Frequency of Canalis Sinuosus and Its Anatomic Variations in Cone Beam Computed Tomography Images
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Palatal Injection Does Not Block the Superior Alveolar Nerve Trunks: Correcting an Error Regarding the Innervation of the Maxillary Teeth
Open Access Review Article DOI: 10.7759/cureus.2120 Palatal Injection does not Block the Superior Alveolar Nerve Trunks: Correcting an Error Regarding the Innervation of the Maxillary Teeth Joe Iwanaga 1 , R. Shane Tubbs 2 1. Seattle Science Foundation 2. Neurosurgery, Seattle Science Foundation Corresponding author: Joe Iwanaga, [email protected] Abstract The superior alveolar nerves course lateral to the maxillary sinus and the greater palatine nerve travels through the hard palate. This difficult three-dimensional anatomy has led some dentists and oral surgeons to a critical misunderstanding in developing the anterior and middle superior alveolar (AMSA) nerve block and the palatal approach anterior superior alveolar (P-ASA) nerve block. In this review, the anatomy of the posterior, middle and anterior superior alveolar nerves, greater palatine nerve, and nasopalatine nerve are revisited in order to clarify the anatomy of these blocks so that the perpetuated anatomical misunderstanding is rectified. We conclude that the AMSA and P-ASA nerve blockades, as currently described, are not based on accurate anatomy. Categories: Anesthesiology, Medical Education, Other Keywords: anatomy, innervation, local anesthesia, maxillary nerve, nerve block, tooth Introduction And Background Anesthetic blockade of the posterior superior alveolar (PSA) branch of the maxillary nerve has played an important role in the endodontic treatment of irreversible acute pulpitis of the upper molar teeth except for the mesiobuccal root of the first molar tooth [1, 2]. This procedure requires precise anatomical knowledge of the pterygopalatine fossa and related structures in order to avoid unnecessary complications and to make the blockade most effective. The infraorbital nerve gives rise to middle superior alveolar (MSA) and anterior superior alveolar (ASA) branches. -
Congenital Nasal Pyriform Aperture Stenosis
Published online: 2021-08-02 HEAD AND NECK Congenital nasal pyriform aperture stenosis: A rare cause of nasal airway obstruction in a neonate Elsa M Thomas, Sridhar Gibikote, Jyoti S Panwar, John Mathew1 Departments of Radiology and 1ENT and Head and Neck Surgery, Christian Medical College, Vellore, Tamil Nadu, India Correspondence: Dr. Elsa Mary Thomas, Department of Radiology, Christian Medical College, Vellore, Tamil Nadu - 632 004, India. E-mail: [email protected] Abstract Congenital nasal pyriform aperture stenosis (CNPAS) is a rare cause of nasal airway obstruction that clinically mimics choanal atresia, but needs to be differentiated from the latter because of the widely divergent modes of management. We present a case of CNPAS, to highlight the importance of recognizing the classic signs of CNPAS on cross-sectional imaging. Key words: Choanal atresia; CNPAS; holoprosencephaly; megaincisor; pyriform aperture stenosis Introduction the upper airways. This was negative for choanal atresia, but revealed multiple typical findings, which led to the Congenital nasal pyriform aperture stenosis (CNPAS), first diagnosis of CNPAS. The nasal cavity showed medial clinically described in 1989,[1] is a rare cause of neonatal approximation of the nasal processes of the maxilla, nasal airway obstruction. It typically presents with clinical causing marked narrowing of the pyriform apertures, features that may mimic posterior choanal atresia,[2] and it which measured 3 mm in width on an axial image, at the is important to differentiate it from the latter as there are level of the inferior meatus [Figure 1]. There was associated differences in patient management.[3] thinning of the anterior nasal septum. -
Anatomy Respect in Implant Dentistry. Assortment, Location, Clinical Importance (Review Article)
ISSN: 2394-8418 DOI: https://doi.org/10.17352/jdps CLINICAL GROUP Received: 19 August, 2020 Review Article Accepted: 31 August, 2020 Published: 01 September, 2020 *Corresponding author: Dr. Rawaa Y Al-Rawee, BDS, Anatomy Respect in Implant M Sc OS, MOMS MFDS RCPS Glasgow, PhD, MaxFacs, Department of Oral and Maxillofacial Surgery, Al-Salam Dentistry. Assortment, Teaching Hospital, Mosul, Iraq, Tel: 009647726438648; E-mail: Location, Clinical Importance ORCID: https://orcid.org/0000-0003-2554-1121 Keywords: Anatomical structures; Dental implants; (Review Article) Basic implant protocol; Success criteria; Clinical anatomy Rawaa Y Al-Rawee1* and Mohammed Mikdad Abdalfattah2 https://www.peertechz.com 1Department of Oral and Maxillofacial Surgery, Al-Salam Teaching Hospital. Mosul, Iraq 2Post Graduate Student in School of Dentistry, University of Leeds. United Kingdom, Ministry of Health, Iraq Abstract Aims: In this article; we will reviews critically important basic structures routinely encountered in implant therapy. It can be a brief anatomical reference for beginners in the fi eld of dental implant surgeries. Highlighting the clinical importance of each anatomical structure can be benefi cial for fast informations refreshing. Also it can be used as clinical anatomical guide for implantologist and professionals in advanced surgical procedures. Background: Basic anatomy understanding prior to implant therapy; it's an important fi rst step in dental implant surgery protocol specifi cally with technology advances and the popularity of dental implantation as a primary choice for replacement loosed teeth. A thorough perception of anatomy provides the implant surgeon with the confi dence to deal with hard or soft tissues in efforts to restore the exact aim of implantation whether function or esthetics and end with improving health and quality of life. -
Infraorbital Schwannomas: University, Istanbul, Turkey, Tel: 0090 216 421; Email
Central Annals of Otolaryngology and Rhinology Case Report *Corresponding author İbrahim Murat Afat, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Marmara Infraorbital Schwannomas: University, Istanbul, Turkey, Tel: 0090 216 421; Email: Review of the Literature and Submitted: 10 October 2018 Accepted: 07 November 2018 Presentation of a Rare Case Published: 09 November 2018 ISSN: 2379-948X Ibrahim Murat Afat* Copyright © 2018 Afat Department of Oral and Maxillofacial Surgery, Marmara University, Turkey OPEN ACCESS Abstract Keywords Schwannomas are well-differentiated, benign tumours arising from the Schwann cells of the • Schwannoma nerve sheath. Schwannomas arising from the infraorbital nerve (ION) are very rare, and very • Infraorbital nerve few cases are reported in literature. The Review of the Literature covered all English literature between 1944 and January 2018. The keywords used in the search were ‘schwannoma’ or ‘neurinoma’ or ‘neurilemmoma’ and ‘infraorbital’ or ‘infra-orbital’. As a result, 10 cases of ION and branch case reports and 4 cases of malignant peripheral nerve sheath tumours with ION involvement were examined in full text. A rare case of a schwannoma arising from the medial superior labial branch of the ION and its treatment are presented. INTRODUCTION Schwannomas or neurilemmomas are well-differentiated provide data on age, gender, location, presenting symptoms, size, benign tumours arising from the Schwann cells of the nerve andCASE treatment PRESENTATION methods. sheath with well-defined borders [1,2]. A 28-year-old male patient presented with a progressively The first description of this tumor was by Verocay in 1910,the enlarging, painless but tender-to-touch swelling over the right first trigeminal nerve schwannoma was reported by Smith in cheek. -
A Review of the Mandibular and Maxillary Nerve Supplies and Their Clinical Relevance
AOB-2674; No. of Pages 12 a r c h i v e s o f o r a l b i o l o g y x x x ( 2 0 1 1 ) x x x – x x x Available online at www.sciencedirect.com journal homepage: http://www.elsevier.com/locate/aob Review A review of the mandibular and maxillary nerve supplies and their clinical relevance L.F. Rodella *, B. Buffoli, M. Labanca, R. Rezzani Division of Human Anatomy, Department of Biomedical Sciences and Biotechnologies, University of Brescia, V.le Europa 11, 25123 Brescia, Italy a r t i c l e i n f o a b s t r a c t Article history: Mandibular and maxillary nerve supplies are described in most anatomy textbooks. Accepted 20 September 2011 Nevertheless, several anatomical variations can be found and some of them are clinically relevant. Keywords: Several studies have described the anatomical variations of the branching pattern of the trigeminal nerve in great detail. The aim of this review is to collect data from the literature Mandibular nerve and gives a detailed description of the innervation of the mandible and maxilla. Maxillary nerve We carried out a search of studies published in PubMed up to 2011, including clinical, Anatomical variations anatomical and radiological studies. This paper gives an overview of the main anatomical variations of the maxillary and mandibular nerve supplies, describing the anatomical variations that should be considered by the clinicians to understand pathological situations better and to avoid complications associated with anaesthesia and surgical procedures. # 2011 Elsevier Ltd. -
A STUDY on POSITION of INFRAORBITAL FORAMEN Shaik Hussain Saheb 1, Shruthi B.N *2, Pavan P Havaldar 3
International Journal of Anatomy and Research, Int J Anat Res 2017, Vol 5(3.2):4257-60. ISSN 2321-4287 Original Research Article DOI: https://dx.doi.org/10.16965/ijar.2017.300 A STUDY ON POSITION OF INFRAORBITAL FORAMEN Shaik Hussain Saheb 1, Shruthi B.N *2, Pavan P Havaldar 3. 1 Department of Anatomy, JJM Medical College, Davangere, Karnataka, India. *2 Department of Anatomy, Rajarajeswari Medical College and hospital, Bangalore, Karnataka, India. 3 Department of Anatomy, Gadag institute of medical sciences, Gadag, Karnataka, India. ABSTRACT Background: The infraorbital foramen is located on the maxillary bone about 1 cm inferior to the infraorbital margin. The infraorbital nerve and vessels are transmitted through this foramen. The infraorbital nerve, the continuation of the maxillary or second division of the trigeminal nerve, is solely a sensory nerve. It traverses the inferior orbital fissure into the inferior orbital canal and emerges onto the face at the infraorbital foramen. It divides into several branches that innervate the skin and the mucous membrane of the midface, such as the lower eyelid, cheek, lateral aspect of the nose, upper lip, and the labial gum. Materials and Methods: Total 300 skulls were used for this study, the following mesearements were recorded, mean distance between the infra orbital foramen and the infra orbital margin on right and left side and average of it. The mean distance between the infra orbital foramen and the piriform aperature on right and left side measured and average of it also recorded. The mean distance between infra orbital foramen and the anterior nasal spine on right and left side measured. -
Evaluation of the Infraorbital Complex by Direct Morphometry
Romanian Journal of Oral Rehabilitation Vol. 12, No. 3, July - September 2020 EVALUATION OF THE INFRAORBITAL COMPLEX BY DIRECT MORPHOMETRY Maria Justina Roxana Vîrlan 1, Cătălina Murariu-Măgureanu 2, Simona Andreea Moraru 1, Vlad Iliescu 3, Ovidiu Romulus Gherghiţă 4, Vanda Roxana Nimigean 1, Ovidiu Muşat 5, Victor Nimigean 6 1 Oral Rehabilitation Department, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; 2 Complete Denture Prosthodontics, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; 3 Private Dental Practice, Bucharest, Romania; 4 PhD student, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; 5 Clinical Department of Ophthalmology, Dr. Carol Davila Central Military Emergency University Hospital, Bucharest, Romania; 6 Anatomy Department, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania. Corresponding author: Vanda Roxana Nimigean, Associate Professor, Head of Oral Rehabilitation Department, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania, No 17-23 Calea Plevnei Street. E-mail: [email protected] ABSTRACT The infraorbital complex belongs to the maxillary bone and it is an important landmark in dentistry, especially for loco-regional anaesthesia. For this study, bilateral measurements of the components of the infraorbital complex on twenty dry dentated human skulls were performed. Results: the average length of the the infraorbital groove (IOG) was 12.55 mm and the average length of the infraorbital canal (IOC) was 12.92 mm. Regarding the infraorbital foramen (IOF), its shape was oval in 65% of the cases and the average distance between the infraorbital foramen and the inferior orbital margin (IOF-IOM distance) was 7.87 mm. -
Hypoesthesia of Midface by Isolated Haller's Cell Mucocele
Braz J Otorhinolaryngol. 2020;86(4):516---519 Brazilian Journal of OTORHINOLARYNGOLOGY www.bjorl.org CASE REPORT Hypoesthesia of midface by isolated Haller’s cell mucoceleଝ Hipoestesia do terc¸o médio da face por mucocele isolada de célula de Haller Jeong Hwan Choi Inje University, College of Medicine, Sanggye Paik Hospital, Seoul, South Korea Received 2 May 2016; accepted 28 June 2016 Available online 22 July 2016 Introduction and smaller infundibular widths were statistically associated with recurrence. Haller’s cells are usually seen in the floor of the orbit and Anatomic variations in the nose and paranasal sinuses roof of the maxillary sinus adjacent to and above the natural (PNS) do not necessarily indicate a pathologic state but ostium of maxillary sinus. Although a Haller’s cell is con- can predispose some patients to sinus disease by causing sidered a normal anatomical variant, when enlarged it can obstruction that can lead to inflammatory disease. Migrat- significantly constrict the posterior aspect of the ethmoidal ing anterior or posterior ethmoidal air cells that pneumatize infundibulum and maxillary ostium from above. If such a cell the roof of the maxillary sinus or floor of the orbit are becomes diseased, the natural ostium of the maxillary sinus also termed ‘‘infraorbital ethmoidal’’, ‘‘orbitoethmoidal’’, may rapidly become obstructed, and secondary maxillary ‘‘maxilloethmoidal’’, or ‘‘Haller’s cells’’ (HCs) named after sinusitis may develop. the Swedish anatomist Albrecht von Haller. The incidence of Haller’s cells also can reach the infraorbital nerve. HCs reported by different researchers covers a wide range (2---45%).1 Isolated infection of the Haller’s cell is usually very rare and should be suspected in patients with facial pain and The variable sizes and location of HCs on the roof of the hypoesthesia. -
Protrusion of the Infraorbital Nerve Into the Maxillary Sinus on CT: Prevalence, Proposed Grading Method, and Suggested Clinical Implications
ORIGINAL RESEARCH HEAD & NECK Protrusion of the Infraorbital Nerve into the Maxillary Sinus on CT: Prevalence, Proposed Grading Method, and Suggested Clinical Implications X J.E. Lantos, A.N. Pearlman, X A. Gupta, X J.L. Chazen, R.D. Zimmerman, D.R. Shatzkes, and C.D. Phillips ABSTRACT BACKGROUND AND PURPOSE: The infraorbital nerve arises from the maxillary branch of the trigeminal nerve and normally traverses the orbital floor in the infraorbital canal. Sometimes, however, the infraorbital canal protrudes into the maxillary sinus separate from the orbital floor. We systematically studied the prevalence of this variant. MATERIALS AND METHODS: We performed a retrospective review of 500 consecutive sinus CTs performed at our outpatient centers. The infraorbital nerve protruded into the maxillary sinus if the entire wall of the infraorbital canal was separate from the walls of the sinus. We recorded the length of the bony septum that attached the infraorbital canal to the wall of the maxillary sinus and noted whether the protrusion was bilateral. We also measured the distance from the inferior orbital rim where the infraorbital canal begins to protrude into the sinus. RESULTS: There was a prevalence of 10.8% for infraorbital canal protrusion into the maxillary sinus and 5.6% for bilateral protrusion. The median length of the bony septum attaching the infraorbital canal to a maxillary sinus wall, which was invariably present, was 4 mm. The median distance at which the infraorbital nerve began to protrude into the sinus was 11 mm posterior to the inferior orbital rim. CONCLUSIONS: Although this condition has been reported in only 3 patients previously, infraorbital canal protrusion into the maxillary sinus was present in Ͼ10% of our cohort. -
The Location of the Infraorbital Foramen in Human Skulls, to Be Used As New Anthropometric Landmarks As a Useful Method for Maxillofacial Surgery
Folia Morphol. Vol. 71, No. 3, pp. 198–204 Copyright © 2012 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl The location of the infraorbital foramen in human skulls, to be used as new anthropometric landmarks as a useful method for maxillofacial surgery A. Przygocka1, M. Podgórski1, K. Jędrzejewski2, M. Topol2, M. Polguj1 1Department of Angiology, Chair of Anatomy, Medical University of Lodz, Poland 2Department of Normal and Clinical Anatomy, Medical University of Lodz, Poland [Received 28 May 2012; Accepted 17 July 2012] Background: The aim of the study was to determine the localisation of the infraor- bital foramen in relation to chosen anthropometric landmarks as novel reference points: nasion, rhinion, and frontomalare orbitale, and to verify their symmetry. Material and methods: Sixty-four sides of thirty-two human skulls were inves- tigated. The distances between the infraorbital foramina and nasion, rhinion, and frontomalare orbitale, and the distances between two contralateral in- fraorbital foramens were measured. The symmetry was analysed and statistical analysis was performed. Results: The mean distance and standard deviation (mean ± SD) between the right infraorbital foramen and the nasion, rhinion, and right frontomalare or- bitale were 45.23 ± 3.20 mm, 39.84 ± 1.72 mm, and 36.28 ± 1.50 mm, respectively, and between the left infraorbital foramen and the nasion, rhinion, and left frontomalare orbitale were 44.38 ± 2.76 mm, 38.88 ± 2.01 mm, and 36.31 ± 2.19 mm, respectively. Conclusions: The results presented in this study may be particularly helpful for surgery in patients with oedema of the infraorbital region when the other land- marks are difficult to localise. -
Extended Endoscopic Endonasal Approach to the Pterygopalatine Fossa: Anatomical Study and Clinical Considerations
Neurosurg Focus 19 (1):E5, 2005 Extended endoscopic endonasal approach to the pterygopalatine fossa: anatomical study and clinical considerations LUIGI M. CAVALLO, M.D., PH.D., ANDREA MESSINA, M.D., PAUL GARDNER, M.D., FELICE ESPOSITO, M.D., AMIN B. KASSAM, M.D., PAOLO CAPPABIANCA, M.D., ENRICO DE DIVITIIS, M.D., AND MANFRED TSCHABITSCHER, M.D. Department of Neurological Sciences, Division of Neurosurgery, Università degli Studi di Napoli Federico II, Naples, Italy; Microsurgical and Endoscopic Anatomy Study Group, University of Vienna, Austria; and Center for Image-Guided and Minimally Invasive Neurosurgery, Department of Neurosurgery, University of Pittsburgh Medical Center-Presbyterian, Pittsburgh, Pennsylvania Object. The pterygopalatine fossa is an area located deep in the skull base. The microsurgical transmaxillary–trans- antral route is usually chosen to remove lesions in this region. The increasing use of the endoscope in sinonasal func- tional surgery has more recently led to the advent of the endoscope for the treatment of tumors located in the pterygo- palatine fossa as well. Methods. An anatomical dissection of three fresh cadaveric heads (six pterygopalatine fossas) and three dried skull base specimens was performed to evaluate the feasibility of the approach and to illustrate the surgical landmarks that are useful for operations in this complex region. The endoscopic endonasal approach allows a wide exposure of the pterygopalatine fossa. Furthermore, with the same access (that is, through the nostril) it is possible to expose regions contiguous with the pterygopalatine fossa, either to visualize more surgical landmarks or to accomplish a better lesion removal. Conclusions. In this anatomical study the endoscopic endonasal approach to the pterygopalatine fossa has been found to be a safe approach for the removal of lesions in this region. -
LOCOREGIONAL ANESTHESIA of the HEAD PAIN MANAGEMENT Luis Campoy, LV Certva, Dipecvaa, MRCVS
LOCOREGIONAL ANESTHESIA OF THE HEAD PAIN MANAGEMENT Luis Campoy, LV CertVA, DipECVAA, MRCVS Local blockade of the nerves serving the oral cavity and face in the dog and cat requires simple equipment and material readily available at any veterinary practice, syringes and thin needles. Needle size can vary from 25-gauge to 30-gauge, 12 mm, 25 mm, or 36 mm in length. Procedures for which locoregional anesthesia may be indicated include: • Dental extractions • Periodontal flap surgery • Endodontic procedures • Restorative procedures • Implant surgery • Oronasal fistulas • Palatal defect (cleft palate) closure • Maxillary and mandibular fracture repairs • Posttraumatic soft-tissue reconstruction • Oncologic surgery with excision of hard (i.e., maxillectomy, mandibulectomy) and soft tissue (i.e., glossectomy, palatectomy). Anatomy The majority of the sensory innervation of the teeth, bone, and soft tissue of the oral cavity and the facial skin is provided by the right and left trigeminal nerves (V). The three branches of the sensory root (ophthalmic [V1], maxillary [V2] and mandibular [V3] branches) supply the skin of the face and the mucous membranes of the eyes, nose, and oral cavity, except for the pharynx and the base of the tongue. The maxillary branch runs through the round foramen, the alar canal, and the rostral alar foramen into the caudal portion of the pterygopalatine fossa, and then courses rostrally on the dorsal surface of the medial pterygoid muscle. In the rostral part of the pterygopalatine fossa it leaves off the zygomatic and the pterygopalatine nerves and continues as the infraorbital nerve into the maxillary foramen and the infraorbital canal. During its course within the canal, the infraorbital nerve gives off branches to supply the maxillary teeth.