Logical Methods in Computer Science Vol. 5 (3:3) 2009, pp. 1–27 Submitted Feb. 16, 2008 www.lmcs-online.org Published Aug. 3, 2009 LINDSTROM¨ THEOREMS FOR FRAGMENTS OF FIRST-ORDER LOGIC ∗ JOHAN VAN BENTHEM a, BALDER TEN CATE b, AND JOUKO VA¨ AN¨ ANEN¨ c a,c ILLC, University of Amsterdam e-mail address: {johan,vaananen}@science.uva.nl b ISLA, University of Amsterdam e-mail address:
[email protected] Abstract. Lindstr¨om theorems characterize logics in terms of model-theoretic conditions such as Compactness and the L¨owenheim-Skolem property. Most existing characterizations of this kind concern extensions of first-order logic. But on the other hand, many logics relevant to computer science are fragments or extensions of fragments of first-order logic, e.g., k-variable logics and various modal logics. Finding Lindstr¨om theorems for these languages can be on coding arguments that seem to require the full expressive power of first-order logic. In this paper, we provide Lindstr¨om theorems for several fragments of first-order logic, including the k-variable fragments for k > 2, Tarski’s relation algebra, graded modal logic, and the binary guarded fragment. We use two different proof techniques. One is a modification of the original Lindstr¨om proof. The other involves the modal concepts of bisimulation, tree unraveling, and finite depth. Our results also imply semantic preserva- tion theorems. 1. Introduction There are many ways to capture the expressive power of a logical language L. For instance, one can characterize L as being a model-theoretically well behaved fragment of a richer language L′ (a preservation theorem), or as being maximally expressive while satis- fying certain model-theoretic properties (a Lindstr¨om theorem).