Codomain from Wikipedia, the Free Encyclopedia Contents

Total Page:16

File Type:pdf, Size:1020Kb

Codomain from Wikipedia, the Free Encyclopedia Contents Codomain From Wikipedia, the free encyclopedia Contents 1 Algebra of sets 1 1.1 Fundamentals ............................................. 1 1.2 The fundamental laws of set algebra .................................. 1 1.3 The principle of duality ........................................ 2 1.4 Some additional laws for unions and intersections .......................... 2 1.5 Some additional laws for complements ................................ 3 1.6 The algebra of inclusion ........................................ 3 1.7 The algebra of relative complements ................................. 4 1.8 See also ................................................ 5 1.9 References ............................................... 5 1.10 External links ............................................. 5 2 Axiom of choice 6 2.1 Statement ............................................... 6 2.1.1 Nomenclature ZF, AC, and ZFC ............................... 7 2.1.2 Variants ............................................ 7 2.1.3 Restriction to finite sets .................................... 7 2.2 Usage ................................................. 8 2.3 Examples ............................................... 8 2.4 Criticism and acceptance ....................................... 8 2.5 In constructive mathematics ..................................... 9 2.6 Independence ............................................. 10 2.7 Stronger axioms ............................................ 10 2.8 Equivalents .............................................. 10 2.8.1 Category theory ....................................... 11 2.9 Weaker forms ............................................. 12 2.9.1 Results requiring AC (or weaker forms) but weaker than it .................. 12 2.10 Stronger forms of the negation of AC ................................. 13 2.11 Statements consistent with the negation of AC ............................ 13 2.12 Quotes ................................................. 14 2.13 Notes ................................................. 14 2.14 References ............................................... 16 2.15 External links ............................................. 16 i ii CONTENTS 3 Bijection 18 3.1 Definition ............................................... 19 3.2 Examples ............................................... 19 3.2.1 Batting line-up of a baseball team ............................... 19 3.2.2 Seats and students of a classroom ............................... 19 3.3 More mathematical examples and some non-examples ........................ 20 3.4 Inverses ................................................ 20 3.5 Composition .............................................. 20 3.6 Bijections and cardinality ....................................... 20 3.7 Properties ............................................... 21 3.8 Bijections and category theory ..................................... 21 3.9 Generalization to partial functions ................................... 22 3.10 Contrast with ............................................. 22 3.11 See also ................................................ 22 3.12 Notes ................................................. 22 3.13 References ............................................... 23 3.14 External links ............................................. 23 4 Binary relation 24 4.1 Formal definition ........................................... 24 4.1.1 Is a relation more than its graph? ............................... 25 4.1.2 Example ............................................ 25 4.2 Special types of binary relations .................................... 25 4.2.1 Difunctional ......................................... 27 4.3 Relations over a set .......................................... 27 4.4 Operations on binary relations ..................................... 28 4.4.1 Complement ......................................... 29 4.4.2 Restriction .......................................... 29 4.4.3 Algebras, categories, and rewriting systems ......................... 30 4.5 Sets versus classes ........................................... 30 4.6 The number of binary relations .................................... 30 4.7 Examples of common binary relations ................................. 31 4.8 See also ................................................ 31 4.9 Notes ................................................. 31 4.10 References ............................................... 32 4.11 External links ............................................. 33 5 Cardinal number 34 5.1 History ................................................. 34 5.2 Motivation .............................................. 36 5.3 Formal definition ........................................... 37 5.4 Cardinal arithmetic .......................................... 38 CONTENTS iii 5.4.1 Successor cardinal ...................................... 38 5.4.2 Cardinal addition ....................................... 38 5.4.3 Cardinal multiplication .................................... 39 5.4.4 Cardinal exponentiation ................................... 39 5.5 The continuum hypothesis ....................................... 40 5.6 See also ................................................ 40 5.7 Notes ................................................. 40 5.8 References ............................................... 40 5.9 External links ............................................. 41 6 Cardinality 42 6.1 Comparing sets ............................................ 42 6.1.1 Definition 1: | A | = | B | ................................... 42 6.1.2 Definition 2: | A | ≤ | B | ................................... 42 6.1.3 Definition 3: | A | < | B | ................................... 42 6.2 Cardinal numbers ........................................... 43 6.3 Finite, countable and uncountable sets ................................ 44 6.4 Infinite sets .............................................. 44 6.4.1 Cardinality of the continuum ................................. 44 6.5 Examples and properties ........................................ 45 6.6 Union and intersection ......................................... 45 6.7 See also ................................................ 46 6.8 References ............................................... 46 7 Cartesian product 47 7.1 Examples ............................................... 48 7.1.1 A deck of cards ....................................... 48 7.1.2 A two-dimensional coordinate system ............................ 48 7.2 Most common implementation (set theory) .............................. 48 7.2.1 Non-commutativity and non-associativity .......................... 49 7.2.2 Intersections, unions, and subsets ............................... 50 7.2.3 Cardinality .......................................... 51 7.3 n-ary product ............................................. 51 7.3.1 Cartesian power ....................................... 51 7.3.2 Finite n-ary product ..................................... 51 7.3.3 Infinite products ....................................... 52 7.4 Other forms .............................................. 52 7.4.1 Abbreviated form ....................................... 52 7.4.2 Cartesian product of functions ................................ 52 7.5 Definitions outside of Set theory ................................... 53 7.5.1 Category theory ........................................ 53 7.5.2 Graph theory ......................................... 53 iv CONTENTS 7.6 See also ................................................ 53 7.7 References .............................................. 53 7.8 External links ............................................. 54 8 Class (set theory) 55 8.1 Examples ............................................... 55 8.2 Paradoxes ............................................... 55 8.3 Classes in formal set theories ..................................... 55 8.4 References ............................................... 56 8.5 External links ............................................. 56 9 Codomain 57 9.1 Examples ............................................... 58 9.2 See also ................................................ 59 9.3 Notes ................................................. 59 9.4 References ............................................... 59 10 Complement (set theory) 60 10.1 Relative complement ......................................... 60 10.2 Absolute complement ......................................... 61 10.3 Notation ................................................ 62 10.4 Complements in various programming languages ........................... 62 10.5 See also ................................................ 64 10.6 References .............................................. 64 10.7 External links ............................................. 65 11 Disjoint sets 66 11.1 Generalizations ............................................ 66 11.2 Examples ............................................... 67 11.3 Intersections .............................................. 67 11.4 Disjoint unions and partitions ..................................... 68 11.5 See also ................................................ 68 11.6 References ............................................... 68 11.7 External links ............................................. 69 12 Disjoint union 70 12.1 Example ................................................ 70 12.2 Set theory definition .......................................... 70 12.3 Category theory point of view ....................................
Recommended publications
  • A Proof of Cantor's Theorem
    Cantor’s Theorem Joe Roussos 1 Preliminary ideas Two sets have the same number of elements (are equinumerous, or have the same cardinality) iff there is a bijection between the two sets. Mappings: A mapping, or function, is a rule that associates elements of one set with elements of another set. We write this f : X ! Y , f is called the function/mapping, the set X is called the domain, and Y is called the codomain. We specify what the rule is by writing f(x) = y or f : x 7! y. e.g. X = f1; 2; 3g;Y = f2; 4; 6g, the map f(x) = 2x associates each element x 2 X with the element in Y that is double it. A bijection is a mapping that is injective and surjective.1 • Injective (one-to-one): A function is injective if it takes each element of the do- main onto at most one element of the codomain. It never maps more than one element in the domain onto the same element in the codomain. Formally, if f is a function between set X and set Y , then f is injective iff 8a; b 2 X; f(a) = f(b) ! a = b • Surjective (onto): A function is surjective if it maps something onto every element of the codomain. It can map more than one thing onto the same element in the codomain, but it needs to hit everything in the codomain. Formally, if f is a function between set X and set Y , then f is surjective iff 8y 2 Y; 9x 2 X; f(x) = y Figure 1: Injective map.
    [Show full text]
  • Mathematics 144 Set Theory Fall 2012 Version
    MATHEMATICS 144 SET THEORY FALL 2012 VERSION Table of Contents I. General considerations.……………………………………………………………………………………………………….1 1. Overview of the course…………………………………………………………………………………………………1 2. Historical background and motivation………………………………………………………….………………4 3. Selected problems………………………………………………………………………………………………………13 I I. Basic concepts. ………………………………………………………………………………………………………………….15 1. Topics from logic…………………………………………………………………………………………………………16 2. Notation and first steps………………………………………………………………………………………………26 3. Simple examples…………………………………………………………………………………………………………30 I I I. Constructions in set theory.………………………………………………………………………………..……….34 1. Boolean algebra operations.……………………………………………………………………………………….34 2. Ordered pairs and Cartesian products……………………………………………………………………… ….40 3. Larger constructions………………………………………………………………………………………………..….42 4. A convenient assumption………………………………………………………………………………………… ….45 I V. Relations and functions ……………………………………………………………………………………………….49 1.Binary relations………………………………………………………………………………………………………… ….49 2. Partial and linear orderings……………………………..………………………………………………… ………… 56 3. Functions…………………………………………………………………………………………………………… ….…….. 61 4. Composite and inverse function.…………………………………………………………………………… …….. 70 5. Constructions involving functions ………………………………………………………………………… ……… 77 6. Order types……………………………………………………………………………………………………… …………… 80 i V. Number systems and set theory …………………………………………………………………………………. 84 1. The Natural Numbers and Integers…………………………………………………………………………….83 2. Finite induction
    [Show full text]
  • Linear Transformation (Sections 1.8, 1.9) General View: Given an Input, the Transformation Produces an Output
    Linear Transformation (Sections 1.8, 1.9) General view: Given an input, the transformation produces an output. In this sense, a function is also a transformation. 1 4 3 1 3 Example. Let A = and x = 1 . Describe matrix-vector multiplication Ax 2 0 5 1 1 1 in the language of transformation. 1 4 3 1 31 5 Ax b 2 0 5 11 8 1 Vector x is transformed into vector b by left matrix multiplication Definition and terminologies. Transformation (or function or mapping) T from Rn to Rm is a rule that assigns to each vector x in Rn a vector T(x) in Rm. • Notation: T: Rn → Rm • Rn is the domain of T • Rm is the codomain of T • T(x) is the image of vector x • The set of all images T(x) is the range of T • When T(x) = Ax, A is a m×n size matrix. Range of T = Span{ column vectors of A} (HW1.8.7) See class notes for other examples. Linear Transformation --- Existence and Uniqueness Questions (Section 1.9) Definition 1: T: Rn → Rm is onto if each b in Rm is the image of at least one x in Rn. • i.e. codomain Rm = range of T • When solve T(x) = b for x (or Ax=b, A is the standard matrix), there exists at least one solution (Existence question). Definition 2: T: Rn → Rm is one-to-one if each b in Rm is the image of at most one x in Rn. • i.e. When solve T(x) = b for x (or Ax=b, A is the standard matrix), there exists either a unique solution or none at all (Uniqueness question).
    [Show full text]
  • The Logic of Brouwer and Heyting
    THE LOGIC OF BROUWER AND HEYTING Joan Rand Moschovakis Intuitionistic logic consists of the principles of reasoning which were used in- formally by L. E. J. Brouwer, formalized by A. Heyting (also partially by V. Glivenko), interpreted by A. Kolmogorov, and studied by G. Gentzen and K. G¨odel during the first third of the twentieth century. Formally, intuitionistic first- order predicate logic is a proper subsystem of classical logic, obtained by replacing the law of excluded middle A ∨¬A by ¬A ⊃ (A ⊃ B); it has infinitely many dis- tinct consistent axiomatic extensions, each necessarily contained in classical logic (which is axiomatically complete). However, intuitionistic second-order logic is inconsistent with classical second-order logic. In terms of expressibility, the intu- itionistic logic and language are richer than the classical; as G¨odel and Gentzen showed, classical first-order arithmetic can be faithfully translated into the nega- tive fragment of intuitionistic arithmetic, establishing proof-theoretical equivalence and clarifying the distinction between the classical and constructive consequences of mathematical axioms. The logic of Brouwer and Heyting is effective. The conclusion of an intuitionistic derivation holds with the same degree of constructivity as the premises. Any proof of a disjunction of two statements can be effectively transformed into a proof of one of the disjuncts, while any proof of an existential statement contains an effec- tive prescription for finding a witness. The negation of a statement is interpreted as asserting that the statement is not merely false but absurd, i.e., leads to a contradiction. Brouwer objected to the general law of excluded middle as claim- ing a priori that every mathematical problem has a solution, and to the general law ¬¬A ⊃ A of double negation as asserting that every consistent mathematical statement holds.
    [Show full text]
  • Structural Reflection and the Ultimate L As the True, Noumenal Universe Of
    Scuola Normale Superiore di Pisa CLASSE DI LETTERE Corso di Perfezionamento in Filosofia PHD degree in Philosophy Structural Reflection and the Ultimate L as the true, noumenal universe of mathematics Candidato: Relatore: Emanuele Gambetta Prof.- Massimo Mugnai anno accademico 2015-2016 Structural Reflection and the Ultimate L as the true noumenal universe of mathematics Emanuele Gambetta Contents 1. Introduction 7 Chapter 1. The Dream of Completeness 19 0.1. Preliminaries to this chapter 19 1. G¨odel'stheorems 20 1.1. Prerequisites to this section 20 1.2. Preliminaries to this section 21 1.3. Brief introduction to unprovable truths that are mathematically interesting 22 1.4. Unprovable mathematical statements that are mathematically interesting 27 1.5. Notions of computability, Turing's universe and Intuitionism 32 1.6. G¨odel'ssentences undecidable within PA 45 2. Transfinite Progressions 54 2.1. Preliminaries to this section 54 2.2. Gottlob Frege's definite descriptions and completeness 55 2.3. Transfinite progressions 59 3. Set theory 65 3.1. Preliminaries to this section 65 3.2. Prerequisites: ZFC axioms, ordinal and cardinal numbers 67 3.3. Reduction of all systems of numbers to the notion of set 71 3.4. The first large cardinal numbers and the Constructible universe L 76 3.5. Descriptive set theory, the axioms of determinacy and Luzin's problem formulated in second-order arithmetic 84 3 4 CONTENTS 3.6. The method of forcing and Paul Cohen's independence proof 95 3.7. Forcing Axioms, BPFA assumed as a phenomenal solution to the continuum hypothesis and a Kantian metaphysical distinction 103 3.8.
    [Show full text]
  • An Axiomatic Approach to Physical Systems
    ' An Axiomatic Approach $ to Physical Systems & % Januari 2004 ❦ ' Summary $ Mereology is generally considered as a formal theory of the part-whole relation- ship concerning material bodies, such as planets, pickles and protons. We argue that mereology can be considered more generally as axiomatising the concept of a physical system, such as a planet in a gravitation-potential, a pickle in heart- burn and a proton in an electro-magnetic field. We design a theory of sets and physical systems by extending standard set-theory (ZFC) with mereological axioms. The resulting theory deductively extends both `Mereology' of Tarski & L`esniewski as well as the well-known `calculus of individuals' of Leonard & Goodman. We prove a number of theorems and demonstrate that our theory extends ZFC con- servatively and hence equiconsistently. We also erect a model of our theory in ZFC. The lesson to be learned from this paper reads that not only is a marriage between standard set-theory and mereology logically respectable, leading to a rigorous vin- dication of how physicists talk about physical systems, but in addition that sets and physical systems interact at the formal level both quite smoothly and non- trivially. & % Contents 0 Pre-Mereological Investigations 1 0.0 Overview . 1 0.1 Motivation . 1 0.2 Heuristics . 2 0.3 Requirements . 5 0.4 Extant Mereological Theories . 6 1 Mereological Investigations 8 1.0 The Language of Physical Systems . 8 1.1 The Domain of Mereological Discourse . 9 1.2 Mereological Axioms . 13 1.2.0 Plenitude vs. Parsimony . 13 1.2.1 Subsystem Axioms . 15 1.2.2 Composite Physical Systems .
    [Show full text]
  • On the Universality of Memcomputing Machines Yan Ru Pei, Fabio L
    1 On the Universality of Memcomputing Machines Yan Ru Pei, Fabio L. Traversa, and Massimiliano Di Ventra Abstract—Universal memcomputing machines (UMMs) [IEEE is related to the topology (or architecture) of the network of Trans. Neural Netw. Learn. Syst. 26, 2702 (2015)] represent memory units (memprocessors). It means the machine has a novel computational model in which memory (time non- access, at any given time, to more information (precisely locality) accomplishes both tasks of storing and processing of information. UMMs have been shown to be Turing-complete, originating from the topology of the network) than what is namely they can simulate any Turing machine. In this paper, we available if the memprocessors were not connected to each first introduce a novel set-theory approach to compare different other. Of course, this information overhead is not necessarily computational models, and use it to recover the previous results stored by the machine (the stored information is the Shannon on Turing completeness of UMMs. We then relate UMMs directly one) [4]. Nevertheless, with appropriate topologies, hence with to liquid-state machines (or “reservoir computing”) and quantum machines (“quantum computing”). We show that UMMs can appropriate information overhead, UMMs can solve complex simulate both types of machines, hence they are both “liquid-” or problems very efficiently [4]. Finally, functional polymor- “reservoir-complete” and “quantum-complete”. Of course, these phism means that the machine is able to compute different statements pertain only to the type of problems these machines functions by simply applying the appropriate input signals [4], can solve, and not to the amount of resources required for such without modifying the topology of the machine network.
    [Show full text]
  • Two Moore Manifolds
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology and its Applications 51 (1993) 27-39 27 North-Holland Two Moore manifolds I.J. Tree* Department ofMathematics, University of North Texas, Denton, TX 76203, USA W.S. Watson Department of Mathematics, University of York, North York, Ont., Canada M3J IP3 Received 23 August 1991 Revised 27 April 1992 Abstract Tree, I.J. and W.S. Watson, Two Moore manifolds, Topology and its Applications 51 (1993) 27-39. Reed and Zenor have shown that locally connected, locally compact, normal Moore spaces are metrizable. The first of the two examples presented is a locally connected, locally compact, pseudonormal nonmetrizable Moore space. The second is a locally connected, locally compact, pseudocompact nonmetrizable Moore space and can be constructed assuming the Continuum Hypothesis. Therefore normality in the Reed-Zenor theorem cannot be replaced by pseudonor- mality or (consistently) pseudocompactness. Both spaces can be modified in such a way that they are manifolds. Keywords: Pseudocompact, pseudonormal, A-set, Cook set. AMS (MOS) Subj. Class.: Primary 54020; secondary 54830, 57N05. 1. Introduction We know that, on one hand, the truth of the normal Moore space conjecture-the statement that every normal Moore space is metrizable-is intimately tied to the existence of certain large cardinals [6]. On the other hand, in particular extended versions of set theory there exist normal nonmetrizable Moore spaces. Assuming V= L, every locally compact normal Moore space is metrizable [5]; but under MA+CH, there exist locally compact normal nonmetrizable Moore spaces [18].
    [Show full text]
  • Topology Proceedings
    Topology Proceedings Web: http://topology.auburn.edu/tp/ Mail: Topology Proceedings Department of Mathematics & Statistics Auburn University, Alabama 36849, USA E-mail: [email protected] ISSN: 0146-4124 COPYRIGHT °c by Topology Proceedings. All rights reserved. TOPOLOGY PROCEEDINGS Volume 30, No.2, 2006 Pages 523-532 THE ROLE OF NORMALITY IN THE METRIZATION OF MOORE SPACES H.H. HUNG Abstract. We take away the property of normality from Bing’s collectionwise normality in his celebrated theorem on the metrization of Moore Spaces, and we weaken the no- tion of normality itself in the equally celebrated theorem of F.B. Jones for the separable case under the assumption of Lusin’s. Normality conjectured to be sufficient, if not indis- pensible, for the metrization of Moore spaces, its role in the theory is hereby questioned. Traylor’s theorem that sepa- rable metacompact Moore spaces are metrizable is also im- proved on. There are also two generalizations of Bing’s gen- eral metrization theorem. It has been conjectured that if a Moore space fails to be metriz- able, it cannot be normal, an opinion no doubt encouraged by the near-conclusive result for the separable case: Normal separa- ble Moore spaces are metrizable, if 2ω < 2ω1 (Theorem 5 of [10]). Strengthening the property of normality to that of collectionwise normality in the conjecture, Bing [1] was able to give an affirmative result, arguably (see e.g. §3 of [13]) the most important theorem on the subject. Taking the property of normality itself out of that of collectionwise normality, I was able in [5] to generalize Bing.
    [Show full text]
  • Functional Declarative Language Design and Predicate Calculus: a Practical Approach
    Functional Declarative Language Design and Predicate Calculus: A Practical Approach RAYMOND BOUTE INTEC, Ghent University, Belgium In programming language and software engineering, the main mathematical tool is de facto some form of predicate logic. Yet, as elsewhere in applied mathematics, it is used mostly far below its potential, due to its traditional formulation as just a topic in logic instead of a calculus for everyday practical use. The proposed alternative combines a language of utmost simplicity (four constructs only) that is devoid of the defects of common mathematical conventions, with a set of convenient calculation rules that is sufficiently comprehensive to make it practical for everyday use in most (if not all) domains of interest. Its main elements are a functional predicate calculus and concrete generic functionals. The first supports formal calculation with quantifiers with the same fluency as with derivatives and integrals in classical applied mathematics and engineering. The second achieves the same for calculating with functionals, including smooth transition between pointwise and point-free expression. The extensive collection of examples pertains mainly to software specification, language seman- tics and its mathematical basis, program calculation etc., but occasionally shows wider applicability throughout applied mathematics and engineering. Often it illustrates how formal reasoning guided by the shape of the expressions is an instrument for discovery and expanding intuition, or highlights design opportunities in declarative
    [Show full text]
  • The Journal of Symbolic Logic a Definable Nonstandard Model of the Reals
    Sh:825 The Journal of Symbolic Logic http://journals.cambridge.org/JSL Additional services for The Journal of Symbolic Logic: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here A denable nonstandard model of the reals Vladimir Kanovei and Saharon Shelah The Journal of Symbolic Logic / Volume 69 / Issue 01 / March 2004, pp 159 - 164 DOI: 10.2178/jsl/1080938834, Published online: 12 March 2014 Link to this article: http://journals.cambridge.org/abstract_S0022481200008094 How to cite this article: Vladimir Kanovei and Saharon Shelah (2004). A denable nonstandard model of the reals . The Journal of Symbolic Logic, 69, pp 159-164 doi:10.2178/jsl/1080938834 Request Permissions : Click here Downloaded from http://journals.cambridge.org/JSL, IP address: 128.210.126.199 on 19 May 2015 Sh:825 THE JOURNAL OF SYMBOLIC LOGIC Volume 69, Number 1. March 2004 A DEFINABLE NONSTANDARD MODEL OF THE REALS VLADIMIR KANOVEIf AND SAHARON SHELAH * Abstract. We prove, in ZFC, the existence of a definable, countably saturated elementary extension of the reals. §1. Introduction. It seems that it has been taken for granted that there is no distinguished, definable nonstandard model of the reals. (This means a countably saturated elementary extension of the reals.) Of course if V = L then there is such an extension (just take the first one in the sense of the canonical well-ordering of L), but we mean the existence provably in ZFC. There were good reasons for this: without Choice we cannot prove the existence of any elementary extension of the reals containing an infinitely large integer.' 2 Still there is one.
    [Show full text]
  • The Axiom of Choice and Its Implications
    THE AXIOM OF CHOICE AND ITS IMPLICATIONS KEVIN BARNUM Abstract. In this paper we will look at the Axiom of Choice and some of the various implications it has. These implications include a number of equivalent statements, and also some less accepted ideas. The proofs discussed will give us an idea of why the Axiom of Choice is so powerful, but also so controversial. Contents 1. Introduction 1 2. The Axiom of Choice and Its Equivalents 1 2.1. The Axiom of Choice and its Well-known Equivalents 1 2.2. Some Other Less Well-known Equivalents of the Axiom of Choice 3 3. Applications of the Axiom of Choice 5 3.1. Equivalence Between The Axiom of Choice and the Claim that Every Vector Space has a Basis 5 3.2. Some More Applications of the Axiom of Choice 6 4. Controversial Results 10 Acknowledgments 11 References 11 1. Introduction The Axiom of Choice states that for any family of nonempty disjoint sets, there exists a set that consists of exactly one element from each element of the family. It seems strange at first that such an innocuous sounding idea can be so powerful and controversial, but it certainly is both. To understand why, we will start by looking at some statements that are equivalent to the axiom of choice. Many of these equivalences are very useful, and we devote much time to one, namely, that every vector space has a basis. We go on from there to see a few more applications of the Axiom of Choice and its equivalents, and finish by looking at some of the reasons why the Axiom of Choice is so controversial.
    [Show full text]