Algorithmic Requirements for Swarm Intelligence in Differently Coupled Collective Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Simulation of Collective Motion of Self Propelled Particles in Homogeneous and Heterogeneous Medium
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.11, November 2018 109 Simulation of Collective Motion of Self Propelled Particles in Homogeneous and Heterogeneous Medium Israr Ahmed†, Inayatullah Soomro††, Syed Baqer Shah†††, Hisamuddin Shaikh†††† SALU Khairpur Pakistan Abstract Large groups of animals moves very long distances and The concept of self-propelled particles is used to study the they cross rivers and forest [5]. Inspite of these facts, there collective motion of different organisms such as flocking of birds, has been limited research done on the effect of swimming of schools of fish or migrating of bacteria. The heterogeneous media on the collective behaviour of self- collective motion of self-propelled particles is investigated in the propelled particles [6]. Avoidance behaviour of the presence of obstacles and without obstacles. A comparison of the effects of interaction radius, speed and noise on the collective particle from the obstacle was simulated by the croft et al motion of self-propelled particles is conducted. It is found that in [7]. In this work measurement of effect was carried out the presence of obstacles, mean square displacement of the when a single particle collided with the static obstacles. It particles shows large fluctuation, whereas without obstacles was found that there are higher chances of collision of fluctuation is less. It is also shown that in the presence of the social interactions with the obstacles. This is due to the obstacles, an optimal noise, which maximizes the collective huge supposition and the occurrence of large parameter motion of the particles, exists values. -
A Novel Concept for the Study of Heterogeneous Robotic Swarms
Swarmanoid: a novel concept for the study of heterogeneous robotic swarms M. Dorigo, D. Floreano, L. M. Gambardella, F. Mondada, S. Nolfi, T. Baaboura, M. Birattari, M. Bonani, M. Brambilla, A. Brutschy, D. Burnier, A. Campo, A. L. Christensen, A. Decugni`ere, G. Di Caro, F. Ducatelle, E. Ferrante, A. F¨orster, J. Martinez Gonzales, J. Guzzi, V. Longchamp, S. Magnenat, N. Mathews, M. Montes de Oca, R. O’Grady, C. Pinciroli, G. Pini, P. R´etornaz, J. Roberts, V. Sperati, T. Stirling, A. Stranieri, T. St¨utzle, V. Trianni, E. Tuci, A. E. Turgut, and F. Vaussard. IRIDIA – Technical Report Series Technical Report No. TR/IRIDIA/2011-014 July 2011 IRIDIA – Technical Report Series ISSN 1781-3794 Published by: IRIDIA, Institut de Recherches Interdisciplinaires et de D´eveloppements en Intelligence Artificielle Universite´ Libre de Bruxelles Av F. D. Roosevelt 50, CP 194/6 1050 Bruxelles, Belgium Technical report number TR/IRIDIA/2011-014 The information provided is the sole responsibility of the authors and does not necessarily reflect the opinion of the members of IRIDIA. The authors take full responsibility for any copyright breaches that may result from publication of this paper in the IRIDIA – Technical Report Series. IRIDIA is not responsible for any use that might be made of data appearing in this publication. IEEE ROBOTICS & AUTOMATION MAGAZINE, VOL. X, NO. X, MONTH 20XX 1 Swarmanoid: a novel concept for the study of heterogeneous robotic swarms Marco Dorigo, Dario Floreano, Luca Maria Gambardella, Francesco Mondada, Stefano Nolfi, Tarek Baaboura, -
Bringing Reality to Evolution of Modular Robots: Bio-Inspired Techniques for Building a Simulation Environment in the SYMBRION Project
Bringing reality to evolution of modular robots: bio-inspired techniques for building a simulation environment in the SYMBRION project Martin Saska and Vojtechˇ Vonasek´ and Miroslav Kulich and Daniel Fiserˇ and Toma´sˇ Krajn´ık and Libor Preuˇ cilˇ Abstract— Two neural network (NN) based techniques for building a simulation environment, which is employed for evolution of modular robots in the Symbrion project, are presented in this paper. The methods are able to build models of real world with variable accuracy and amount of stored information depending upon the performed tasks and evolu- tionary processes. In this paper, the presented algorithms are verified via experiments in scenarios designed to demonstrate the process of autonomous creation of complex artificial organ- Fig. 1. A modular robot overcoming a pit between two ramps. isms. Performance of the methods is compared in experiments with real data and their employability in modular robotics is discussed. Beside these, the entire process of environment data acquisition and pre-processing during the real evolutionary cess of simulation environment building. These required fea- experiments in the Symbrion project will be briefly described. tures will be verified and discussed in the experimental part Finally, a sketch of integration of gained models of environment of this paper. The first requirement is precision of the gained into a simulator, which enables to fasten the evolution of a real complex modular robot, will be introduced. model. Only simulations realised with models matching the reality are meaningful for trials with real robots. Here, one I. INTRODUCTION should mention that important aspects of the model precision are not limited to shape and size of objects in the robots’ A valuable representation of environment is an important workspace only but also additional properties important for part of modular systems aiming to employ evolutionary the simulation of movement and friction of robots on objects’ principles for creating a complex robot from simple au- surfaces need to be considered. -
Interactive Robots in Experimental Biology 3 4 5 6 Jens Krause1,2, Alan F.T
1 2 Interactive Robots in Experimental Biology 3 4 5 6 Jens Krause1,2, Alan F.T. Winfield3 & Jean-Louis Deneubourg4 7 8 9 10 11 12 1Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Biology and 13 Ecology of Fishes, 12587 Berlin, Germany; 14 2Humboldt-University of Berlin, Department for Crop and Animal Sciences, Philippstrasse 15 13, 10115 Berlin, Germany; 16 3Bristol Robotics Laboratory, University of the West of England, Coldharbour Lane, Bristol 17 BS16 1QY, UK; 18 4Unit of Social Ecology, Campus Plaine - CP 231, Université libre de Bruxelles, Bd du 19 Triomphe, B-1050 Brussels - Belgium 20 21 22 23 24 25 26 27 28 Corresponding author: Krause, J. ([email protected]), Leibniz Institute of Freshwater 29 Ecology and Inland Fisheries, Department of the Biology and Ecology of Fishes, 30 Müggelseedamm 310, 12587 Berlin, Germany. 31 32 33 1 33 Interactive robots have the potential to revolutionise the study of social behaviour because 34 they provide a number of methodological advances. In interactions with live animals the 35 behaviour of robots can be standardised, morphology and behaviour can be decoupled (so that 36 different morphologies and behavioural strategies can be combined), behaviour can be 37 manipulated in complex interaction sequences and models of behaviour can be embodied by 38 the robot and thereby be tested. Furthermore, robots can be used as demonstrators in 39 experiments on social learning. The opportunities that robots create for new experimental 40 approaches have far-reaching consequences for research in fields such as mate choice, 41 cooperation, social learning, personality studies and collective behaviour. -
Individual Versus Collective Cognition in Social Insects
Individual versus collective cognition in social insects Ofer Feinermanᴥ, Amos Kormanˠ ᴥ Department of Physics of Complex Systems, Weizmann Institute of Science, 7610001, Rehovot, Israel. Email: [email protected] ˠ Institut de Recherche en Informatique Fondamentale (IRIF), CNRS and University Paris Diderot, 75013, Paris, France. Email: [email protected] Abstract The concerted responses of eusocial insects to environmental stimuli are often referred to as collective cognition on the level of the colony.To achieve collective cognitiona group can draw on two different sources: individual cognitionand the connectivity between individuals.Computation in neural-networks, for example,is attributedmore tosophisticated communication schemes than to the complexity of individual neurons. The case of social insects, however, can be expected to differ. This is since individual insects are cognitively capable units that are often able to process information that is directly relevant at the level of the colony.Furthermore, involved communication patterns seem difficult to implement in a group of insects since these lack clear network structure.This review discusses links between the cognition of an individual insect and that of the colony. We provide examples for collective cognition whose sources span the full spectrum between amplification of individual insect cognition and emergent group-level processes. Introduction The individuals that make up a social insect colony are so tightly knit that they are often regarded as a single super-organism(Wilson and Hölldobler, 2009). This point of view seems to go far beyond a simple metaphor(Gillooly et al., 2010)and encompasses aspects of the colony that are analogous to cell differentiation(Emerson, 1939), metabolic rates(Hou et al., 2010; Waters et al., 2010), nutrient regulation(Behmer, 2009),thermoregulation(Jones, 2004; Starks et al., 2000), gas exchange(King et al., 2015), and more. -
Behavioural Plasticity and the Transition to Order in Jackdaw Flocks
ARTICLE https://doi.org/10.1038/s41467-019-13281-4 OPEN Behavioural plasticity and the transition to order in jackdaw flocks Hangjian Ling 1,2, Guillam E. Mclvor 3, Joseph Westley3, Kasper van der Vaart1, Richard T. Vaughan4, Alex Thornton 3* & Nicholas T. Ouellette 1* Collective behaviour is typically thought to arise from individuals following fixed interaction rules. The possibility that interaction rules may change under different circumstances has 1234567890():,; thus only rarely been investigated. Here we show that local interactions in flocks of wild jackdaws (Corvus monedula) vary drastically in different contexts, leading to distinct group- level properties. Jackdaws interact with a fixed number of neighbours (topological interac- tions) when traveling to roosts, but coordinate with neighbours based on spatial distance (metric interactions) during collective anti-predator mobbing events. Consequently, mobbing flocks exhibit a dramatic transition from disordered aggregations to ordered motion as group density increases, unlike transit flocks where order is independent of density. The relationship between group density and group order during this transition agrees well with a generic self- propelled particle model. Our results demonstrate plasticity in local interaction rules and have implications for both natural and artificial collective systems. 1 Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA. 2 Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, -
Collective Motion from Local Attraction Daniel Strömbom
Collective motion from local attraction Daniel Strömbom To cite this version: Daniel Strömbom. Collective motion from local attraction. Journal of Theoretical Biology, Elsevier, 2011, 283 (1), pp.145. 10.1016/j.jtbi.2011.05.019. hal-00719499 HAL Id: hal-00719499 https://hal.archives-ouvertes.fr/hal-00719499 Submitted on 20 Jul 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Author’s Accepted Manuscript Collective motion from local attraction Daniel Strömbom PII: S0022-5193(11)00261-X DOI: doi:10.1016/j.jtbi.2011.05.019 Reference: YJTBI6483 To appear in: Journal of Theoretical Biology www.elsevier.com/locate/yjtbi Received date: 15 September 2010 Revised date: 4 May 2011 Accepted date: 9 May 2011 Cite this article as: Daniel Strömbom, Collective motion from local attraction, Journal of Theoretical Biology, doi:10.1016/j.jtbi.2011.05.019 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. -
On Adaptive Self-Organization in Artificial Robot Organisms
On adaptive self-organization in artificial robot organisms Serge Kernbach∗, Heiko Hamann†, Jurgen¨ Stradner†, Ronald Thenius†, Thomas Schmickl†, Karl Crailsheim†, A.C. van Rossum‡, Michele Sebag§, Nicolas Bredeche§, Yao Yao¶, Guy Baele¶, Yves Van de Peer¶, Jon Timmisk, Maizura Mohktark, Andy Tyrrellk, A.E. Eiben∗∗, S.P. McKibbin††, Wenguo Liu‡‡, Alan F.T. Winfield‡‡ ∗Institute of Parallel and Distributed Systems, University of Stuttgart, Germany, [email protected] †Artificial Life Lab, Karl-Franzens-University Graz, Universitatsplatz 2, A-8010 Graz, Austria, {heiko.hamann,juergen.stradner,ronald.thenius,thomas.schmickl,karl.crailsheim}@uni-graz.at ‡Almende B.V., 3016 DJ Rotterdam, Netherlands, [email protected] §TAO, LRI, Univ. Paris-Sud, CNRS, INRIA Saclay, France, {Michele.Sebag, Nicolas.Bredeche}@lri.fr ¶VIB Department Plant Systems Biology, Ghent University, Belgium, {Yao.Yao, Guy.Baele, Yves.VandePeer}@psb.vib-ugent.be kUniversity of York, York, United Kingdom, {mm520, jt517, amt}@ohm.york.ac.uk ∗∗Free University Amsterdam, [email protected] ††Materials and Engineering Research Institute (MERI), Sheffield Hallam University, [email protected] ‡‡Bristol Robotics Laboratory (BRL), UWE Bristol, {wenguo.liu, alan.winfield}@uwe.ac.uk Abstract—In Nature, self-organization demonstrates very reliable and scalable collective behavior in a distributed fash- ion. In collective robotic systems, self-organization makes it possible to address both the problem of adaptation to quickly changing environment and compliance with user-defined target objectives. This paper describes on-going work on artificial self-organization within artificial robot organisms, performed in the framework of the Symbrion and Replicator European projects. (a) (b) Keywords-adaptive system, self-adaptation, adaptive self- organization, collective robotics, artificial organisms I. -
Inferring the Structure and Dynamics of Interactions in Schooling Fish
Inferring the structure and dynamics of interactions in schooling fish Yael Katza, Kolbjørn Tunstrøma, Christos C. Ioannoua, Cristián Huepeb, and Iain D. Couzina,1 aDepartment of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544; and b614 North Paulina Street, Chicago, IL 60622 Edited* by Simon A. Levin, Princeton University, Princeton, NJ, and approved June 28, 2011 (received for review May 12, 2011) Determining individual-level interactions that govern highly coor- Recent empirical studies (19–26) have collected large datasets dinated motion in animal groups or cellular aggregates has been a of freely interacting individuals in order to infer the rules under- long-standing challenge, central to understanding the mechanisms lying their emergent collective motion. Ballerini et al. (22) and and evolution of collective behavior. Numerous models have been Cavagna et al. (26) have used the spatial structure of starling flocks proposed, many of which display realistic-looking dynamics, but to infer that starlings use topological rather than metric interac- nonetheless rely on untested assumptions about how individuals tions and that information is transferred over large distances within integrate information to guide movement. Here we infer behavior- flocks in a scale-free manner. High-temporal-resolution data from al rules directly from experimental data. We begin by analyzing tra- several species have been analyzed by employing model-based jectories of golden shiners (Notemigonus crysoleucas) swimming approaches. Lukeman et al. (25) fit data on the spatial conurations in two-fish and three-fish shoals to map the mean effective forces of surf scoters to a zonal model and identified best-fit parameter as a function of fish positions and velocities. -
Roombots: a Hardware Perspective on 3D Self-Reconfiguration and Locomotion with a Homogeneous Modular Robot A
Robotics and Autonomous Systems 62 (2014) 1016–1033 Contents lists available at ScienceDirect Robotics and Autonomous Systems journal homepage: www.elsevier.com/locate/robot Roombots: A hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous modular robot A. Spröwitz ∗, R. Moeckel, M. Vespignani, S. Bonardi, A.J. Ijspeert Biorobotics laboratory, École polytechnique fédérale de Lausanne, EPFL STI IBI BIOROB Station 14, 1015 Lausanne, Switzerland h i g h l i g h t s • We designed, implemented, and tested the Roombots (RB) modular robots. • We explain the RB design methodology: active connection mechanism and module. • RB use locomotion on-grid (lattice-based environment), and off-grid locomotion. • RB join into metamodules on-grid, and can transit from off-grid to on-grid. • We demonstrate RB overcoming concave and convex edges, and climbing vertical walls. article info a b s t r a c t Article history: In this work we provide hands-on experience on designing and testing a self-reconfiguring modular Available online 2 September 2013 robotic system, Roombots (RB), to be used among others for adaptive furniture. In the long term, we envision that RB can be used to create sets of furniture, such as stools, chairs and tables that can move in Keywords: their environment and that change shape and functionality during the day. In this article, we present the Self-reconfiguring first, incremental results towards that long term vision. We demonstrate locomotion and reconfiguration Modular robots Active connection mechanism of single and metamodule RB over 3D surfaces, in a structured environment equipped with embedded Module joining connection ports. -
Roborobo! a Fast Robot Simulator for Swarm and Collective Robotics
Roborobo! a Fast Robot Simulator for Swarm and Collective Robotics Nicolas Bredeche Jean-Marc Montanier UPMC, CNRS NTNU Paris, France Trondheim, Norway [email protected] [email protected] Berend Weel Evert Haasdijk Vrije Universiteit Amsterdam Vrije Universiteit Amsterdam The Netherlands The Netherlands [email protected] [email protected] ABSTRACT lators such as Breve [11] and Simbad [9], by focusing solely on swarm and aggregate of robotic units, focusing on large- Roborobo! is a multi-platform, highly portable, robot simu- 1 lator for large-scale collective robotics experiments. Roborobo! scale population of robots in 2-dimensional worlds rather is coded in C++, and follows the KISS guideline (”Keep it than more complex 3-dimensional models. C simple”). Therefore, its external dependency is solely lim- Roborobo! is written in + + with the multi-platform ited to the widely available SDL library for fast 2D Graphics. SDL graphics library [22] as unique dependency, enabling Roborobo! is based on a Khepera/ePuck model. It is tar- easy and fast deployment. It has been tested on a large set of geted for fast single and multi-robots simulation, and has platforms (PC, Mac, OpenPandora [20], Raspberry Pi [21]) already been used in more than a dozen published research and operating systems (Linux, MacOS X, MS Windows). It mainly concerned with evolutionary swarm robotics, includ- has also been deployed on large clusters, such as the french ing environment-driven self-adaptation and distributed evo- Grid5000 [4] national clusters. Roborobo! has been initiated lutionary optimization, as well as online onboard embodied in 2009 and is used on a daily basis in several universities evolution and embodied morphogenesis. -
Symbrion Blurb
On-the-Fly Evolution for Robots Keywords: evolutionary robotics, evolu- On-line, on-board adaptation tionary algorithms, modular robotics On-line is the keyword here: the EA monitors Imagine a collection of small, relatively sim- and refines the robot controllers as the robots ple, autonomous robots that collectively have go about their regular tasks. This is a major to perform various complex tasks. To achieve departure from ‘traditional’ evolutionary ro- their goals, the robots can move about indi- botics, where the controllers are developed vidually, but more importantly, they can off-line, and remain fixed once the robots are physically attach to each other to form and deployed actually to perform their tasks. manipulate multi-robot organisms for tasks An on-line, on-board EA has to address a that an unconnected group of individual ro- number of uncommon impositions such as bots cannot cope with. Think, for instance, of very limited resources, in terms of both proc- scaling a wall or holding a relatively large ob- essing power and memory space, a focus on ject. average rather than best performance and the One of the advantages of a swarm of simpler need for on-line parameter control. robots is the increased robustness compared We have developed two algorithms specifically to complex monolithic systems: if a single to address these issues; an encapsulated (i.e., robot fails, the swarm can pretty much carry running within a single robot) and a distrib- on regardless. Also, the robots can reconfig- uted (over multiple robots) on-line EA. Both ure the organism to suit particular tasks and have been validated in a number of experi- circumstances, something that large and com- ments, with further experiments to combine them underway.