A Catalogue of Bacterial Swarm Behaviour

Total Page:16

File Type:pdf, Size:1020Kb

A Catalogue of Bacterial Swarm Behaviour RESEARCH HIGHLIGHTS Nature Reviews Physics | https://doi.org/10.1038/s42254-020-0172- x | Published online 7 April 2020 ACTIVE MATTER A catalogue of bacterial swarm behaviour Even under adverse conditions length of its cells can be controlled such as starvation, some bacteria by known genetic manipulations. can efficiently expand and move This controllability enabled their colonies by rapidly migrating Be’er et al. to select between four en masse, a process known as cell aspect ratios for their colonies. Credit: Adapted from Be’er, A. et al. Commun. Phys. swarming. Although bacterial They recorded the motion of the 3, 66 (2020), CC BY 4.0 colonies have been studied by colonies on a surface for a range of physicists for years, there is not colony densities. Very sparse colonies of similar self-propelled rods with yet a complete picture of how the of B. subtilis do not move, whereas known interactions indicates that physical properties of the cells, very dense colonies are jammed. the bacterial behaviour is domina- such as their shape, govern the However, for intermediate densities, ted by short-range interactions. behaviour of the swarm. Now, cell aspect ratio plays a role in In contrast to long cells, shorter writing in Communications Physics, the colony’s behaviour. Longer cells swarm in clusters that have Avraham Be’er and colleagues fill cells form high-density clusters uniform density across the surface in another piece of the puzzle, of moving cells that are separated (lower panels of figure). Be’er et al. cataloguing the swarming behaviour by low- density regions containing posit that this uniform density of the rod-shaped Bacillus subtilis, only immobile cells (upper left arises because long-range hydro- as a function of the density of panel of figure). If the mean density dynamic interactions suppress the colony and the aspect ratio of the colony is large enough, inhomogeneities. of the cells. then the moving clusters span the Zoe Budrikis B. subtilis is a bacterium found whole field of view of the experi- ORIGINAL articLE Be’er, A. et al. A phase in soil and the gut of humans and ment (upper right panel of figure). diagram for bacterial swarming. Commun. Phys. 3, 66 (2020) animals. It is well-studied and the Comparison with earlier studies 226 | MAY 2020 | VOLUME 2 www.nature.com/natrevphys.
Recommended publications
  • Evolving Behaviour Trees for Supervisory Control of Robot Swarms
    Evolving Behaviour Trees for Supervisory Control of Robot Swarms Elliott Hogg1y, Sabine Hauert1, David Harvey, Arthur Richards1 1Bristol Robotics Laboratory, University of Bristol, UK. E-mail: [email protected], [email protected] Abstract: Supervisory control of swarms is essential to their deployment in real world scenarios to both monitor their operation and provide guidance. We explore mechanisms by which humans might provide supervisory control to swarms and improve their performance. Rather than have humans guess the correct form of supervisory control, we use artificial evolution to learn effective human-readable strategies to help human operators understanding and performance when con- trolling swarms. These strategies can be thoroughly tested and can provide knowledge to be used in the future in a variety of scenarios. Behaviour trees are applied to represent human readable decision strategies which are produced through evolution. We investigate a simulated set of scenarios where a swarm of robots have to explore varying environments and reach sets of objectives. Effective supervisory control strategies are evolved to explore each environment using different local swarm behaviours. The evolved behaviour trees are animated alongside swarm simulations to enable clear under- standing of the supervisory strategies. We conclude by identifying the strengths in accelerated testing and the benefits of this approach for scenario exploration and training of human operators. Keywords: Human Swarm Interaction; Swarm; Artificial Evolution; Supervisory Control; Behaviour Trees 1. INTRODUCTION • Parametric: Adjusting the characteristics of an emer- gent behaviour [6, 12]. Growing interest in the use of swarm systems has led • Environmental: The operator highlights points of inter- to new questions regarding effective design for real-world est within an environment [8, 26].
    [Show full text]
  • Poster Abstracts
    Poster abstracts P01 Penetration of a model membrane by a self-propelled active A. Daddi-Moussa-Ider particle P02 The squirmer model and beyond F. Fadda P03 Theoretical Investigation of Structure Formation by Magne- V. Telezki totactic Bacteria P04 Active Nematics Formed by Bacteria in Patterned R. Koizumi Chromonics P05 Self-propulsion of Camphor Symmetric Interfacial Swim- D. Boniface mers P06 Microswimmers self-propelled by Thermophoresis S. Roca-Bonet P07 Active Brownian filaments in dilute solution A. Mart´ın-Gomez´ P08 Scattering of E. coli at surfaces M. Mousavi P09 Light dependent motility of microalgae induces pattern for- A. Fragkopoulos mation in confinement P10 Longwave nonlinear theory for chemically active droplet di- M. Abu Hamed vision instability P11 Bead-spring modelling microswimmers S. Ziegler P12 Light-driven Janus microswimmers in dense colloidal ma- T. Huang trix P13 Active Brownian Particles in Crowded Media A. Liluashvili P14 Evolution in range expansions with competition at rough S. Chu boundaries P15 Mode-Coupling Theory for Active Brownian Particles J.Reichert P16 Structure and dynamics of a self-propelled semiflexible fil- S. P. Singh ament P17 IHRS Biosoft T. Auth P18 IHRS Biosoft T.Auth P19 Pairing, waltzing and scattering of chemotactic active col- S. Saha loids P20 Instability in settling array of discs R. Chajwa P21 Self-propelled particles in anisotropic environments A. R. Sprenger P22 A phase field crystal approach to active systems with inertia D. Arold P23 Ring polymers are much stronger depleting agents than lin- I. Chubak ear ones P24 Enhanced rotational diffusion of squirmers in viscoelastic K. Qi fluids P25 Dynamics of confined phoretic colloids K.
    [Show full text]
  • Mobility and Infectiousness in the Spatial Spread of an Emerging Fungal Pathogen
    Received: 7 May 2020 | Accepted: 11 January 2021 DOI: 10.1111/1365-2656.13439 RESEARCH ARTICLE Mobility and infectiousness in the spatial spread of an emerging fungal pathogen Kate E. Langwig1 | J. Paul White2 | Katy L. Parise3 | Heather M. Kaarakka2 | Jennifer A. Redell2 | John E. DePue4 | William H. Scullon5 | Jeffrey T. Foster3 | A. Marm Kilpatrick6 | Joseph R. Hoyt1 1Department of Biological Sciences, Virginia Polytechnic Institute, Blacksburg, VA, USA; 2Wisconsin Department of Natural Resources, Madison, WI, USA; 3Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA; 4Michigan Department of Natural Resources, Baraga, MI, USA; 5Michigan Department of Natural Resources, Norway, MI, USA and 6Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA Correspondence Kate E. Langwig Abstract Email: [email protected] 1. Emerging infectious diseases can have devastating effects on host communities, caus- Funding information ing population collapse and species extinctions. The timing of novel pathogen arrival National Science Foundation, Grant/Award into naïve species communities can have consequential effects that shape the trajec- Number: DEB- 1115895, DEB- 1336290 and DEB- 1911853; U.S. Fish and Wildlife tory of epidemics through populations. Pathogen introductions are often presumed Service, Grant/Award Number: F17AP00591 to occur when hosts are highly mobile. However, spread patterns can be influenced Handling Editor: Isabella Cattadori by a multitude of other factors including host body condition and infectiousness. 2. White- nose syndrome (WNS) is a seasonal emerging infectious disease of bats, which is caused by the fungal pathogen Pseudogymnoascus destructans. Within- site transmission of P. destructans primarily occurs over winter; however, the influence of bat mobility and infectiousness on the seasonal timing of pathogen spread to new populations is unknown.
    [Show full text]
  • Expert Assessment of Stigmergy: a Report for the Department of National Defence
    Expert Assessment of Stigmergy: A Report for the Department of National Defence Contract No. W7714-040899/003/SV File No. 011 sv.W7714-040899 Client Reference No.: W7714-4-0899 Requisition No. W7714-040899 Contact Info. Tony White Associate Professor School of Computer Science Room 5302 Herzberg Building Carleton University 1125 Colonel By Drive Ottawa, Ontario K1S 5B6 (Office) 613-520-2600 x2208 (Cell) 613-612-2708 [email protected] http://www.scs.carleton.ca/~arpwhite Expert Assessment of Stigmergy Abstract This report describes the current state of research in the area known as Swarm Intelligence. Swarm Intelligence relies upon stigmergic principles in order to solve complex problems using only simple agents. Swarm Intelligence has been receiving increasing attention over the last 10 years as a result of the acknowledgement of the success of social insect systems in solving complex problems without the need for central control or global information. In swarm- based problem solving, a solution emerges as a result of the collective action of the members of the swarm, often using principles of communication known as stigmergy. The individual behaviours of swarm members do not indicate the nature of the emergent collective behaviour and the solution process is generally very robust to the loss of individual swarm members. This report describes the general principles for swarm-based problem solving, the way in which stigmergy is employed, and presents a number of high level algorithms that have proven utility in solving hard optimization and control problems. Useful tools for the modelling and investigation of swarm-based systems are then briefly described.
    [Show full text]
  • Swarm Intelligence Among Humans the Case of Alcoholics
    Swarm Intelligence among Humans The Case of Alcoholics Andrew Schumann1 and Vadim Fris2 1Department of Cognitivistics, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland 2Private Health Unitary Enterprise “Iscelenie”, Kazinca 120, 220000 Minsk, Belarus Keywords: Swarm Intelligence, Swarm Computing, Alcoholic, Illocutionary. Abstract: There are many forms of swarm behaviour, such as swarming of insects, flocking of birds, herding of quadrupeds, and schooling of fish. Sometimes people behave unconsciously and this behaviour of them has the same patterns as behaviour of swarms. For instance, pedestrians behave as herding or flocking, aircraft boarding passengers behave as ant colony, people in escape panic behave as flocking, etc. In this paper we propose a swarm model of people with an addictive behaviour. In particular, we consider small groups of alcohol-dependent people drinking together as swarms with a form of intelligence. In order to formalize this intelligence, we appeal to modal logics K and its modification K'. The logic K is used to formalize preference relation in the case of lateral inhibition in distributing people to drink jointly and the logic K' is used to formalize preference relation in the case of lateral activation in distributing people to drink jointly. 1 INTRODUCTION mammals, too, e.g. among naked mole-rats (Heterocephalus glaber sp.). In one colony they Usually, a social behaviour is understood as a have only one queen and one to three males to synonymous to a collective animal behaviour. It is reproduce, while other members of the colony are claimed that there are many forms of this behaviour just workers (Jarvis, 1981).
    [Show full text]
  • Science & Fiction-Febr, 2020 1 Off-Shore Fly Or Die
    Science & Fiction-Febr, 2020 Off-Shore Fly or Die Holograms for Desert Locust Swarms Dr. Ugur Sevilmis Eastern Mediterranean Agricultural Research Institute, Adana, Turkey [email protected] Abstract A random walk search was conducted on academic papers to find a method for ecological combat of desert locust. Relatedness of papers and concepts were mainly analysed with the core idea of “Fighting Rooster” vs “Desert Locust “ interspecies competition. It was interesting to find a better preator than fighting roosters for locust swarms in the sea. Usage of a technology is required in this theoric approach to modify collective behavior of desert locusts which looks like the achilles heel of swarms. Keywords: Invasion, migration, predation, interspecies competition, süper-organism, swarm intelligence, collective intelligence, multi-species communities Conclusions A locust swarm is a highly adaptive süper-organism using collective behavior and collective intelligence. Complex interactions exists within its interiror and environmental relations coming from genetic evolution of this species. It is hard to totally change its capacity of foraging on herbage due to its high adaptation capacity. The best method to prevent it is to keep them away from terestial ecosystems and keep them off-shore to spend their fats. Just one day will be adequate to destroy a whole swarm; when the night comes. During night time when all individual visual sensors are shut down, the süper-organsim will be fragmented. Under dark and no landing condition, they will spend their energy. Dead bodies of locusts will be the landing zone for the rest of the huge swarm. But predator fishes will be vey happy to hunt 40 and 80 million locusts per square kilometer (a total of around 50 to 100 billion locusts per swarm, representing 100,000 to 200,000 tons of flesh).
    [Show full text]
  • An Equation of State for Insect Swarms Michael Sinhuber1,3,4, Kasper Van Der Vaart1,4, Yenchia Feng1, Andrew M
    www.nature.com/scientificreports OPEN An equation of state for insect swarms Michael Sinhuber1,3,4, Kasper van der Vaart1,4, Yenchia Feng1, Andrew M. Reynolds2 & Nicholas T. Ouellette1* Collective behaviour in focks, crowds, and swarms occurs throughout the biological world. Animal groups are generally assumed to be evolutionarily adapted to robustly achieve particular functions, so there is widespread interest in exploiting collective behaviour for bio-inspired engineering. However, this requires understanding the precise properties and function of groups, which remains a challenge. Here, we demonstrate that collective groups can be described in a thermodynamic framework. We defne an appropriate set of state variables and extract an equation of state for laboratory midge swarms. We then drive swarms through “thermodynamic” cycles via external stimuli, and show that our equation of state holds throughout. Our fndings demonstrate a new way of precisely quantifying the nature of collective groups and provide a cornerstone for potential future engineering design. Organisms on every size scale, from single-celled1 to highly complex2, regularly come together in groups. In many cases, such aggregations are collective, in that the group as a whole displays properties and functionality distinct from those of its individual members or simply their linear sum3,4. It is generally assumed that since evolution has led so many diferent kinds of animals to behave collectively, the performance of collective groups at whatever task they seek to achieve ought to be well beyond the capabilities of a single individual5, while also being robust to uncertain natural environments 6,7 and operating without the need for top-down control 8.
    [Show full text]
  • Ant Colony Optimization
    Morphogenetic Engineering: Biological Development as a new model of Programmed Self-Organization René Doursat CNRS – Complex Systems Institute, Paris – Ecole Polytechnique Susan Stepney, York Stanislaw Ulam [said] that using a term like nonlinear science is like referring to the bulk of zoology as the study of non-elephant animals. The elephant in the room here is the classical Turing machine. Unconventional computation is a similar term: the study of non-Turing computation. The classical Turing machine was developed as an abstraction of how human “computers”, clerks following predefined and prescriptive rules, calculated various mathematical tables. Unconventional computation can be inspired by the whole of wider nature. We can look to physics (...), to chemistry (reaction-diffusion systems, complex chemical reactions, DNA binding), and to biology (bacteria, flocks, social insects, evolution, growth and self-assembly, immune systems, neural systems), to mention just a few. PARALLELISM – INTERACTION – NATURE → COMPLEX SYSTEMS 2 COMPLEX SYSTEMS & COMPUTATION 1. What are Complex Systems? • Decentralization • Emergence • Self-organization 3 1. What are Complex Systems? Complex systems can be found everywhere around us a) decentralization: the system is made of myriads of "simple" agents (local information, local rules, local interactions) b) emergence: function is a bottom-up collective effect of the agents (asynchrony, homeostasis, combinatorial creativity) c) self-organization: the system operates and changes on its own (autonomy,
    [Show full text]
  • Immune-Inspired Self-Healing Swarm Robotic Systems Amelia
    Immune-Inspired Self-Healing Swarm Robotic Systems Amelia Ritahani Ismail Submitted for the degree of Doctor of Philosophy University of York Department of Computer Science September 2011 Abstract The field of artificial immune system (AIS) is an example of biologically inspired comput- ing that takes its inspiration from various aspects of immunology. Techniques from AIS have been applied in solving many different problems such as classification, optimisation and anomaly detection. However, despite the apparent success of the AIS approach, the unique advantages of AIS over and above other computational intelligence approaches are not clear. In order to address this, AIS practitioners need to carefully consider the application area and design methodologies that they adopt. It has been argued that of increasing importance is the development of a greater understanding of the underlying immunological system that acts as inspiration, as well as the understanding of the prob- lem that need to be solved before proposing the immune-inspired solution to solve the desired problem. This thesis therefore aims to pursue a more principled approach for the development of an AIS, considering the application areas that are suitable based on the underlying biological system under study, as well as the engineering problems that needs to be solved. This directs us to recognise a methodology for developing AIS that integrates several explicit modelling phases to extract the key features of the biological system. An analysis of the immunological literature acknowledges our immune inspira- tion: granuloma formation, which represents a chronic inflammatory reaction initiated by various infectious and non-infectious agents. Our first step in developing an AIS sup- ported by these properties is to construct an Unified Modelling Language (UML) model agent-based simulation to understand the underlying properties of granuloma formation.
    [Show full text]
  • Machine Learning for Active Matter
    REVIEW ARTICLE https://doi.org/10.1038/s42256-020-0146-9 Machine learning for active matter Frank Cichos 1, Kristian Gustavsson 2, Bernhard Mehlig2 and Giovanni Volpe 2 The availability of large datasets has boosted the application of machine learning in many fields and is now starting to shape active-matter research as well. Machine learning techniques have already been successfully applied to active-matter data—for example, deep neural networks to analyse images and track objects, and recurrent nets and random forests to analyse time series. Yet machine learning can also help to disentangle the complexity of biological active matter, helping, for example, to establish a relation between genetic code and emergent bacterial behaviour, to find navigation strategies in complex environ- ments, and to map physical cues to animal behaviours. In this Review, we highlight the current state of the art in the applica- tion of machine learning to active matter and discuss opportunities and challenges that are emerging. We also emphasize how active matter and machine learning can work together for mutual benefit. he past decade has seen a significant increase in the amount their local environment to perform mechanical work7. Natural sys- of experimental data gathered in the natural sciences, as well tems, from molecular motors, to cells and bacteria, to fish, birds and Tas in the computer resources used to store and analyse these other organisms, are intrinsically out of thermodynamic equilib- data. Prompted by this development, data-driven machine-learning rium as they convert chemical energy. Their biochemical networks methods are beginning to be widely used in the natural sciences, and sensory systems are optimized by evolution to perform specific for example in condensed-matter physics1,2, microscopy3,4, fluid tasks: in the case of motile microorganisms, for example to cope mechanics5 and biology6.
    [Show full text]
  • Information Propagation in a Social Network: the Case of a Fish Schooling Algorithm
    Chapter 1 Information Propagation in a Social Network: The Case of a Fish Schooling Algorithm A. Brabazon, W. Cui and M. O’Neill Abstract The propagation of information about the environment amongst animals via social communication has attracted increasing research interest in recent decades with the realisation that many animal species engage in subtle forms of information transfer which had previously escaped notice. From an evolutionary perspective, the widespread existence of social communication mechanisms is not surprising given the significant benefits which can accrue to behaviours such as sharing of informa- tion on resources and on environmental threats. More generally, we can consider this process as information flowing between a network of nodes or agents, wherein each agent receives inputs from their senses and conspecifics, processes this information, and in turn through their resulting actions, can influence subsequent actions of other agents. Social communication mechanisms of organisms have inspired the develop- ment of several powerful families of optimisation algorithms including ant colony optimsation and honey bee optimisation algorithms. One interesting example of so- cial information propagation is provided by the shoaling and schooling behaviours of fish. In this chapter we develop an optimisation algorithm (the Fish Algorithm) which is inspired by the schooling behaviour of ‘golden shiner’ fish (Notemigonus Anthony Brabazon Complex Adaptive Systems Laboratory and School of Business University College Dublin Dublin, Ireland, e-mail: [email protected] Wei Cui Complex Adaptive Systems Laboratory and School of Business University College Dublin Dublin, Ireland, e-mail: [email protected] Michael O’Neill Complex Adaptive Systems Laboratory and School of Business University College Dublin Dublin, Ireland, e-mail: [email protected] 1 2 A.
    [Show full text]
  • The Environment Topography Alters the Transition from Single-Cell Populations to Multicellular Structures in Myxococcus Xanthus
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.27.428527; this version posted January 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The environment topography alters the transition from single-cell populations to multicellular structures in Myxococcus xanthus Hernández Ramos, Karla C.1,2∞, Rodríguez-Sánchez, Edna2,3∞, Arias del Angel, Juan Antonio2, Arzola, Alejandro V.4, Benítez, Mariana2, Escalante, Ana E.2, Franci, Alessio5, Volpe, Giovanni6, Rivera-Yoshida, Natsuko2,5*. 1 Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico. 2 Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, México 04510, Mexico. 3 Current address: Posgrado en Ciencias Biológicas, Instituto de Geología, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico. 4 Instituto de Física, Universidad Nacional Autónoma de México, Apdo Postal 20-364, 01000 Cd de México, Mexico. 5 Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico. 6 Department of Physics, University of Gothenburg, Gothenburg, Sweden. ∞ Both authors equally contributed to this work * Corresponding author: [email protected], [email protected] ABSTRACT The social soil-dwelling bacteria Myxococcus xanthus can form multicellular structures, known as fruiting bodies. Experiments in homogeneous environments have shown that this process is affected by the physico-chemical properties of the substrate, but they have largely neglected the role of complex topographies.
    [Show full text]