Habilitation Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Habilitation Thesis Contents Abstract (in Czech) 2 1 Introduction 4 1.1 A motivation: symmetries of the Laplacian on Rn .........4 1.2 From Euclidean space to conformal geometry . .4 1.3 From conformal geometry to AHS structures . .5 1.4 Invariant quantization on AHS structures . .6 1.5 Prolongation of first BGG operators . .7 1.6 Summary: the author's contribution and further directions . .8 2 Almost Hermitean symmetric structures 9 2.1 1 {graded Lie algebras and first order structures . .9 2.2 Canonicalj j Cartan connections and AHS{structures . 10 2.3 Natural bundles, fundamental derivative and tractor connection . 11 2.4 Conformal geometry in the world of AHS structures . 13 3 Invariant quantization 16 3.1 A generic construction of invariant quantization . 16 3.2 Invariant quantization on conformal densities . 18 4 Symmetries of conformal powers of the Laplacian 20 4.1 Symmetries of Pr in the locally flat case . 21 4.2 An inroad to the curved case . 23 5 Prolongation of first BGG operators 24 5.1 Invariant prolongation connections on AHS manifolds . 24 5.2 Prolongation connection in conformal geometry . 26 6 Reprints of articles 31 Reference [13]: Equivariant quantizations for AHS-structures ...... 32 Reference [34]: Conformally invariant quantization { Towards the com- plete classification ........................... 50 Reference [20]: Higher symmetries of the conformal powers of the Lapla- cian on conformally flat manifolds ................. 65 Reference [30]: Second order symmetries of the conformal Laplacian .. 92 Reference [23]: On a new normalization for tractor covariant derivatives 118 Reference [24]: Invariant prolongation of overdetermined PDEs in pro- jective, conformal, and Grassmannian geometry .......... 143 1 Abstrakt Habilitaˇcn´ıpr´aceje souborem ˇcl´ank˚u[13, 34, 20, 30, 23, 24] publikovan´ych v mezi- n´arodn´ıch ˇcasopisech, kter´ejsou vˇsechny evidov´any v datab´az´ıch WoS nebo SCO- PUS. Vˇetˇsinatˇechto ˇcl´ank˚um´aspoluautory, jimiˇzjsou A. Rod Gover, Andreas Cap,ˇ Fabian Radoux, Jean-Philippe Michel, Matthias Hammerl, Petr Somberg a Vladim´ır Souˇcek. Pod´ıl vˇsech autor˚una spoleˇcn´ych ˇcl´anc´ıch je rovnocenn´y. Reprinty ˇcl´ank˚ujsou v Sekci 6. Oblast v´yzkumu tˇechto matematik˚use prot´ın´av konformn´ıgeometrii, kter´aje nejzn´amˇejˇs´ıstrukturou ve tˇr´ıdˇetzv. AHS struktur. V´yznamkonformn´ıgeometrie spoˇc´ıv´amj. v jej´ımbl´ızk´emvztahu k matematick´efyzice a tak´ek anal´yze.Pr´avˇe na pomez´ı tˇechto oblast´ı matematiky patˇr´ı probl´em, kter´ymotivuje v´ysledky shrnut´ev t´etohabilitaci: studium symetri´ı Laplaceova oper´atoru∆. To jsou oper´atory Σ takov´e,ˇze∆ Σ = Σ0 ∆ pro nˇejak´yoper´atorΣ0. Technick´afor- mulace probl´em˚u,jejichˇzvyˇreˇsen´ıje◦ ◦ nutn´epro ´upln´ypopis symmetri´ıLaplaceova oper´atoru, je v Sekci 1.1. Symetrie Laplaceova oper´atorujsou zn´am´ed´ıky ˇcl´anku[15] publikovan´em v Annals of Mathematics. C´ılt´etohabilitace je ovˇsemmnohem obecnˇejˇs´ı:prezen- tovat geometrick´en´astroje a postupy pro studium symetri´ıinvariantn´ıch oper´ator˚u ve tˇr´ıdˇeAHS geometrick´ych struktur. Pˇresnˇejˇs´ıformulace vyˇzaduj´ıjist´ymatema- tick´yapar´ata ˇcten´aˇrje najde v Sekci 1. Hlavn´ıv´ysledkyse t´ykaj´ı invariant- n´ıhokvantov´an´ı v Sekci 3, symetri´ı konformn´ıchmocnin Laplaceova oper´atoru a diskuze ploch´aversus kˇriv´ageometrie v Sekci 4 a prodluˇzov´an´ı prvn´ıchBGG oper´ator˚u v Sekci 5. 2 Preface The thesis is a collection of articles [13, 34, 20, 30, 23, 24]. All of them have been published in international journals indexed by WoS or SCOPUS. Results and some background theory are summarized in the survey part (Sections 1 { 5) on pages 4 { 27. Reprints of articles are in Section 6. Our main research interest lies in the theory (bi)linear invariant operators on manifolds with a geometrical structure (known as AHS structure). This provides a suitable geometrical framework for the specific problem which motivates this survey: to understand symmetries of the Laplace operator [15]. Such symmet- ries play an important role in analysis (in the study of separable solutions of PDE's) and in mathematical physics (where the terminology `higher' or `hidden' symmetries is often used). I hope this survey will be useful for researches on the borderline of these fields. Pronouncement Almost all papers included in this thesis have co-authors, namely A. Cap,ˇ A.R. Gover, J.-P. Michel, F. Radoux, M. Hammerl, P. Somberg and V. Souˇcek. The contributions of all authors were equivalent since the results were based on com- mon discussions. Formally, the author's contribution to the paper [34] was 100%, the author's contribution the papers [13, 20] was 50%, the author's contribution the paper [30] was 33% and the authors contribution to the papers [23, 24] was 25%. However, the developement of articels [23, 24] was rather specific. Main results of these articels were obtained more or less independently by M. Hammerl on one side and by P. Somberg, V. Souˇcekand the author of the habilition on the other side. After we found out that we work on the same problem, we decided to publish our results together. From this point of view, the author's contribution to [23, 24] can be also considered as 33%. Acknowledgement I wish to thank all the co-authors for their friendly and always very helpful col- laboration. I would like to express my gratitude to my colleague Prof. Jan Slov´ak for our numerous interesting discussions. 3 1 Introduction 1.1 A motivation: symmetries of the Laplacian on Rn The Laplacian operator is of prominent interest in differential geometry, mathe- matical physics and analysis and has many analogues in other mathematical fields. We shall start with the simplest version, i.e. the Laplacian on smooth functions n i n n on the Euclidean space R . This is the operator ∆ = i : C1(R ) C1(R ) r r ! where i = @=@xi and we have used the Einstein's summation convention. There r n n is an obvious notion of symmetries of ∆ : C1(R ) C1(R ) given by diffe- n n ! rential operators Σ : C1(R ) C1(R ) such that ∆Σ = Σ∆. We shall term such operators commuting symmetries! of ∆. As a slight reformulation, one can also introduce commuting symmetries as operators preserving eigenspaces of ∆. Another (and weaker) possibility is to study operators Σ which preserve the null space of ∆ and this will be the property of our interest. We say Σ is a conformal symmetry or just a symmetry of ∆ if n n ∆Σ = Σ0∆ for some Σ0 : C1(R ) C1(R ): (1) ! Note this also means that Σ0 preserves the range of ∆. A short computation reveals that operators Σ and Σ0 have the same symbol. The vector space of symmetries forms obviously an algebra which we denote by HS. Operators of the form Σ = T ∆ are always symmetries which we shall term trivial symmetries. Observe the space of trivial symmetries is a left ideal which we denote by (∆) HS. The main problem is to describe the quotient HS := HS=(∆). ⊆ What do we need to understand fully symmetries of ∆? First, we need to classify symmetries Σ which means to find out which tensor fields can appear as symbols of symmetries in the first place. Another question is to construct a preferred symmetry with a prescribed symbol. Then one should understand the algebra HS. All these problems are solved in the essential Eastwood's paper [15]. This result also shows the significance of conformal geometry. Although defined using the Euclidean metric, the Laplacian is in a suitable sense confor- mally invariant, cf. Section 1.2. (Note this follows already from knowledge of first order symmetries.) Thus the basic step in the study of symmetries should be to understand invariance of ∆. These questions motivate the main aim of this thesis: we explore to which extent and directions one can develop a general theory of symmetries of (suitably invariant) differential operators. 1.2 From Euclidean space to conformal geometry Conformal structure is the pair (M; [g]) where M is a smooth manifold of the 4 dimension n, g a (pseudo)Riemannian metric and the class [g] contains metrics obtained by rescaling g by a positive smooth function. This determines the class of ab corresponding Levi-Civita connections [ ]. Although the Laplacian ∆ = g a b is not conformally invariant, there is ar curvature modification known as ther con-r n 2 formal Laplacian (or Yamabe operator) ∆ := ∆ − Sc : [ n=2 + 1] Y − 4(n 1) E − ! [ n=2 1] where Sc is the scalar curvature of g and [−w] are density bundles, E − − E cf. Section 2.4 for details concerning our convention for conformal weights w R. 2 The conformal invariance means ∆Y = ∆Y for the operator ∆Y defined with respect to another choiceg ^ [g] with corresponding [ ]. 2 r 2 r Note the problem of symmetries of ∆Y bis much simpler in theb Euclidean case (where ∆Y = ∆ because Sc = 0, cf. Section 1.1)b than for general conformal structures (M; [g]). In fact, the full understanding of symmetries of ∆Y is available only on locally flat conformal structures (M; [g]), i.e. when g is locally isomorphic n to the Euclidean metric on R . Generally, first order symmetries of ∆Y come from infinitesimal symmetries of the structure (i.e. conformal Killing fields) but the classification of higher order symmetries is a highly nontrivial problem. Only the case of second order symmetries is solved and we shall discuss this result in Section 4.2. Above we started with the Laplacian ∆ and observed its conformal invariance. Taking a slightly different point of view, we can start with a given conformal struc- ture (M; [g]), choose an arbitrary invariant differential operator Φ and consider symmetries of Σ analogously as in (1).
Recommended publications
  • Abstract Tensor Systems and Diagrammatic Representations
    Abstract tensor systems and diagrammatic representations J¯anisLazovskis September 28, 2012 Abstract The diagrammatic tensor calculus used by Roger Penrose (most notably in [7]) is introduced without a solid mathematical grounding. We will attempt to derive the tools of such a system, but in a broader setting. We show that Penrose's work comes from the diagrammisation of the symmetric algebra. Lie algebra representations and their extensions to knot theory are also discussed. Contents 1 Abstract tensors and derived structures 2 1.1 Abstract tensor notation . 2 1.2 Some basic operations . 3 1.3 Tensor diagrams . 3 2 A diagrammised abstract tensor system 6 2.1 Generation . 6 2.2 Tensor concepts . 9 3 Representations of algebras 11 3.1 The symmetric algebra . 12 3.2 Lie algebras . 13 3.3 The tensor algebra T(g)....................................... 16 3.4 The symmetric Lie algebra S(g)................................... 17 3.5 The universal enveloping algebra U(g) ............................... 18 3.6 The metrized Lie algebra . 20 3.6.1 Diagrammisation with a bilinear form . 20 3.6.2 Diagrammisation with a symmetric bilinear form . 24 3.6.3 Diagrammisation with a symmetric bilinear form and an orthonormal basis . 24 3.6.4 Diagrammisation under ad-invariance . 29 3.7 The universal enveloping algebra U(g) for a metrized Lie algebra g . 30 4 Ensuing connections 32 A Appendix 35 Note: This work relies heavily upon the text of Chapter 12 of a draft of \An Introduction to Quantum and Vassiliev Invariants of Knots," by David M.R. Jackson and Iain Moffatt, a yet-unpublished book at the time of writing.
    [Show full text]
  • Killing Spinor-Valued Forms and the Cone Construction
    ARCHIVUM MATHEMATICUM (BRNO) Tomus 52 (2016), 341–355 KILLING SPINOR-VALUED FORMS AND THE CONE CONSTRUCTION Petr Somberg and Petr Zima Abstract. On a pseudo-Riemannian manifold M we introduce a system of partial differential Killing type equations for spinor-valued differential forms, and study their basic properties. We discuss the relationship between solutions of Killing equations on M and parallel fields on the metric cone over M for spinor-valued forms. 1. Introduction The subject of the present article are the systems of over-determined partial differential equations for spinor-valued differential forms, classified as atypeof Killing equations. The solution spaces of these systems of PDE’s are termed Killing spinor-valued differential forms. A central question in geometry asks for pseudo-Riemannian manifolds admitting non-trivial solutions of Killing type equa- tions, namely how the properties of Killing spinor-valued forms relate to the underlying geometric structure for which they can occur. Killing spinor-valued forms are closely related to Killing spinors and Killing forms with Killing vectors as a special example. Killing spinors are both twistor spinors and eigenspinors for the Dirac operator, and real Killing spinors realize the limit case in the eigenvalue estimates for the Dirac operator on compact Riemannian spin manifolds of positive scalar curvature. There is a classification of complete simply connected Riemannian manifolds equipped with real Killing spinors, leading to the construction of manifolds with the exceptional holonomy groups G2 and Spin(7), see [8], [1]. Killing vector fields on a pseudo-Riemannian manifold are the infinitesimal generators of isometries, hence they influence its geometrical properties.
    [Show full text]
  • Arxiv:Gr-Qc/0611154 V1 30 Nov 2006 Otx Fcra Geometry
    MacDowell–Mansouri Gravity and Cartan Geometry Derek K. Wise Department of Mathematics University of California Riverside, CA 92521, USA email: [email protected] November 29, 2006 Abstract The geometric content of the MacDowell–Mansouri formulation of general relativity is best understood in terms of Cartan geometry. In particular, Cartan geometry gives clear geomet- ric meaning to the MacDowell–Mansouri trick of combining the Levi–Civita connection and coframe field, or soldering form, into a single physical field. The Cartan perspective allows us to view physical spacetime as tangentially approximated by an arbitrary homogeneous ‘model spacetime’, including not only the flat Minkowski model, as is implicitly used in standard general relativity, but also de Sitter, anti de Sitter, or other models. A ‘Cartan connection’ gives a prescription for parallel transport from one ‘tangent model spacetime’ to another, along any path, giving a natural interpretation of the MacDowell–Mansouri connection as ‘rolling’ the model spacetime along physical spacetime. I explain Cartan geometry, and ‘Cartan gauge theory’, in which the gauge field is replaced by a Cartan connection. In particular, I discuss MacDowell–Mansouri gravity, as well as its recent reformulation in terms of BF theory, in the arXiv:gr-qc/0611154 v1 30 Nov 2006 context of Cartan geometry. 1 Contents 1 Introduction 3 2 Homogeneous spacetimes and Klein geometry 8 2.1 Kleingeometry ................................... 8 2.2 MetricKleingeometry ............................. 10 2.3 Homogeneousmodelspacetimes. ..... 11 3 Cartan geometry 13 3.1 Ehresmannconnections . .. .. .. .. .. .. .. .. 13 3.2 Definition of Cartan geometry . ..... 14 3.3 Geometric interpretation: rolling Klein geometries . .............. 15 3.4 ReductiveCartangeometry . 17 4 Cartan-type gauge theory 20 4.1 Asequenceofbundles .............................
    [Show full text]
  • Two Exotic Holonomies in Dimension Four, Path Geometries, and Twistor Theory
    Two Exotic Holonomies in Dimension Four, Path Geometries, and Twistor Theory by Robert L. Bryant* Table of Contents §0. Introduction §1. The Holonomy of a Torsion-Free Connection §2. The Structure Equations of H3-andG3-structures §3. The Existence Theorems §4. Path Geometries and Exotic Holonomy §5. Twistor Theory and Exotic Holonomy §6. Epilogue §0. Introduction Since its introduction by Elie´ Cartan, the holonomy of a connection has played an important role in differential geometry. One of the best known results concerning hol- onomy is Berger’s classification of the possible holonomies of Levi-Civita connections of Riemannian metrics. Since the appearance of Berger [1955], much work has been done to refine his listofpossible Riemannian holonomies. See the recent works by Besse [1987]or Salamon [1989]foruseful historical surveys and applications of holonomy to Riemannian and algebraic geometry. Less well known is that, at the same time, Berger also classified the possible pseudo- Riemannian holonomies which act irreducibly on each tangent space. The intervening years have not completely resolved the question of whether all of the subgroups of the general linear group on his pseudo-Riemannian list actually occur as holonomy groups of pseudo-Riemannian metrics, but, as of this writing, only one class of examples on his list remains in doubt, namely SO∗(2p) ⊂ GL(4p)forp ≥ 3. Perhaps the least-known aspect of Berger’s work on holonomy concerns his list of the possible irreducibly-acting holonomy groups of torsion-free affine connections. (Torsion- free connections are the natural generalization of Levi-Civita connections in the metric case.) Part of the reason for this relative obscurity is that affine geometry is not as well known or widely usedasRiemannian geometry and global results are generally lacking.
    [Show full text]
  • Flat Connections on Oriented 2-Manifolds
    e Bull. London Math. Soc. 37 (2005) 1–14 C 2005 London Mathematical Society DOI: 10.1112/S002460930400373X FLAT CONNECTIONS ON ORIENTED 2-MANIFOLDS LISA C. JEFFREY Abstract This paper aims to provide a survey on the subject of representations of fundamental groups of 2-manifolds, or in other guises flat connections on orientable 2-manifolds or moduli spaces parametrizing holomorphic vector bundles on Riemann surfaces. It emphasizes the relationships between the different descriptions of these spaces. The final two sections of the paper outline results of the author and Kirwan on the cohomology rings of certain of the spaces described earlier (formulas for intersection numbers that were discovered by Witten (Commun. Math. Phys. 141 (1991) 153–209 and J. Geom. Phys. 9 (1992) 303–368) and given a mathematical proof by the author and Kirwan (Ann. of Math. 148 (1998) 109–196)). 1. Introduction This paper aims to provide a survey on the subject of representations of fundamental groups of 2-manifolds, or in other guises flat connections on orientable 2-manifolds or moduli spaces parametrizing holomorphic vector bundles on Riemann surfaces. Sections 1 and 2 are intended to be accessible to anyone with a background corresponding to an introductory course on differentiable manifolds (at the advanced undergraduate or beginning research student level in UK universities). Sections 3 and 4 describe recent work on the topology of the spaces treated in Sections 1 and 2, and may require more background in algebraic topology (for instance, familiarity with homology theory). The layout of the paper is as follows. Section 1.2 treats the Jacobian (which is the simplest prototype for the class of objects treated throughout the paper, corresponding to the group U(1)).
    [Show full text]
  • Math 865, Topics in Riemannian Geometry
    Math 865, Topics in Riemannian Geometry Jeff A. Viaclovsky Fall 2007 Contents 1 Introduction 3 2 Lecture 1: September 4, 2007 4 2.1 Metrics, vectors, and one-forms . 4 2.2 The musical isomorphisms . 4 2.3 Inner product on tensor bundles . 5 2.4 Connections on vector bundles . 6 2.5 Covariant derivatives of tensor fields . 7 2.6 Gradient and Hessian . 9 3 Lecture 2: September 6, 2007 9 3.1 Curvature in vector bundles . 9 3.2 Curvature in the tangent bundle . 10 3.3 Sectional curvature, Ricci tensor, and scalar curvature . 13 4 Lecture 3: September 11, 2007 14 4.1 Differential Bianchi Identity . 14 4.2 Algebraic study of the curvature tensor . 15 5 Lecture 4: September 13, 2007 19 5.1 Orthogonal decomposition of the curvature tensor . 19 5.2 The curvature operator . 20 5.3 Curvature in dimension three . 21 6 Lecture 5: September 18, 2007 22 6.1 Covariant derivatives redux . 22 6.2 Commuting covariant derivatives . 24 6.3 Rough Laplacian and gradient . 25 7 Lecture 6: September 20, 2007 26 7.1 Commuting Laplacian and Hessian . 26 7.2 An application to PDE . 28 1 8 Lecture 7: Tuesday, September 25. 29 8.1 Integration and adjoints . 29 9 Lecture 8: September 23, 2007 34 9.1 Bochner and Weitzenb¨ock formulas . 34 10 Lecture 9: October 2, 2007 38 10.1 Manifolds with positive curvature operator . 38 11 Lecture 10: October 4, 2007 41 11.1 Killing vector fields . 41 11.2 Isometries . 44 12 Lecture 11: October 9, 2007 45 12.1 Linearization of Ricci tensor .
    [Show full text]
  • A Geodesic Connection in Fréchet Geometry
    A geodesic connection in Fr´echet Geometry Ali Suri Abstract. In this paper first we propose a formula to lift a connection on M to its higher order tangent bundles T rM, r 2 N. More precisely, for a given connection r on T rM, r 2 N [ f0g, we construct the connection rc on T r+1M. Setting rci = rci−1 c, we show that rc1 = lim rci exists − and it is a connection on the Fr´echet manifold T 1M = lim T iM and the − geodesics with respect to rc1 exist. In the next step, we will consider a Riemannian manifold (M; g) with its Levi-Civita connection r. Under suitable conditions this procedure i gives a sequence of Riemannian manifolds f(T M, gi)gi2N equipped with ci c1 a sequence of Riemannian connections fr gi2N. Then we show that r produces the curves which are the (local) length minimizer of T 1M. M.S.C. 2010: 58A05, 58B20. Key words: Complete lift; spray; geodesic; Fr´echet manifolds; Banach manifold; connection. 1 Introduction In the first section we remind the bijective correspondence between linear connections and homogeneous sprays. Then using the results of [6] for complete lift of sprays, we propose a formula to lift a connection on M to its higher order tangent bundles T rM, r 2 N. More precisely, for a given connection r on T rM, r 2 N [ f0g, we construct its associated spray S and then we lift it to a homogeneous spray Sc on T r+1M [6]. Then, using the bijective correspondence between connections and sprays, we derive the connection rc on T r+1M from Sc.
    [Show full text]
  • 3+1 Formalism and Bases of Numerical Relativity
    3+1 Formalism and Bases of Numerical Relativity Lecture notes Eric´ Gourgoulhon Laboratoire Univers et Th´eories, UMR 8102 du C.N.R.S., Observatoire de Paris, Universit´eParis 7 arXiv:gr-qc/0703035v1 6 Mar 2007 F-92195 Meudon Cedex, France [email protected] 6 March 2007 2 Contents 1 Introduction 11 2 Geometry of hypersurfaces 15 2.1 Introduction.................................... 15 2.2 Frameworkandnotations . .... 15 2.2.1 Spacetimeandtensorfields . 15 2.2.2 Scalar products and metric duality . ...... 16 2.2.3 Curvaturetensor ............................... 18 2.3 Hypersurfaceembeddedinspacetime . ........ 19 2.3.1 Definition .................................... 19 2.3.2 Normalvector ................................. 21 2.3.3 Intrinsiccurvature . 22 2.3.4 Extrinsiccurvature. 23 2.3.5 Examples: surfaces embedded in the Euclidean space R3 .......... 24 2.4 Spacelikehypersurface . ...... 28 2.4.1 Theorthogonalprojector . 29 2.4.2 Relation between K and n ......................... 31 ∇ 2.4.3 Links between the and D connections. .. .. .. .. .. 32 ∇ 2.5 Gauss-Codazzirelations . ...... 34 2.5.1 Gaussrelation ................................. 34 2.5.2 Codazzirelation ............................... 36 3 Geometry of foliations 39 3.1 Introduction.................................... 39 3.2 Globally hyperbolic spacetimes and foliations . ............. 39 3.2.1 Globally hyperbolic spacetimes . ...... 39 3.2.2 Definition of a foliation . 40 3.3 Foliationkinematics .. .. .. .. .. .. .. .. ..... 41 3.3.1 Lapsefunction ................................. 41 3.3.2 Normal evolution vector . 42 3.3.3 Eulerianobservers ............................. 42 3.3.4 Gradients of n and m ............................. 44 3.3.5 Evolution of the 3-metric . 45 4 CONTENTS 3.3.6 Evolution of the orthogonal projector . ....... 46 3.4 Last part of the 3+1 decomposition of the Riemann tensor .
    [Show full text]
  • Geometric Algebra and Covariant Methods in Physics and Cosmology
    GEOMETRIC ALGEBRA AND COVARIANT METHODS IN PHYSICS AND COSMOLOGY Antony M Lewis Queens' College and Astrophysics Group, Cavendish Laboratory A dissertation submitted for the degree of Doctor of Philosophy in the University of Cambridge. September 2000 Updated 2005 with typo corrections Preface This dissertation is the result of work carried out in the Astrophysics Group of the Cavendish Laboratory, Cambridge, between October 1997 and September 2000. Except where explicit reference is made to the work of others, the work contained in this dissertation is my own, and is not the outcome of work done in collaboration. No part of this dissertation has been submitted for a degree, diploma or other quali¯cation at this or any other university. The total length of this dissertation does not exceed sixty thousand words. Antony Lewis September, 2000 iii Acknowledgements It is a pleasure to thank all those people who have helped me out during the last three years. I owe a great debt to Anthony Challinor and Chris Doran who provided a great deal of help and advice on both general and technical aspects of my work. I thank my supervisor Anthony Lasenby who provided much inspiration, guidance and encouragement without which most of this work would never have happened. I thank Sarah Bridle for organizing the useful lunchtime CMB discussion group from which I learnt a great deal, and the other members of the Cavendish Astrophysics Group for interesting discussions, in particular Pia Mukherjee, Carl Dolby, Will Grainger and Mike Hobson. I gratefully acknowledge ¯nancial support from PPARC. v Contents Preface iii Acknowledgements v 1 Introduction 1 2 Geometric Algebra 5 2.1 De¯nitions and basic properties .
    [Show full text]
  • Math 704: Part 1: Principal Bundles and Connections
    MATH 704: PART 1: PRINCIPAL BUNDLES AND CONNECTIONS WEIMIN CHEN Contents 1. Lie Groups 1 2. Principal Bundles 3 3. Connections and curvature 6 4. Covariant derivatives 12 References 13 1. Lie Groups A Lie group G is a smooth manifold such that the multiplication map G × G ! G, (g; h) 7! gh, and the inverse map G ! G, g 7! g−1, are smooth maps. A Lie subgroup H of G is a subgroup of G which is at the same time an embedded submanifold. A Lie group homomorphism is a group homomorphism which is a smooth map between the Lie groups. The Lie algebra, denoted by Lie(G), of a Lie group G consists of the set of left-invariant vector fields on G, i.e., Lie(G) = fX 2 X (G)j(Lg)∗X = Xg, where Lg : G ! G is the left translation Lg(h) = gh. As a vector space, Lie(G) is naturally identified with the tangent space TeG via X 7! X(e). A Lie group homomorphism naturally induces a Lie algebra homomorphism between the associated Lie algebras. Finally, the universal cover of a connected Lie group is naturally a Lie group, which is in one to one correspondence with the corresponding Lie algebras. Example 1.1. Here are some important Lie groups in geometry and topology. • GL(n; R), GL(n; C), where GL(n; C) can be naturally identified as a Lie sub- group of GL(2n; R). • SL(n; R), O(n), SO(n) = O(n) \ SL(n; R), Lie subgroups of GL(n; R).
    [Show full text]
  • Linear Degeneracy in Multidimensions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Loughborough University Institutional Repository Linear degeneracy in multidimensions by Jonathan Moss A Doctoral Thesis Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University September 2015 c J J Moss 2015 Abstract Linear degeneracy of a PDE is a concept that is related to a number of interesting geometric constructions. We first take a quadratic line complex, which is a three- parameter family of lines in projective space P3 specified by a single quadratic relation in the Pl¨ucker coordinates. This complex supplies us with a conformal structure in P3. With this conformal structure, we associate a three-dimensional second order quasilin- ear wave equation. We show that any PDE arising in this way is linearly degenerate, furthermore, any linearly degenerate PDE can be obtained by this construction. We classify Segre types of quadratic complexes for which the structure is conformally flat, as well as Segre types for which the corresponding PDE is integrable. These results were published in [1]. We then introduce the notion of characteristic integrals, discuss characteristic integrals in 3D and show that, for certain classes of second-order linearly degenerate dispersionless integrable PDEs, the corresponding characteristic integrals are parameterised by points on the Veronese variety. These results were published in [2]. Keywords Second order PDEs, hydrodynamic reductions, integrability, conformal structures, quadratic line complexes, linear degeneracy, characteristic integrals, principal symbol. 1 Acknowledgments I would like to express many thanks to Prof E.V.
    [Show full text]
  • Two-Spinors, Oscillator Algebras, and Qubits: Aspects of Manifestly Covariant Approach to Relativistic Quantum Information
    Quantum Information Processing manuscript No. (will be inserted by the editor) Two-spinors, oscillator algebras, and qubits: Aspects of manifestly covariant approach to relativistic quantum information Marek Czachor Received: date / Accepted: date Abstract The first part of the paper reviews applications of 2-spinor methods to rela- tivistic qubits (analogies between tetrads in Minkowski space and 2-qubit states, qubits defined by means of null directions and their role for elimination of the Peres-Scudo- Terno phenomenon, advantages and disadvantages of relativistic polarization operators defined by the Pauli-Lubanski vector, manifestly covariant approach to unitary rep- resentations of inhomogeneous SL(2,C)). The second part deals with electromagnetic fields quantized by means of harmonic oscillator Lie algebras (not necessarily taken in irreducible representations). As opposed to non-relativistic singlets one has to dis- tinguish between maximally symmetric and EPR states. The distinction is one of the sources of ‘strange’ relativistic properties of EPR correlations. As an example, EPR averages are explicitly computed for linear polarizations in states that are antisymmet- ric in both helicities and momenta. The result takes the familiar form p cos 2(α β) ± − independently of the choice of representation of harmonic oscillator algebra. Parameter p is determined by spectral properties of detectors and the choice of EPR state, but is unrelated to detector efficiencies. Brief analysis of entanglement with vacuum and vacuum violation of Bell’s inequality is given. The effects are related to inequivalent notions of vacuum states. Technical appendices discuss details of the representation I employ in field quantization. In particular, M-shaped delta-sequences are used to define Dirac deltas regular at zero.
    [Show full text]