applied sciences Review Soliton Molecules and Multisoliton States in Ultrafast Fibre Lasers: Intrinsic Complexes in Dissipative Systems Lili Gui 1,*, Pan Wang 2, Yihang Ding 2, Kangjun Zhao 2, Chengying Bao 3, Xiaosheng Xiao 2 and Changxi Yang 2,* 1 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany 2 State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China;
[email protected] (P.W.);
[email protected] (Y.D.);
[email protected] (K.Z.);
[email protected] (X.X.) 3 Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA;
[email protected] * Correspondence:
[email protected] (L.G.);
[email protected] (C.Y.); Tel.: +86-10-6277-2824 (C.Y.) Received: 14 December 2017; Accepted: 23 January 2018; Published: 29 January 2018 Featured Application: High-capacity telecommunication, advanced time-resolved spectroscopy, self-organization and chaos in dissipative systems. Abstract: Benefiting from ultrafast temporal resolution, broadband spectral bandwidth, as well as high peak power, passively mode-locked fibre lasers have attracted growing interest and exhibited great potential from fundamental sciences to industrial and military applications. As a nonlinear system containing complex interactions from gain, loss, nonlinearity, dispersion, etc., ultrafast fibre lasers deliver not only conventional single soliton but also soliton bunching with different types. In analogy to molecules consisting of several atoms in chemistry, soliton molecules (in other words, bound solitons) in fibre lasers are of vital importance for in-depth understanding of the nonlinear interaction mechanism and further exploration for high-capacity fibre-optic communications.