Swarm Robotics
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Simulation of Collective Motion of Self Propelled Particles in Homogeneous and Heterogeneous Medium
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.11, November 2018 109 Simulation of Collective Motion of Self Propelled Particles in Homogeneous and Heterogeneous Medium Israr Ahmed†, Inayatullah Soomro††, Syed Baqer Shah†††, Hisamuddin Shaikh†††† SALU Khairpur Pakistan Abstract Large groups of animals moves very long distances and The concept of self-propelled particles is used to study the they cross rivers and forest [5]. Inspite of these facts, there collective motion of different organisms such as flocking of birds, has been limited research done on the effect of swimming of schools of fish or migrating of bacteria. The heterogeneous media on the collective behaviour of self- collective motion of self-propelled particles is investigated in the propelled particles [6]. Avoidance behaviour of the presence of obstacles and without obstacles. A comparison of the effects of interaction radius, speed and noise on the collective particle from the obstacle was simulated by the croft et al motion of self-propelled particles is conducted. It is found that in [7]. In this work measurement of effect was carried out the presence of obstacles, mean square displacement of the when a single particle collided with the static obstacles. It particles shows large fluctuation, whereas without obstacles was found that there are higher chances of collision of fluctuation is less. It is also shown that in the presence of the social interactions with the obstacles. This is due to the obstacles, an optimal noise, which maximizes the collective huge supposition and the occurrence of large parameter motion of the particles, exists values. -
Evolving Behaviour Trees for Supervisory Control of Robot Swarms
Evolving Behaviour Trees for Supervisory Control of Robot Swarms Elliott Hogg1y, Sabine Hauert1, David Harvey, Arthur Richards1 1Bristol Robotics Laboratory, University of Bristol, UK. E-mail: [email protected], [email protected] Abstract: Supervisory control of swarms is essential to their deployment in real world scenarios to both monitor their operation and provide guidance. We explore mechanisms by which humans might provide supervisory control to swarms and improve their performance. Rather than have humans guess the correct form of supervisory control, we use artificial evolution to learn effective human-readable strategies to help human operators understanding and performance when con- trolling swarms. These strategies can be thoroughly tested and can provide knowledge to be used in the future in a variety of scenarios. Behaviour trees are applied to represent human readable decision strategies which are produced through evolution. We investigate a simulated set of scenarios where a swarm of robots have to explore varying environments and reach sets of objectives. Effective supervisory control strategies are evolved to explore each environment using different local swarm behaviours. The evolved behaviour trees are animated alongside swarm simulations to enable clear under- standing of the supervisory strategies. We conclude by identifying the strengths in accelerated testing and the benefits of this approach for scenario exploration and training of human operators. Keywords: Human Swarm Interaction; Swarm; Artificial Evolution; Supervisory Control; Behaviour Trees 1. INTRODUCTION • Parametric: Adjusting the characteristics of an emer- gent behaviour [6, 12]. Growing interest in the use of swarm systems has led • Environmental: The operator highlights points of inter- to new questions regarding effective design for real-world est within an environment [8, 26]. -
Individual Versus Collective Cognition in Social Insects
Individual versus collective cognition in social insects Ofer Feinermanᴥ, Amos Kormanˠ ᴥ Department of Physics of Complex Systems, Weizmann Institute of Science, 7610001, Rehovot, Israel. Email: [email protected] ˠ Institut de Recherche en Informatique Fondamentale (IRIF), CNRS and University Paris Diderot, 75013, Paris, France. Email: [email protected] Abstract The concerted responses of eusocial insects to environmental stimuli are often referred to as collective cognition on the level of the colony.To achieve collective cognitiona group can draw on two different sources: individual cognitionand the connectivity between individuals.Computation in neural-networks, for example,is attributedmore tosophisticated communication schemes than to the complexity of individual neurons. The case of social insects, however, can be expected to differ. This is since individual insects are cognitively capable units that are often able to process information that is directly relevant at the level of the colony.Furthermore, involved communication patterns seem difficult to implement in a group of insects since these lack clear network structure.This review discusses links between the cognition of an individual insect and that of the colony. We provide examples for collective cognition whose sources span the full spectrum between amplification of individual insect cognition and emergent group-level processes. Introduction The individuals that make up a social insect colony are so tightly knit that they are often regarded as a single super-organism(Wilson and Hölldobler, 2009). This point of view seems to go far beyond a simple metaphor(Gillooly et al., 2010)and encompasses aspects of the colony that are analogous to cell differentiation(Emerson, 1939), metabolic rates(Hou et al., 2010; Waters et al., 2010), nutrient regulation(Behmer, 2009),thermoregulation(Jones, 2004; Starks et al., 2000), gas exchange(King et al., 2015), and more. -
Behavioural Plasticity and the Transition to Order in Jackdaw Flocks
ARTICLE https://doi.org/10.1038/s41467-019-13281-4 OPEN Behavioural plasticity and the transition to order in jackdaw flocks Hangjian Ling 1,2, Guillam E. Mclvor 3, Joseph Westley3, Kasper van der Vaart1, Richard T. Vaughan4, Alex Thornton 3* & Nicholas T. Ouellette 1* Collective behaviour is typically thought to arise from individuals following fixed interaction rules. The possibility that interaction rules may change under different circumstances has 1234567890():,; thus only rarely been investigated. Here we show that local interactions in flocks of wild jackdaws (Corvus monedula) vary drastically in different contexts, leading to distinct group- level properties. Jackdaws interact with a fixed number of neighbours (topological interac- tions) when traveling to roosts, but coordinate with neighbours based on spatial distance (metric interactions) during collective anti-predator mobbing events. Consequently, mobbing flocks exhibit a dramatic transition from disordered aggregations to ordered motion as group density increases, unlike transit flocks where order is independent of density. The relationship between group density and group order during this transition agrees well with a generic self- propelled particle model. Our results demonstrate plasticity in local interaction rules and have implications for both natural and artificial collective systems. 1 Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA. 2 Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, -
Mobility and Infectiousness in the Spatial Spread of an Emerging Fungal Pathogen
Received: 7 May 2020 | Accepted: 11 January 2021 DOI: 10.1111/1365-2656.13439 RESEARCH ARTICLE Mobility and infectiousness in the spatial spread of an emerging fungal pathogen Kate E. Langwig1 | J. Paul White2 | Katy L. Parise3 | Heather M. Kaarakka2 | Jennifer A. Redell2 | John E. DePue4 | William H. Scullon5 | Jeffrey T. Foster3 | A. Marm Kilpatrick6 | Joseph R. Hoyt1 1Department of Biological Sciences, Virginia Polytechnic Institute, Blacksburg, VA, USA; 2Wisconsin Department of Natural Resources, Madison, WI, USA; 3Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA; 4Michigan Department of Natural Resources, Baraga, MI, USA; 5Michigan Department of Natural Resources, Norway, MI, USA and 6Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA Correspondence Kate E. Langwig Abstract Email: [email protected] 1. Emerging infectious diseases can have devastating effects on host communities, caus- Funding information ing population collapse and species extinctions. The timing of novel pathogen arrival National Science Foundation, Grant/Award into naïve species communities can have consequential effects that shape the trajec- Number: DEB- 1115895, DEB- 1336290 and DEB- 1911853; U.S. Fish and Wildlife tory of epidemics through populations. Pathogen introductions are often presumed Service, Grant/Award Number: F17AP00591 to occur when hosts are highly mobile. However, spread patterns can be influenced Handling Editor: Isabella Cattadori by a multitude of other factors including host body condition and infectiousness. 2. White- nose syndrome (WNS) is a seasonal emerging infectious disease of bats, which is caused by the fungal pathogen Pseudogymnoascus destructans. Within- site transmission of P. destructans primarily occurs over winter; however, the influence of bat mobility and infectiousness on the seasonal timing of pathogen spread to new populations is unknown. -
Collective Motion from Local Attraction Daniel Strömbom
Collective motion from local attraction Daniel Strömbom To cite this version: Daniel Strömbom. Collective motion from local attraction. Journal of Theoretical Biology, Elsevier, 2011, 283 (1), pp.145. 10.1016/j.jtbi.2011.05.019. hal-00719499 HAL Id: hal-00719499 https://hal.archives-ouvertes.fr/hal-00719499 Submitted on 20 Jul 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Author’s Accepted Manuscript Collective motion from local attraction Daniel Strömbom PII: S0022-5193(11)00261-X DOI: doi:10.1016/j.jtbi.2011.05.019 Reference: YJTBI6483 To appear in: Journal of Theoretical Biology www.elsevier.com/locate/yjtbi Received date: 15 September 2010 Revised date: 4 May 2011 Accepted date: 9 May 2011 Cite this article as: Daniel Strömbom, Collective motion from local attraction, Journal of Theoretical Biology, doi:10.1016/j.jtbi.2011.05.019 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. -
Expert Assessment of Stigmergy: a Report for the Department of National Defence
Expert Assessment of Stigmergy: A Report for the Department of National Defence Contract No. W7714-040899/003/SV File No. 011 sv.W7714-040899 Client Reference No.: W7714-4-0899 Requisition No. W7714-040899 Contact Info. Tony White Associate Professor School of Computer Science Room 5302 Herzberg Building Carleton University 1125 Colonel By Drive Ottawa, Ontario K1S 5B6 (Office) 613-520-2600 x2208 (Cell) 613-612-2708 [email protected] http://www.scs.carleton.ca/~arpwhite Expert Assessment of Stigmergy Abstract This report describes the current state of research in the area known as Swarm Intelligence. Swarm Intelligence relies upon stigmergic principles in order to solve complex problems using only simple agents. Swarm Intelligence has been receiving increasing attention over the last 10 years as a result of the acknowledgement of the success of social insect systems in solving complex problems without the need for central control or global information. In swarm- based problem solving, a solution emerges as a result of the collective action of the members of the swarm, often using principles of communication known as stigmergy. The individual behaviours of swarm members do not indicate the nature of the emergent collective behaviour and the solution process is generally very robust to the loss of individual swarm members. This report describes the general principles for swarm-based problem solving, the way in which stigmergy is employed, and presents a number of high level algorithms that have proven utility in solving hard optimization and control problems. Useful tools for the modelling and investigation of swarm-based systems are then briefly described. -
Inferring the Structure and Dynamics of Interactions in Schooling Fish
Inferring the structure and dynamics of interactions in schooling fish Yael Katza, Kolbjørn Tunstrøma, Christos C. Ioannoua, Cristián Huepeb, and Iain D. Couzina,1 aDepartment of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544; and b614 North Paulina Street, Chicago, IL 60622 Edited* by Simon A. Levin, Princeton University, Princeton, NJ, and approved June 28, 2011 (received for review May 12, 2011) Determining individual-level interactions that govern highly coor- Recent empirical studies (19–26) have collected large datasets dinated motion in animal groups or cellular aggregates has been a of freely interacting individuals in order to infer the rules under- long-standing challenge, central to understanding the mechanisms lying their emergent collective motion. Ballerini et al. (22) and and evolution of collective behavior. Numerous models have been Cavagna et al. (26) have used the spatial structure of starling flocks proposed, many of which display realistic-looking dynamics, but to infer that starlings use topological rather than metric interac- nonetheless rely on untested assumptions about how individuals tions and that information is transferred over large distances within integrate information to guide movement. Here we infer behavior- flocks in a scale-free manner. High-temporal-resolution data from al rules directly from experimental data. We begin by analyzing tra- several species have been analyzed by employing model-based jectories of golden shiners (Notemigonus crysoleucas) swimming approaches. Lukeman et al. (25) fit data on the spatial conurations in two-fish and three-fish shoals to map the mean effective forces of surf scoters to a zonal model and identified best-fit parameter as a function of fish positions and velocities. -
Swarm Intelligence Among Humans the Case of Alcoholics
Swarm Intelligence among Humans The Case of Alcoholics Andrew Schumann1 and Vadim Fris2 1Department of Cognitivistics, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland 2Private Health Unitary Enterprise “Iscelenie”, Kazinca 120, 220000 Minsk, Belarus Keywords: Swarm Intelligence, Swarm Computing, Alcoholic, Illocutionary. Abstract: There are many forms of swarm behaviour, such as swarming of insects, flocking of birds, herding of quadrupeds, and schooling of fish. Sometimes people behave unconsciously and this behaviour of them has the same patterns as behaviour of swarms. For instance, pedestrians behave as herding or flocking, aircraft boarding passengers behave as ant colony, people in escape panic behave as flocking, etc. In this paper we propose a swarm model of people with an addictive behaviour. In particular, we consider small groups of alcohol-dependent people drinking together as swarms with a form of intelligence. In order to formalize this intelligence, we appeal to modal logics K and its modification K'. The logic K is used to formalize preference relation in the case of lateral inhibition in distributing people to drink jointly and the logic K' is used to formalize preference relation in the case of lateral activation in distributing people to drink jointly. 1 INTRODUCTION mammals, too, e.g. among naked mole-rats (Heterocephalus glaber sp.). In one colony they Usually, a social behaviour is understood as a have only one queen and one to three males to synonymous to a collective animal behaviour. It is reproduce, while other members of the colony are claimed that there are many forms of this behaviour just workers (Jarvis, 1981). -
Science & Fiction-Febr, 2020 1 Off-Shore Fly Or Die
Science & Fiction-Febr, 2020 Off-Shore Fly or Die Holograms for Desert Locust Swarms Dr. Ugur Sevilmis Eastern Mediterranean Agricultural Research Institute, Adana, Turkey [email protected] Abstract A random walk search was conducted on academic papers to find a method for ecological combat of desert locust. Relatedness of papers and concepts were mainly analysed with the core idea of “Fighting Rooster” vs “Desert Locust “ interspecies competition. It was interesting to find a better preator than fighting roosters for locust swarms in the sea. Usage of a technology is required in this theoric approach to modify collective behavior of desert locusts which looks like the achilles heel of swarms. Keywords: Invasion, migration, predation, interspecies competition, süper-organism, swarm intelligence, collective intelligence, multi-species communities Conclusions A locust swarm is a highly adaptive süper-organism using collective behavior and collective intelligence. Complex interactions exists within its interiror and environmental relations coming from genetic evolution of this species. It is hard to totally change its capacity of foraging on herbage due to its high adaptation capacity. The best method to prevent it is to keep them away from terestial ecosystems and keep them off-shore to spend their fats. Just one day will be adequate to destroy a whole swarm; when the night comes. During night time when all individual visual sensors are shut down, the süper-organsim will be fragmented. Under dark and no landing condition, they will spend their energy. Dead bodies of locusts will be the landing zone for the rest of the huge swarm. But predator fishes will be vey happy to hunt 40 and 80 million locusts per square kilometer (a total of around 50 to 100 billion locusts per swarm, representing 100,000 to 200,000 tons of flesh). -
Collective Turns in Jackdaw Flocks: Kinematics and Information Transfer
ORE Open Research Exeter TITLE Collective turns in jackdaw flocks: kinematics and information transfer AUTHORS Ling, H; Mclvor, GE; Westley, J; et al. JOURNAL Journal of The Royal Society Interface DEPOSITED IN ORE 01 November 2019 This version available at http://hdl.handle.net/10871/39459 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication Collective turns in jackdaw flocks Collective turns in jackdaw flocks: kinematics and information transfer Hangjian Ling1,4, Guillam E. Mclvor2, Joseph Westley2, Kasper van der Vaart1, Jennifer Yin1, Richard T. Vaughan3, Alex Thornton2*, Nicholas T. Ouellette1* 1Department of Civil and Environmental Engineering, Stanford University, Stanford, CA USA; 2Center for Ecology and Conservation, University of Exeter, Penryn, UK; 3School of Computing Science, Simon Fraser University, Burnaby, Canada 4Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA USA; Correspondence: Nicholas T. Ouellette, Email: [email protected] Alex Thornton, Email: [email protected] Abstract: The rapid, cohesive turns of bird flocks are one of the most vivid examples of collective behaviour in nature, and have attracted much research. 3D imaging techniques now allow us to characterise the kinematics of turning and their group-level consequences in precise detail. We measured the kinematics of flocks of wild jackdaws executing collective turns in two contexts: during transit to roosts and anti-predator mobbing. All flocks reduced their speed during turns, likely due to constraints on individual flight capability. -
An Equation of State for Insect Swarms Michael Sinhuber1,3,4, Kasper Van Der Vaart1,4, Yenchia Feng1, Andrew M
www.nature.com/scientificreports OPEN An equation of state for insect swarms Michael Sinhuber1,3,4, Kasper van der Vaart1,4, Yenchia Feng1, Andrew M. Reynolds2 & Nicholas T. Ouellette1* Collective behaviour in focks, crowds, and swarms occurs throughout the biological world. Animal groups are generally assumed to be evolutionarily adapted to robustly achieve particular functions, so there is widespread interest in exploiting collective behaviour for bio-inspired engineering. However, this requires understanding the precise properties and function of groups, which remains a challenge. Here, we demonstrate that collective groups can be described in a thermodynamic framework. We defne an appropriate set of state variables and extract an equation of state for laboratory midge swarms. We then drive swarms through “thermodynamic” cycles via external stimuli, and show that our equation of state holds throughout. Our fndings demonstrate a new way of precisely quantifying the nature of collective groups and provide a cornerstone for potential future engineering design. Organisms on every size scale, from single-celled1 to highly complex2, regularly come together in groups. In many cases, such aggregations are collective, in that the group as a whole displays properties and functionality distinct from those of its individual members or simply their linear sum3,4. It is generally assumed that since evolution has led so many diferent kinds of animals to behave collectively, the performance of collective groups at whatever task they seek to achieve ought to be well beyond the capabilities of a single individual5, while also being robust to uncertain natural environments 6,7 and operating without the need for top-down control 8.