or intermediate C3–C4 forms of photosynthesis to parameterise a 16-dimensional phenotypic landscape. We then developed and experimentally verified a novel Bayesian approach based on a hidden Markov model that predicts how the C4 phenotype evolved. The alternative evolutionary histories underlying the appearance of C4 photosynthesis were determined by ancestral lineage and initial phenotypic alterations unrelated to photosynthesis. We conclude that the order of C4 trait acquisition is flexible and driven by non-photosynthetic drivers. This flexibility will have facilitated the convergent evolution of this complex trait. DOI: 10.7554/eLife.00961.001 Introduction *For correspondence: Julian. The convergent evolution of complex traits is surprisingly common, with examples including camera- [email protected] like eyes of cephalopods, vertebrates, and cnidaria (Kozmik et al., 2008), mimicry in invertebrates and †These authors contributed vertebrates (Santos et al., 2003; Wilson et al., 2012) and the different photosynthetic machineries of equally to this work plants (Sage et al., 2011a). -
Missouriensis Volume 28 / 29
Missouriensis Volume 28/29 (2008) In this issue: Improved Status of Auriculate False Foxglove (Agalinis auriculata) in Missouri in 2007 Tim E. Smith, Tom Nagel, and Bruce Schuette ......................... 1 Current Status of Yellow False Mallow (Malvastrum hispidum) in Missouri Tim E. Smith.................................................................................... 5 Heliotropium europaeum (Heliotropiaceae) New to Missouri Jay A. Raveill and George Yatskievych ..................................... 10 Melica mutica (Poaceae) New for the Flora of Missouri Alan E. Brant ................................................................................. 18 Schoenoplectus californicus (Cyperaceae) New to Missouri Timothy E. Vogt and Paul M. McKenzie ................................. 22 Flora of Galloway Creek Nature Park, Howell County, Missouri Bill Summers .................................................................................. 27 Journal of the Missouri Native Plant Society Missouriensis, Volume 28/29 2008 1 IMPROVED STATUS OF AURICULATE FALSE FOXGLOVE (AGALINIS AURICULATA) IN MISSOURI IN 2007 Tim E. Smith Missouri Department of Conservation P.O. Box 180, Jefferson City, MO 65102-0180 Tom Nagel Missouri Department of Conservation 701 James McCarthy Drive St. Joseph, MO 64507-2194 Bruce Schuette Missouri Department of Natural Resources Cuivre River State Park 678 State Rt. 147 Troy, MO 63379 Populations of annual plant species are known to have periodic “boom” and “bust” years as well as years when plant numbers more closely approach long-term averages. In tracking populations of plant species of conservation concern (Missouri Natural Heritage Program, 2007), there are sometimes also boom years in the number of reports of new populations. Because of reports of five new populations and a surge in numbers of plants at some previously-known sites, 2007 provided encouraging news for the conservation of the auriculate false foxglove [Agalinis auriculata (Michx.) Blake] in Missouri. -
Cordia Subcordata Lam. C
Cordia subcordata Lam. C JAMES A. ALLEN Paul Smiths College Paul Smiths, NY BORAGINACEAE (BORAGE FAMILY) No synonyms Kou, sea trumpet (Corner 1988, Little and Skolmen 1989) The genus Cordia contains about 250 species. They occur in may begin within 3 to 5 years of age. The fruit is drupaceous, tropical to warm temperate regions throughout the world, almost round, green when young, and brown and hard at matu- with the greatest diversity of species in the Neotropics (Wagn- rity. The fruits (capsules) are approximately 2.5 cm long, and er and others 1990). Cordia subcordata is apparently native to contain up to four white seeds, each about 10 to 13 mm long. Malesia but has been spread throughout the Pacific and along The fruits can be collected from the ground or picked Indian Ocean shores. The species can be found on seashores directly from the trees by hand or with a pruning pole. Specif- and adjacent lowlands from east Africa to Polynesia. Cordia ic recommendations for storing C. subcordata seed are unavail- subcordata closely resembles C. sebestena L., a better-known able. Seeds of other Cordia species can retain some viability for species frequently planted as an ornamental along tropical and up to 1 year when stored in airtight containers (Mandal and subtropical coasts (Little and Skolmen 1989, Wagner and oth- others 1985), but sowing fresh seed is recommended. Because ers 1990). the seeds are very difficult to extract without damage, whole Cordia subcordata is a moderately fast-growing, small capsules are generally sowed. evergreen tree with a broad, dense crown. -
Boraginaceae) Taxa from Turkey
Pak. J. Bot., 42(4): 2231-2247, 2010. MORPHOLOGICAL, ANATOMICAL AND NUMERICAL STUDIES ON SOME ANCHUSA L. (BORAGİNACEAE) TAXA FROM TURKEY TULAY AYTAS AKCIN1*, SENAY ULU1 AND ADNAN AKCIN2 1Department of Biology, Faculty of Art and Science, University of Ondokuz Mayıs, 55139 Samsun, Turkey 2Department of Biology, Faculty of Art and Science, University of Amasya, 05100 Amasya, Turkey Abstract This study used numerical methods to illustrate, describe and assess the taxonomic significance of morphological and anatomical features of three Anchusa species,, Anchusa undulata subsp. hybrida (Ten.) Coutinho, A. azurea Miller var. azurea and A. pusilla Guşul., collected from Northern Turkey. In this morphological study, it was determined that the ratio of calyx lobe to the calyx length and the arrangement of the anthers in the corolla tube were important characters in separating the taxa morphologically. Anatomical studies supported these morphological observations. Further, statistical analysis showed that corolla tube length was not important as a taxonomic character. However, the ratio of calyx lobe length to calyx length was the most significant character in distinguishing the taxa. The first two principal components explained 45.69 % of the total variance. Principal component analysis showed that no separation could be obtained among the species, although A. azurea specimens tended to compose a different group. Introduction Anchusa L., (Boraginaceae) is one of the major genera of flowering plants, consisting of about 170 taxa native to temperate and subtropical areas of the Old World. The major diversity centre of Anchusa is the southern part of the Balkan Peninsula (Selvi & Bigazzi, 2003). The present great form diversity in this heterogeneous genus has generated variable interpretations at both species and generic level (Guşuleac, 1927, 1928, 1929; Chater, 1972; Greuter et al., 1984; Brummit, 1992; Selvi & Bigazzi, 1998). -
Flora Mediterranea 26
FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M. -
Diversity and Evolution of Asterids!
Diversity and Evolution of Asterids! . mints and snapdragons . ! *Boraginaceae - borage family! Widely distributed, large family of alternate leaved plants. Typically hairy. Typically possess helicoid or scorpiod cymes = compound monochasium. Many are poisonous or used medicinally. Mertensia virginica - Eastern bluebells *Boraginaceae - borage family! CA (5) CO (5) A 5 G (2) Gynobasic style; not terminal style which is usual in plants; this feature is shared with the mint family (Lamiaceae) which is not related Myosotis - forget me not 2 carpels each with 2 ovules are separated at maturity and each further separated into 1 ovuled compartments Fruit typically 4 nutlets *Boraginaceae - borage family! Echium vulgare Blueweed, viper’s bugloss adventive *Boraginaceae - borage family! Hackelia virginiana Beggar’s-lice Myosotis scorpioides Common forget-me-not *Boraginaceae - borage family! Lithospermum canescens Lithospermum incisium Hoary puccoon Fringed puccoon *Boraginaceae - borage family! pin thrum Lithospermum canescens • Lithospermum (puccoon) - classic Hoary puccoon dimorphic heterostyly *Boraginaceae - borage family! Mertensia virginica Eastern bluebells Botany 401 final field exam plant! *Boraginaceae - borage family! Leaves compound or lobed and “water-marked” Hydrophyllum virginianum - Common waterleaf Botany 401 final field exam plant! **Oleaceae - olive family! CA (4) CO (4) or 0 A 2 G (2) • Woody plants, opposite leaves • 4 merous actinomorphic or regular flowers Syringa vulgaris - Lilac cultivated **Oleaceae - olive family! CA (4)