<<

PHASEALIGNMENTOFASYNCHRONOUSEXTERNAL

CONTROLLABLEDEVICESTOPERIODICMASTERCONTROLSIGNALUSING

THEPERIODICEVENTSYNCHRONIZATIONUNIT

by CharlesNicholasOstrander Athesissubmittedinpartialfulfillment oftherequirementsforthedegree of MasterofScience in ElectricalEngineering MONTANASTATEUNIVERSITY Bozeman,Montana May2009 ©COPYRIGHT by CharlesNicholasOstrander 2009 AllRightsReserved ii APPROVAL ofathesissubmittedby CharlesNicholasOstrander Thisthesishasbeenreadbyeachmemberofthethesiscommitteeandhasbeen foundtobesatisfactoryregardingcontent,Englishusage,format,citation,bibliographic style,andconsistency,andisreadyforsubmissiontotheDivisionofGraduateEducation. Dr.BrockJ.LaMeres ApprovedfortheDepartmentElectricalEngineering Dr.RobertC.Maher ApprovedfortheDivisionofGraduateEducation Dr.CarlA.Fox iii STATEMENTOFPERMISSIONTOUSE Inpresentingthisthesisinpartialfulfillmentoftherequirementsfora master’sdegreeatMontanaStateUniversity,IagreethattheLibraryshallmakeit availabletoborrowersunderrulesoftheLibrary.

IfIhaveindicatedmyintentiontocopyrightthisthesisbyincludinga copyrightnoticepage,copyingisallowableonlyforscholarlypurposes,consistentwith

“fairuse”asprescribedintheU.S.CopyrightLaw.Requestsforpermissionforextended quotationfromorreproductionofthisthesisinwholeorinpartsmaybegranted onlybythecopyrightholder.

CharlesNicholasOstrander May2009 iv TABLEOFCONTENTS

1.INTRODUCTION ...... 1 ProjectOverview ...... 1 RegardingOff-The-ShelfSolutions...... 4 DesignStrategy...... 6 ComplementaryCodeDesign...... 9 2.SYSTEMEQUIPMENTSPECIFICATIONS...... 12 AdvantestD3186PulsePatternGenerator...... 12 MaximMAX9382Phase/FrequencyDetector...... 13 AgilentE4432BRadioFrequencySignalGenerator ...... 15 Inphi2080MX20GBPS4:1...... 15 Agilent83752A20GHzSweepGenerator...... 16 3.CIRCUITIMPLEMENTATION...... 17 SSH-ADCReferenceGeneratorasaControlSystem...... 17 CircuitOperationOverview...... 18 PESUCircuitStage1:TriggerPulseManipulation ...... 21 PESUCircuitStage2:Phase/FrequencyDetection...... 26 PESUCircuitStage3:DifferenceIntegrationandScaling ...... 28 IntegratorDesignintermsofthePhaseLockedLoop ...... 31 DeviceFabrication...... 33 4.SIMULATIONOFDEVICE...... 37 5.DEVICEPERFORMANCE ...... 44 SystemSetup...... 44 DeviceOperation ...... 45 SystemOperation...... 52 6.EXTENSIONOFDEVICEFUNCTIONALITY...... 57 AlignmenttoOtherDevices ...... 57 Arbitrary20GBPSCodeProduction...... 58 7.CONCLUSIONS ...... 61 v TABLEOFCONTENTS-CONTINUED REFERENCESCITED...... 64 APPENDICES ...... 67 APPENDIXA:REVISION2PESUCIRCUITSCHEMATIC ...... 68 APPENDIXB:REVISION2PESUBOARDLAYOUT ...... 71 APPENDIXC:MATLABSCRIPTSFORDETERMININGCOMPLEMENTARY CODESEED...... 75 APPENDIXD:MATHCADSCRIPTFORADJUSTINGPLLLOOPFILTER...... 78 vi LISTOFTABLES

TablePage 1.SummaryofGoalsforAlignmentProject ...... 4 2.PossibleBitSequencesUsingthe{1110}Seed ...... 11 3.TimingDiagramfor20GBPSComplementarySequenceCodeGeneration...... 11 4.PPGDataPatternsforMUXTesting...... 53 5.PESUPartList ...... 74 vii LISTOFFIGURES Figure Page 1.ProposedMeansofDirectDigitalConversionofMicrowaveSignals...... 2 2.GeneralBlockDiagramofReferenceSignalSystem...... 7 3.PPGDataProgrammingforPatternGeneration...... 8 4.ExampleSpectraofaComplementaryPair...... 10 5.PFDOutputVoltagevs.InputPhaseDifference...... 14 6.Inphi2080MXTimingDiagram...... 16 7.OverallControlSystemModel ...... 17 8.BlockModelofSignalStagesinPESU...... 19 9.Stage1SchematicRevision1...... 22 10.Stage1SchematicRevision2...... 23 11.IdealEventPulseManipulation...... 25 12.RMMOutputPulseWidthforExternalResistor/CapacitorCombinations..... 25 13.Stage2Schematics(Revision1leftandRevision2right)...... 26 14.IdealResponseofPFDtoSimilarFrequencyInputs...... 27 15.Stage3SchematicforRevision1 ...... 28 16.Stage3SchematicforRevision2 ...... 29 17.IdealIntegrationofPFDOutputs...... 30 18.ActiveFilterBaseforStage3...... 31 19.PLLSystemClosedLoopBodePlot ...... 33 20.PrototypeofRevision1PESU...... 34 viii LISTOFFIGURES-CONTINUED Figure Page 21.FinalRevisionoftheCircuitBoard(unloaded)...... 35 22.FinalVersionofPESU(loaded) ...... 36 23.LabeledPESUUnit...... 36 24.IdealPESUSimulationBlockDiagram...... 37 25.ActualSPICESimulationModelofPESUinSystem...... 38 26.ModeledTransientResponseofPESUinSystem...... 39 27.ClosedLoopFrequencyResponseofPESUinSystem...... 40 28.SetupforTestingtheSystemFrequencyResponse...... 42 29.ComparisonofModeledandObservedSystemClosedLoopBandwidth ...... 43 30.SSH-ADCReferenceSignalSystemSetup ...... 45 31.PatternTriggerMisalignmentatEquipmentStart-up...... 46 32.PatternTriggerAlignmentwithPESUat100nsperdivision...... 46 33.PatternTriggerAlignmentwithPESUat100psperdivision...... 47 34.ModulationSignalfromPESUduringTriggerPhaseLock ...... 49 35.FullPatternDataAlignmentwithPESU ...... 50 36.MinimumAchievedDataEdgeAlignment ...... 51 37.BitAlignmentStabilityofPESU...... 52 38.EyeDiagramofMultiplexedPattern1 ...... 54 39.EyeDiagramofMultiplexedPattern2 ...... 54 40.PPGDataStreamwithRespecttotheReferenceTriggerSignal ...... 55 ix LISTOFFIGURES-CONTINUED Figure Page 41.MultiplexedDataStreamwithRespecttotheDividedMUXClock...... 56 42.ProposedSet-upforExternalPatternDataFrequencyModulation...... 57 43.TimingDiagramforArbitrary20GBPSSignalProduction ...... 59 44.SerialtoParallelConversionCircuit ...... 60 45.PESUCircuitSchematicPart1(leftside) ...... 69 46.PESUCircuitSchematicPart2(rightside)...... 70 47.PESUPCBTopfromPCB123 ...... 72 48.PESUPCBBottomfromPCB123...... 73 x LISTOFABBREVIATIONSANDACRONYMS (ADC) AnalogtoDigitalConverter (BW) Bandwidth (DFF) D-FlipFlop (DIP) DualInlinePackage (DSP) DigitalSignalProcessing (ECDL) ExternalCavityDiodeLaser (ECL) EmitterCoupledLogic (EOPM) ElectroOpticalPhaseModulator (f) Frequency (FPGA) FieldProgrammableGateArray (FM) FrequencyModulation (FT) FourierTransform (GBPS) GigabitsPerSecond (IC) IntegratedCircuit (IFT) InverseFourierTransform (LCM) LeastCommonMultiple (MUX) Multiplexer (PCB) PrintedCircuitBoard (PECL) PositiveEmitterCoupledLogic (PESU) PeriodicEventSynchronizationUnit (PFD) PhaseFrequencyDetector (PL) DataPatternLength (PLL) PhaseLockedLoop (PPG) PulsePatternGenerator (PW) PulseWidth (Rev) Revision (RF) RadioFrequency (RMM) RetriggerableMonostableMultivibrator (RMS) RootMeanSquare (SSB) SingleSideBand SSH Spatial-SpectralHolography (SSOI) SignalSetofInterest (Vpp) VoltsMeasuresPeaktoPeak (VOH(L)) High(Low)OutputVoltage xi ABSTRACT ThePeriodicEventSynchronizationUnitalignsdeviceswithouttheabilitytobe triggeredbyanexternalsource.Theprimaryfunctionoftheunitistoalignthepattern triggerpulsesoftwopulsepatterngeneratorswhichsupplyfourinputsofamultiplexer. Thepulsepatterngeneratorslacktheabilitytostarttheircodeaccordingtoanexternal signal.Whenoperating,thedesignedunitmaintainsaspecificpatternalignmentoftwo binarydatastreamsof5gigabitspersecondasamultiplexercombinesthemintoadata streamoffourtimesthebitrate.Inadditiontoalignment,theunitcanintroduceoffsets ofupto50nanosecondstothepatternalignmentwhichcorrespondsto250bits.Theunit isdesignedtoallowthealignmentofotherdevicesaswell,requiringasinputthetwo event signals of the same frequency which need to be aligned. In order to align the devices providing the event pulses, one of the devices must either accept an external clockingsourceorhavetheabilitytofrequencymodulatetheinternalclock.Inpractice, thetestsystemwasabletoachieveandmaintainthedesiredsignalcharacteristicsfrom theoutputofthemultiplexer.Theunit’srobustdesignisshownbyprovidingalignment of patterns for the full operating range of the pulse pattern generators and allowing a generator pattern to be aligned to a generic event pulse. Use of multiple units allows alignmentofadditionaldevices.ThedevelopmentofthePeriodicEventSynchronization Unitprovidedaninexpensivesolutiontocreatingveryhighbitratesignalsusingpre- existing equipment, as no commercial products were found to accomplish the same function. 1 INTRODUCTION ProjectOverview The impetus for the development of an event synchronization device was providedbyaresearchefforttogeneratesetsofdigitalmicrowavesignalswith20GHzof bandwidth(BW)anywhereinthemicrowavespectrumupto100GHz.Figure1provides an outline of the process explored for analog to digital conversion (ADC) of the microwave signals. The signal set of interest (SSOI) and a reference signal are modulated onto an external cavity diode laser (ECDL) by means of Electro-Optic

Phase/AmplitudeModulators(EOPM).Thesignalandreferencearethenpassedthrough aspatial-spectralholographic(SSH)materialeithercollinearlyoratanangletocreatea gratingthatiseitherabsorptiveordiffractiveinnature.Thespectrumofthesignalis obtainedbydigitizingachirpedopticalsourcepassedthroughtheSSHmaterial.The propertiesofthematerialallowthechirpedsignaltobecapturedatafarslowerratethan araterequiredtocapturetheoriginalSSOI.Specificprocessingtechniquesareemployed torecoverthespectralabsorptionprofilefromthetransformedchirpsignal.Thisprofile can then be manipulated with the Fourier transform (FT) of the reference signal to provide the signal of interest’s Fourier transform, which can be inversed to produce a digitizationoftheoriginalmicrowavesignal.Aboveisaverybasicintroductiontothe

SSH-ADCproject.AmorecompletedescriptionmaybefoundwithintheMontanaState

UniversitySpectrumLabarticleDemonstrationsofanalog-to-digitalconversionusinga frequencydomainstretchedprocessor1. 2

Figure1:ProposedMeansofDirectDigitalConversionofMicrowaveSignals

Inthisproject,Idevelopedanelectronicsynchronizationunitforthealignmentof thedevicessupplyingthereferencecodepattern.Thisportionoftheprojectrequireda uniquemeansofelectronicsynchronizationtoaccomplishthereferencecodegeneration.

Inordertoimprovetheresolutionforthedigitalconversion,thereferencesignalrequires consistency in its temporal position. Timing jitter on the starting positions of the referencesignalorbittobitvariationswithinthesignaldirectlycorrespondtolossin signal to noise ratio of the digitizer’s vertical resolution. To achieve the 20GHz bandwidthoftheanalogtodigitalconverter(ADC),theprocessrequiresdouble-sideband readoutof10GHzgratings.Abitrateof40GBPSforthereferencesignalisnecessaryto achievethisgratingresolution.Commercialequipment,suchasabiterrorratetestunit operating at 40GBPS, is available2 but the cost makes the units unsuitable for this 3 application. An alternative to buying a dedicated 40GBPS device is to use less expensive,lowerbitratedevicesandamultiplexer(MUX)tocombinethepatternsintoa single stream at the required bit rate. An Inphi 40GBPS MUX chip with evaluation board3 currently is priced less than $20k, which is at least one-tenth the cost of a dedicated40GBPSpulsepatterngenerator(PPG).Tosupplytheinputstreamstothe

MUX,afieldprogrammablegatearray(FPGA)platformwithfouroutputsof10GBPSis availablefromXilinx.

Toprovideaproofofconcepttest,equipmentalreadyavailableatMontanaState

UniversitySpectrumLabwasusedtodemonstratethegenerationofa20GBPSbinarybit stream.Theequipmentin-houseincludesanInphiMUX(2080MX),whichproducesa

20GBPS stream from four 5GBPS input streams, and two Advantest PPGs (D3186), whichproducebitstreamsupto12GBPS.DuetothedesignofthePPGs,anextradevice isrequiredtoproducearepeatablebitstream.ThePPGslacktheabilitytoarbitrarily start their code sequence based on an external trigger and only have the ability to synchronize their to a 10MHz reference. The missing piece to complete the systemisadevicetoprovidereal-timeclockcorrectiontothePPGstoalignandmaintain the synchronization of the pattern streams. This is the primary goal of the device developedinthisthesis.

During the development of the synchronization device, the opportunity to add flexibilitytothedevicebecameobvious.Inadditiontotheproofofconceptgoalofa repeatable 20GBPS data stream, the device could provide the ability to align devices otherthanthein-housePPGs,makingitatoolusefuloutsideoftheproposedproject. 4 Anothersecondaryfeatureistheabilitytoprovideanadjustabletimingoffsettothebit streamalignment,delayingthestartofeitherdevice’spatternwithrespecttotheother.

Additionalfeaturesconsideredincludeanoutputoftheconstantwidthpulsestreamused bythedevice’sphase/frequencydetector(PFD),anadjustableinputsignalthreshold,and magnitude correction of control signal level. A summary of the device performancegoalsforthisworkisgiveninTable1.

Table1:SummaryofGoalsforAlignmentProject

Primary Secondary Producearepeatable,programmable Allowalignmenttodevicesotherthan 20GBPSbinarydatastreamwithsub- PPGs picosecondRMSjitterutilizinga20GBPS Allowcontrolleddelayoffsetofpattern InphimultiplexerandtwoAdvantestpulse startrelativetopartnereddevice patterngeneratorsoperatingat5GBPS Provideanoutputoftheinternalpulse streamedusedbythephasefrequency detectorforalignment ProvidealignmentforallPPGoutputrates Allowadjustmentofinputthreshold detectionandfeedbacksignallevel RegardingOff-The-ShelfSolutions ThesimplestsolutionforaligningthePPGswouldbetopurchaseacommercially availableunitthatperformsthetask,ideallyfromAdvantestitself.TheD3186modelisa discontinuedproductandthereisnotalistofaccessoriestopurchasefortheunits.In fact,therearenopulsepatterngeneratorsinthecompany’snewproductline,eliminating thepossibilityofadaptinganaccessoryforanewerdevice.Earlierexperimentsutilizing the PPGs relied on manually synchronizing the data streams. The procedure was to 5 observebothtriggersignalsonanoscilloscopewhilemanuallyincreasinganddecreasing thebitratetocausetheprecessionofthedatapatterns.Oncealigned,thebitratescanbe setequaltostoptheprecession.Theclocksofthetwodeviceswereheldalignedbya

10MHzreference.Thealignmentofthestreamswouldremainforaconsiderablelength of time, but must be realigned after any power reset or pattern length change. The streamsalsowouldlosealignmentontheirownwithonlytheclockbeingsynchronized.

Toautomatethisprocess,thebitrateofoneofthePPGsneedstobeadjustedsmoothly.

Thisfeatureisnotavailableonourunitsbutcanbecreatedbyusinganexternalclocking deviceforoneofthePPGsthatdoeshavetheabilitytobeadjusted.Thisapproachto alignmentisaphaselockedloop(PLL)application.TypicalcommercialPLLunits,such astheTLC2933fromTexasInstruments4,acceptasinput,thetwosignalstobealigned andoutputavoltagecontrolledoscillator(VCO)signaltoclockoneofthedevices.The outputVCOfrequencyisboundtoarangespecifictothePLL.TheTLC2933hasaVCO rangeof64MHzto96MHz,whileacceptinginputsignalsupto30MHz.IftheVCO signal was to be used, it would require several multiplication stages to reach 5GHz.

PLLswithGHzcapableVCOs,suchastheADF4118fromAnalogDevices5,arecapable ofGHzrates,butlimittheinputsignalfrequencyfrom5MHzto55MHz.Withlonger datapatterns,thePPGtriggerpulsescanhaverepetitionratesinthekHz,thusrequiring multiplyingofthetriggerpulsesignalfrequency.

TheuniqueoperatingcharacteristicsofthePPGsandtheexpecteddataratesof thesystemmakefindingapredefinedPLLunitdifficult.Thesituationisuniqueinthat thealignmenttriggerrateismuchlowerthanVCOneededtoclocktheadjustablebitrate 6 PPG.Also,thereisawidevarianceinthetriggerratesandtheVCOcenterfrequencies neededtoalignthePPGsacrosstheentirespectrumofpatternlengthsandbitratesthe deviceiscapableofproducing.AcustomapproachtocreatingthePLLisamoreelegant solution,allowingeachportionofthePLLsystemtobeadjustedtomeettheSSH-ADC systemoperatingcharacteristics.Thesynchronizationunitcanbebuilttoapplyaslow

(tensofHertz)correctiontothemegahertztriggerpulses,whichcontrolthe gigahertz datarates.Thecomponentstodesignsuchalowfrequencyloopfilteraremuchless expensive than obtaining a commercial unit with a high loop filter bandwidth and operatingrange.

DesignStrategy AgenericsystemdiagramisgiveninFigure2asaprojectdesigntemplate.The elements available in-house are the PPGs, the MUX, the radio frequency (RF) signal generator,andtheMUXclockinggenerator.Theheartofthealignmentsystemhasthe formofaPLL,withthePFDprovidingtheerrorsignal,theintegrationblockactingasa lowpassfilter,andtheRFmodulatedclockactingastheVCO.ThePFDandintegrator arethepiecesofequipmentneededtorealizetheprimarygoal.Thesystemrequiresno inputsignalsanddirectly providestheMUXoutput.Theoutputsignalisa20GBPS binarydatastreammadeupofthefourPPGdataanddatacomplementsignals,arranged inapredeterminedorder.Figure3displaysanexampleofa20GBPSdatastreamcreated whentheMUXinputsarePPG1, PPG1 ,PPG2,and PPG2 respectively.Theoutput 7 streamhasthelimitationthatthecodepatternisnotcompletelyarbitraryandrelieson signal complements to produce the two additional input streams. For the proof of concept,theoutputdatastreampatternsneedonlycontainfrequencycharacteristicsofa

20GBPSsignalandarenotrequiredtobefullyarbitrary.UseofthePPGdatastreams’ differentialpairsensuresthemultiplexedstreamwillhavethefullspectrumoffrequency components.Toproducetheenhancedfeatureofarbitrarywaveformgeneration,input streamsat10GBPSarerequiredwiththeadditionofa2inputto4outputserialtoparallel converter.

Figure2:GeneralBlockDiagramofReferenceSignalSystem 8

Figure3:PPGDataProgrammingforPatternGeneration

Toaddresstheneedofpatternalignment,thesystemwillmakeuseoftheexternal clockingfeatureofonePPG,makingitaslaveddevice,aswellasbothPPGs’output trigger pulses which mark the beginnings of the devices’ programmed pattern output.

This clock will be provided by an external signal generator which has the ability to frequencymodulatethesignalsgenerated.ThissignalcanthenbeusedtoadjustthePPG operatingrate,allowingforthepatternstartpointtobetemporallytranslatedwithrespect toareferencepoint.ThereferencepointwillbeprovidedbythemasterPPGoperating withaninternalclock.Theendresultofthemodulationwillbetheprecessionofthe patternstarttriggeroftheslavedevicerelativetothemasterPPG.Themodulationsignal providedtothegeneratorprovidingtheslaveclockwillbedirectlyrelatedtothetemporal differenceofthemasterandslavepatterntriggers.Thedevicetobedesignedwillneed 9 to incorporate a phase/frequency device to provide the modulation control signal.

Additional10MHzclocksynchronizationsignalswillbeusedtoaligntheMUXclock withthePPGclocks.

Use of the device to feedback the real time temporal difference of the pattern triggersintheformof acontrolsignalallowsthissystemtoautomaticallyadjustand maintainpatternalignment.

ComplementaryCodeDesign Whiletheproductionofthe20GBPSdatastreamistheprimaryconcernofthe project system, the nature of the reference code pattern is important and must be consideredifthe20GBPSstreamistohavetherequiredspectralcharacteristicsinthe proposed digitization method. Specifically, the reference codes chosen must be complementarysequences.Skolnik6definescomplementarysequencesasfollows.

Complementary sequencesconsistoftwosequencesofthesame lengthNwhoseaperiodicautocorrelationfunctionshavesidelobesequal inmagnitudebutoppositeinsign.Thesumofthetwoautocorrelation functions has a peak of 2N and a sidelobe of zero…In a practical application the two sequences must be separated in time, frequency, or polarization…

Figure 4 gives the spectra of two codes that are complementary. Notice when added,thesidebandscancelandonlytheprimarycomponentremains.Sinceonlytwo

5GBPSdatastreamsareavailable,thefourbitinputstotheMUXmustbeintheformof aseedtermabletocreatecomplementarysequences.(1,1,1,0)and(1,1,0,1)area 10 complementaryseedpairthatmeetthisrequirement.Theseseedsweredeterminedusing theMatlabscriptlocatedinAppendixC.Tocreatethis,thePPGdatastreamsneedtobe appliedas(PPG1,PPG1,PPG2, PPG2 )totheMUX.

Figure4:ExampleSpectraofaComplementaryPair 11 Table 2givestheresultingfourbitcombinationsprovidedbytheMUXoutput streamwhileTable3givesthetimingdiagramofthe20GBPSsignalcomparedtothe

PPGinputstreams.ThesamplingarchitectureoftheMUXforcesthePPGinputvalues tobedelayedbyone5GHzclockcyclebeforebeinginsertedintheoutputstream.

Table2:PossibleBitSequencesUsingthe{1110}Seed

PPG1 PPG2 MultiplexedSequence 0 0 0001 0 1 0010 1 0 1101 1 1 1110

Table3:TimingDiagramfor20GBPSComplementarySequenceCodeGeneration

MUXClock(20GHz) 1 0 1 0 1 0 1 0 1 0 1 0 PPGClock(5GHz) 1 0 1 PPG1 1 1 0 PPG1 1 1 0 PPG2 1 0 0 PPG2 0 1 1 MUXOutput X X X X 1 1 1 0 1 1 0 1

Useofaspecific4bitseedsequenceof(1,1,1,0)allowstheproduced20GBPS streamtobethecomplementarysequencesrequiredforthereferencesignalintheSSH-

ADCoperation. 12 SYSTEMEQUIPMENTSPECIFICATIONS As the primary goal of the synchronization device is to operate on in-house equipment, the equipment characteristics are necessary to the device design. The following offers a brief description of the item available as well as several key specifications.

AdvantestD3186PulsePatternGenerator TheAdvantestPPG7isusedtoprovideprogrammablebinarydatastreamsatrates between150MBPSand12GBPSfromeitherinternalorexternalclocking.ThePPG’s memorycanaccommodatecodelengthsupto8,388,608(223)bitsprogrammedthrougha

GPIB interface. The data stream is available as a differential pair through two SMA connectors.Thevoltageoftheoutputstreamcanbesetfrom0.5Vppto2Vppwiththe absoluterangeconfinedto+/-2volts.Rise/falltimesarelessthan30pswitharootmean square(RMS)jitterlessthan1.5ps.

Otheroutputsavailableincludetheinternalclockindifferentialformaswellas½ and¼clockratesignals,a10MHzreferencesignalisbothproducedandacceptedasan input,andatriggersignaloperatingat1/32ofthemasterclockorasamarkerpulsefor datapatternbeginning.

Thetriggersignalofinterestfordevicealignmentisthepatternstartpulse.This pulsehasdifferentcharacteristicsdependingonthelengthofthedatapatternandthebit rateofoperation.Equation1specifiestherepetitionrateforthepatterntrigger.9 13 N = PLLCMR *)}256,({ (1) clock

IntheequationLCM(PL,256)istheleastcommonmultipleofthepatternlength(PL)

and256bits.ThistermarisesfromthePPG’sinabilitytoproduceatriggerpulsewith

highrepetitionrates.ThebasetriggerpulsethePPGproducesisforacodeofpattern

length256.Thusifthepatternlengthis3,3blocksof256areneededforthepattern

triggertocontinuallyoccuratthe3-bitpatternbeginning.Ninthisexpressionisthe

binaryexponenttoonemorethanthepatternlength(PL+1=2N)andclockisthemaster clockfrequencyinHz.Asanexample,considerapatternlengthof3(22-1)atabitrate

of 12GBPS. Using equation 1, a pulse separation of 128ns is obtained. This pulse

separationleadstoarepetitionfrequencyof7.8MHz.

Thewidthofthetriggerpulseisgivenbyequation2.10:

32 PW = (2) clock

For a 12GBPS bit rate, the pulse width would be 2.67*10-9s or 2.67ns. While the repetitionrateforthepulsesisrelativelylow,apulsewidthofthiswidthrequiresvery sharpriseandfalltimes.GoodqualitySMAcableswithlowattenuationsbelow20GHz will keep the pulse edges sharp. Minimum pulse width requirements of off-the-shelf devicesoftenlimituseofthePPGtriggerpulsesforhighprecisionpatternalignment.

MaximMAX9382Phase/FrequencyDetector Theinitialphase/frequencydetectorpurchasedforthesystemisadiscretechip

mounted on an evaluation board from Maxim11. This detector compares two single- 14 ended, ECL/PECL input signals, the reference signal (R) and the voltage controlled oscillatorsignal(V).ThePFDproducesdifferentialup(U)anddown(D)pulseoutput streams governed by the input signal phase difference. The output pulses have a minimumwidthof450ps.Figure5showstherelationbetweentheoutputsignal’sand theinputsignal’sphasedifference12.Anintegrationcircuitusesthedifferenceofthe

PFDUandDsignalsasitsinputtoprovidethecontrolvoltageforthedeviceproducing signalV.Thechipisdesignedtohaveamaximumoperatingfrequencyof400MHz.The

UandDsignalshaveamaximumdelayrelativetotheinputsignalsof60psandanadded

RMSjitterof1ps.

Figure5:PFDOutputVoltagevs.InputPhaseDifference 15 AgilentE4432BRadioFrequencySignalGenerator The Agilent E4432B13 is the only in-house device available for producing a frequencymodulatedclocksignalusedtoexternallyclocktheslavePPG.Thefrequency modulationcanbecontrolledbyanexternalinputwithasignalrangebetween+/-5volts.

Thegeneratorallowsformodulationdeviationsupto100kHz,dependantonamanually controlleddeviationconstant.Sincethemaximumgeneratedsignalislimitedto3GHz, an in-line frequency multiplier unit is required to achieve the necessary 5GHz clock signal.AdditionalmultiplierunitswouldbeneededtoprovidefullPPGfunctionalityat

12GBPS. The output power of the E4432B peaks at 10dBm for the 1GHz to 3GHz frequencyrange.TheRMSjitteroftheoutputsignalislistedtobenogreaterthan100fs.

Inphi2080MX20GBPS4:1Multiplexer The Inphimultiplexer14isthekeydeviceintheproductionofthehighbitrate signals.Thedeviceoperatingcharacteristicsaretheprimarydeterminantsofthebitrate, rise/fall times, and RMS jitter of 20GBPS data stream. Figure 6 gives the timing informationfortheMUX.Thedeviceoperateswitha20GHzexternallysuppliedclock andfourdatainputlanes,providingthe20GBPSoutputanda5GHzclock.Theinput channelsarelimitedto1Vppsingleended.TheMUXsamplesthefourparalleldatalanes andthenproducestheserialdatastreamoneclockcycleafterthesamplingperiod.The outputstreamisdifferentially1Vpp,withrise/falltimesof12psandRMSjitterof500fs.

Theoutputclockhassimilarvoltagelevelsandjitter,butrise/falltimesof25ps. 16

Figure6:Inphi2080MXTimingDiagram15

Agilent83752A20GHzSweepGenerator The Agilent 83752A16 is the in-house device available to produce the 20GHz clocksignalfortheMUXandcanbeusedastheslavePPGclockwhenoperated at

12GBPS.Theoutputsignalofthegeneratorhasapowerrangeof-15dBmto17dBmand a specified RMS jitter of 1.4ps. A 10MHz signal input is also available for clock synchronization. 17 CIRCUITIMPLEMENTATION SSH-ADCReferenceGeneratorasaControlSystem ThegeneralblockdiagramofFigure2canbebrokendownintoageneralcontrol

systemwhichisshowninFigure7.Thishasthegeneralformofaphaselockedloop.17

Figure7:OverallControlSystemModel

ThephaseerrorbetweenthePPGtriggersignalsistheerrorsignalforthecontrol loop, which is fed into the integration circuit. The control system consists of the integration circuit up to the FM modulator of the slave PPG’s clock generator. The feedback term of the control loop consists of the which convert that 18 modulationsignalintothepatterntriggeroftheslavePPG.ThisapproachusestheMHz triggersignaltoalignthemuchhigherfrequency5GBPSdatastreams.TheMaximPFD chosenforthisprojectoperatesatamaximumof450MHzandisthefastestsuchdevice offeredbythecompany.Withthisupperoperatinglimit,thePFDwouldnotbesufficient ifitoperateddirectlyonthedatastreams.Whilethesystemactsasaphaselockedloop, it is locking the phase of the slower pattern trigger rather than the faster PPG clock.

Further,theprecisionoftheclockdevicesinvolved,allowsforrelativelylongperiodsof timetopassbeforedisturbancecorrectionmustbeapplied.Thisallowstheintegratorto operate like a low pass filter with a low corner frequency. With this low corner frequency,asimplerintegratordesignisneededwithoutrequiringhighperformanceICs tomaintainstability.Inthisway,aninexpensive,lowbandwidthphaselockloopsystem controlsveryhighdataratecomponents,aligningthemtoproducedatastreamscapable ofbeingmultiplexedtoarateof20GBPS.Choosingtheappropriatebandwidthforthe integrationcircuitwillbeaddressedinaseparatesection.

CircuitOperationOverview To address the challenge of PPG synchronization, the Periodic Event

SynchronizationUnit(PESU)wasdevelopedtoprovideautomated,real-timecorrection tothepatternalignment.Figure8providesageneralfunctionaloverviewofthePESU.

Thedevicedoesthisbyprovidingthecontrolsignalbasedonthedifferencebetweenthe twoperiodiceventsignals,thePPGpatterntriggers.ThePESUwasdesignedtoconvert theinputeventpulsesintoaconstantwidthpulsetrainswhichmeetthephasedetector’s 19 minimumpulsewidthrequirement.Theup/downPFDsignalsareintegratedtoprovide anaccumulationoftheamountoferrorbetweentheeventpulsesofthedevicestobe aligned. This integrated signal is the output from the PESU and is connected to the frequencymodulationinputoftheslavePPG’sexternalclock.Asthephasedifference betweenthetwoperiodiceventschangespolarity,theintegratorsignaladjuststoprecess theslaveddevicetriggerintheotherdirection.Thisprocesscausesactivealignmentof theperiodictriggerstoaminimumoffseterroroscillation.

Figure8:BlockModelofSignalStagesinPESU

While the design of the PESU was tailored to operate with the PPG pattern triggersastheperiodiceventinputs,thealignmentfunctionalitycanbeappliedtoother devices,aslongastwoperiodiceventpulsesarepresentandoneoftheeventpulsescan beadjustedbyfrequencymodulatingadeviceclocksignal,eitherinternallyorexternally. 20 UsingmultiplePESUswillallowonemastersignaltoalignseveraldevices.Devicesthat featureanexternaltriggeroptiondonotneedthePESUforalignment;howevercustom madedevicesoftenlackanexternaltrigger.

Synchronization device operation is broken up into three stages, producing the required control signal from the event signals. The three stages include event pulse modification, event pulse phase detection, and control signal generation. The initial synchronization device was designed to only accomplish the primary task. After the initial circuit was prototyped, several flaws in the design became apparent as well as opportunities to add functionality. Care was taken in the redesign of these stages to provideadditionalabilitiestothePESUbeyondtheprimaryPPGtriggeralignmenttask.

Additional features include indifference to input event signal form, introduction of temporaleventoffsets,creationofanoutputcorrespondingdirectlytothereferenceevent signal,up/downdifferentialmagnitudecorrection,andreductionoferrorsinintegration.

The specifications of the in-house equipment provided the primary design criterionforthePESU.Ofprimaryconcernwerethepatterntriggersignalspecifications forthetwoPPGsandthemodulationinputrequirementsofthe3GHzexternalclocking source.Themostdifficulttaskwasthetransformationofthepatterntriggersintoaform suitable for the PFD, which was addressed in the first stage. The modulation input requirements of the 3GHz clock were easily achieved, but gain control of the output signalwasnecessarytoadjustthecontrolloopconstantsforperformanceoptimization.

The two performance considerations to be optimized were the response time of the controllooptomisalignmentofthetriggereventsandtheamountofsteadystateerror 21 thatexistsoncethetriggerswerealigned.Fasteralignmentresponsecomesatthecostof increasedsteadystateerror.Keepingsteadystateerrorfromintroducingsignificantbit misalignment was crucial to the correct operation of the MUX as large errors cause repeatedoutputpattern changes. Fastalignmentresponseisnotas criticalduetothe exceptionalfrequencystabilityofthePPGinternalclockandthesignalgenerator.Faster responsetimesaredesirablewhenincreasesinPPGpatternlengthsdecreasetheevent triggerfrequenciestohundredsofkHz,aslargeramountsoferroraccumulatebetween eacheventsignalphasecomparison.

PESUCircuitStage1:TriggerPulseManipulation ThefirststageofthePESUaddressestheneedtochangetheshapeandduration ofthetriggerpulsesothatthePFDcanfunctionoptimally.Figure9displaysthecircuit schematic for the first revision of the PESU. Initially, the trigger pulses were transformedintoclocksignalsbyusingthetriggersignalstoclockD-flip-(DFFs), partsU2AandU2B.Thismethodproducedtwosquarewavesathalfthefrequencyof thepulsesonwhichthePFDoperated.Sincethetriggersaresobrief,itwasnecessaryto extendtheminorderfortheDFFtoclockproperly.Thecombinationofthecapacitor, resistors,diodeandtransistoratthetriggerinputservestolengthenthepulse.Thepulse travelsthroughthecapacitorfirstwhichblockstheDCcomponentofthesignal.This forces the pulse to a positive voltage. A diode is used to engage or disengage the transistoramplifier.Ifthetriggersignalisnegativeinvoltage,thediodeactstobypass theresistorinparalleltoit,whichprovidesaverylowresistancepathtogroundforthe 22 baseterminal.Whenthepulseoccurs,thesignalisdrivenpositiveandeventuallycloses thepathtogroundthroughthediode.Thisenablesthetransistortoactinamplification.

Theslowernatureofthetransistorextendsthetriggerpulsetoalengthwhichcanclock theDFF.Addingavariableresistortotheparalleldiodepathofthemodulatedtrigger signalallowstheoperatortoadjustatwhatlevelthetransistoracts.Thisisusedtodelay theclockingofthatpath’sDFFwhichcanbeusedtocompensateforanytimingissues betweenpatterndataandthetriggerpulse.

Figure9:Stage1SchematicRevision1 23 WhiletheprototypecorrectlyalignedthePPGdatastreams,enhancementstothe designallowedforloweralignmenterrorandaddedfunctionalitytothePESU.Figure10 displaysthesecondrevisiontothePESUboard.

Figure10:Stage1SchematicRevision2

Figure11showstheidealtransformationofeventpulsesbythesecondrevision circuit. By replacing the transistors with comparator ICs (parts U1 and U2) the transformed pulse can be triggered by an independently set reference voltage. This providesamoreaccuratelydefinedpulseedgefortheextendedtriggerpulse.Makingthe referencevoltagevariablealsoallowsfortheoptimizingofthecomparatoroperationto triggersofdifferentshapesandamplitudes.Thecomparatorscreatepulseswithsimilar shapes and uniform amplitude, even if the input signals have very different characteristics.Thusthedevicestobealignedarenotlimitedtobeingidenticalintrigger 24 signal characteristics. Replacing the DFF with two retriggerable monostable multivibrators (RMMs) ICs (parts U3A, U3B, U4A, and U4B) adds increased functionalitytothePESU.TheRMMsallowavariablepulsewidthsignaltobecreated fromthefallingedgeofaninputpulse.ByplacingtwoRMMsinseries,thetimingofthe finaloutputpulsecanbedictatedbythewidthofthepulsecreatedbythefirstRMM.

ThisfirstRMMfeaturesavariableresistorinthepulsewidthcontrolpathtoallowreal time adjustment of the intermediate pulse’s width. By placing this arrangement of

RMMsinboththereferenceandmodulatedsignalpaths,eithersignalcanbedelayed withrespecttotheother.ThisincreasestheabilityofthePESUtocompensateforany misalignmentsofthetriggersignaltothepatterndata.Inthecaseofsynchronizingtwo

PPGs,thearrangementallowsthedatapatterntobeshiftedtotheoptimalalignmentfor themultiplexer.ThewidthofthepulseofthesecondRMMissettomeetthePFDinput requirements.

Figure12displaysthepossiblepulsewidthsavailabletotheRMM18.ThePFD

requiresaminimumof450psofpulsewidthforoperation,whichalltheconfigurationsof

REXTandCEXTmeet.Valuesof10kΩand10pFwerechosentoproducea200nspulse width.ForthefirstRMM,a1pFcapacitorisusedtoallowforthesmallestpossiblepulse width.Theresistanceissettovarybetween2and12kΩ,whichcorrespondstoapulse widthrangeofroughly50ns.Adjustabilityinbothpathsallowsthemodulatedpattern triggertoleadorlagthereferencetriggerby50ns.A50nspulsewidthcorrespondsto

250bitsinthePPGdatastream.

25

Figure11:IdealEventPulseManipulation

Figure12:RMMOutputPulseWidthforExternalResistor/CapacitorCombinations 26 PESUCircuitStage2:Phase/FrequencyDetection ThesecondstageofthePESUistheimplementationofthePFDICasshownin

Figure13.Fortheprototype,thePFDwasmountedonanevaluationcircuitboard.The evaluationboardoperatedusing2voltages,-3voltsand+2volts.Thiscombinationof voltagesallowedthePFDoutputtorangefromapproximately0voltto1voltideally.

TheprototypeutilizedtheUandDoutputsinasingleendedfashion.Figure14givesan exampleoftheUandDwaveformsforbothapositiveandnegativephasedifference betweenthereferenceandmodulatedsignal19.UandDmirroreachotherinpattern, dependingonthesignofthephasedifference.

Figure13:Stage2Schematics(Revision1leftandRevision2right) 27

Figure14:IdealResponseofPFDtoSimilarFrequencyInputs

Therevisedcircuitremovestheneedoftheevaluationboardandpositionsthe

PFDICdirectlyonthePESUcircuitboard.Therewereseveraldrawbackstousingthe evaluationboardasastandalonephasedetector.Theboardisdesignedtooperatesothat theoutputsignalhasalownearground,whichentailsoperatingat-3voltsand+2volts.

SincenoneoftheotherICsinthedesignoperatewiththesevoltages,2additionalvoltage regulatorsorsuppliesarerequired.Anothercomplicationoftheevaluationboardisthe interfacing requiredbetweenstages.Theboardexpectedsignalstoenterandexitthe boardviacoaxialcableswithSMAtypeconnectors.Theinitialdesignavoidedthisby sendingsignalstotheboardbysolderedbridgingwires.WhenmovedtothemainPESU circuitboard,theoperatingvoltageofthePFDwaschangedtogroundand5voltsto reducethenumberofpowervoltages.Thischangeinvoltagechangesthesignallevelsof

UandDtooperatewithhighsnear4voltsandlowsslightlyover3volts.Tomatchthe inputrequirementsofthenextstage,theimpedancematchingresistorsoftheUandD 28 signalswerechangedtoabridgeconfigurationbetweengroundand5volts.Thechoice of82.5Ωand124Ωresistorsallowsthebridgetokeepthe50ΩimpedancetoACsignals.

PESUCircuitStage3:DifferenceIntegrationandScaling ThefirstrevisionofthefinalstageofthePESUisgiveninFigure15.Thefirst

iterationutilizesasimpledifferenceintegrationcircuitfeaturinga+/-15voltoperational

amplifieranddrivenbythesingleendedUandDsignalsfromStage2.Resistorand

capacitor values in the integrator were chosen to optimize the integrator operation to

severalMHz.AvoltagedividerisusedbeforethePESUoutputtoallowforadjustment

oftheintegrationmagnitude.Thisadjustmentallowsthecontrolloopgaintobeadjusted

to optimize for steady state error and response time over a range of pattern trigger

repetitionrates.

Figure15:Stage3SchematicforRevision1 29 Thesecondrevisionkeepsthedifferenceintegrationcircuitbutwithseveral changesandisshowninFigure16.

Figure16:Stage3SchematicforRevision2

First,theoperationalamplifierwaschangedtooperateat+/-5volts,tomatchthe otherICsontheboard.Second,theinputtothedifferenceintegratorchangesfromthe singledendedUandDsignalsto(U- U )and(D- D ).Idealizedvoltagetracesofthe

PFDinputsandoutputsaswellasthePESUcontrolsignalaregiveninFigure17.The differential U and D signals are transformed to signal ended signals by a differential amplifierwithunityamplification(MAX4445).Thischangeaddressesanissueoferror intheUandDsignals.ThevoltagesappliedtothePFDneedtobeadjustedtospecific levels for the U and D signals to be identical to each other. Without this voltage 30 adjustment,anerroraccumulatesintheintegratorasthePESUwaitsforthenexttrigger pulses;i.e.thecontrolsignaldoesnothavethezerosloperegions.Theeffectisalarger cyclicalerrorintheedgepositionofthereferencetriggerastheFMmodulationsignal neverreachesasteadystatevalueandmustbecorrectedateverytriggerpulse.Byusing theMAX4445,thesingledendedsignalsfedtotheintegratorarethemagnitudeofthe differencebetweenthedifferentialoutputsofthePFD.Theequalitybetweenthe(U- U )

and(D- D )signalsismorestablegivenvaryingvaluesofappliedvoltagetothePFD, thusallowingforless errorto accumulateduetosystematicvoltagedifferences.The voltagesuppliestothePFDcannowbefixedto+5voltsandgroundasthereisnoerror due to differences in U and D. The MAX4445 also features the ability to apply amplificationtothesignalendedsignalsfromtheUandDdifferentials.Thiscanbeused tofinetunethesystemifthereisanyerrorbetweenthe(U- U )andthe(D- D )paths

duetocomponentvariability.Thisamplificationisadjustedbyadjustingtheresistance

betweentheRG+andRG-pinsoftheMAX4445device.

Figure17:IdealIntegrationofPFDOutputs 31 IntegratorDesignintermsofthePhaseLockedLoop IndesigningthethirdstageofthePESU,poleconsiderationsweredeterminedby

theforwardtransferfunctionofthePLL.ThecombinationoftheintegratorandFMunit

intheslavePPGclocksignalgeneratorarethistransferfunction.Theclocktopattern

triggerconversion,whichisthefeedbackfunction,occursintheslavePPG.Withthe

signalgeneratoractingasthevoltagecontrolledoscillator(VCO),thePESUthirdstage

formstheloopfilter.Theintegrationcircuitisanactivefilter20andhasthegeneralform ofthatgiveninFigure18.Thetrueintegrationcircuitisadifferenceintegrator,sothe controllingresistorsandcapacitorsarerepeatedonthepositiveamplifierinputwithR2 andCgoingtogroundratherthantheamplifieroutputtoformfeedback.

Figure18:ActiveFilterBaseforStage3

ThePESUPLLisneededtomaintainareferencefrequencywithnophaseerror.

AccordingtoMotorolaapplicationnoteAN53521,thisisatypetwosystemwithzerostep positionandzerostepvelocity.Thelooptransferfunctiongivenforthissystemtypeis equation3.22 32 + )( kas sHsG )()( = (3) s 2

G(s)istheforwardfunctionandH(s)isthefeedbackfunction.Inourapplication,H(s)is afrequencydividerwhichappliesaconstantvaluetothelooptransferfunction.TheFM ofthesignalgeneratorcontributesequation4tothetransferfunction.20

K K = V (4) o s

TheKVtermisanotherconstantwiththesdependenceaddinganintegrationterm.This leavestheloopfiltertohavetheformofequation5.20

+ asK )( K = (5) o s

Thenon-idealnatureoftheoperationalamplifiersetsamaximumpossiblegainaswellas amaximumvoltageitcanoutput.Fromtheformoftheactivefilter,thecornerfrequency ofthelowpassfilterisdeterminedbythefeedbackcomponents.Frominspection,at highfrequencies,theactivefiltergainwillapproach(-R2/R1)withthecapacitoractingas ashortwhileatlowfrequencies,thecapacitoractsasanopencircuit,causingthegainto approachinfinity,ideally.The-3dBfrequencyisgivenbyequation6.20

1 f = (6) −3dB π 2 2CR

AMathCADscriptwasdevelopedtoevaluateresistorandcapacitorcombinationsandis giveninAppendixD.Thetermsinthisscripthavethevariousconstantsofthesystem included.TheclosedloopresponsefortheselecteddesignparametersisshowninFigure

19witha-3dBfrequencyof48Hz.

33

Figure19:PLLSystemClosedLoopBodePlot

DeviceFabrication Figure 20 displays the prototype of the PESU using the revision 1 circuitry.

LeadedcomponentsandICswiththedualin-linepackage(DIP)interfacewereusedwith manuallyrouted,copper-cladprototypeboards.Besidesthetracesontheboard,jumper wireisusedtoprovideinterconnects,includinginterconnectsbetweeneachcircuitstage.

Theprototypeboardismountedinsideanaluminumboxwithexternalpower,input,and outputconnections.TheprototypeprovidedthebasicproofofconceptforthePESUand 34 isrobustenoughformultiplecomponent/tracechanges.Theinterfaceisnotuserfriendly anddoesnothavegreatstability,butwassufficientforaninitialproofofconcept.

Figure20:PrototypeofRevision1PESU

To improve performance, a circuit board was laid out and fabricated for the secondrevisionasshowninFigure21.ThesilkscreenonthePCBisclearlymarkedin

AppendixB.WhilethecircuitschematicwasdonewithCadenceDesignEntryCIS,the layout was created using PCB123, a free design program from the board fabricator

Sunstone.TherevisedboardplacescomponentsonbothsidesofcoppercladFR-4.The boardsizeis4.5”x3”whichwaschosentofitinapre-existingcircuitboardbox.The 35 layoutitselfcanbeshrunkconsiderablyasthecomponentsusedaresurfacemount.Extra areaisusedaroundthevoltageregulators,aswellasheatsinks,toreducetheambient temperatureoftheboard.Previousversionsransignificantlyaboveroomtemperature, whichcausedperformancevariationwhentheequilibriumshifted.Byswitchingtoonly

+/-5voltregulators,thesupplyvoltagewaschangedfrom+/-15voltsto+/-6volts,which alsoreducedexcessheatsignificantly.Componentsareplacedonbothsidesoftheboard toalloweasierpowertraceroutingandtoallowsomesignaltracecrossover.Inputand outputconnectionsareplacedonoppositesidesoftheboard,withapowerconnectionat thecenterofanotheredge.Themonitorportfortheconvertedtriggersignalisplaced oppositeofthepowerconnector.PicturesofthePESUunitwithcomponentsandofthe closedboxaregiveninFigure22andFigure23.

Figure21:FinalRevisionoftheCircuitBoard(unloaded) 36

Figure22:FinalVersionofPESU(loaded)

Figure23:LabeledPESUUnit 37 SIMULATIONOFDEVICE Beforethefinalrevisionoftheboard,astudywasimplementedtofindcircuit componentsforcontrollingthePESUperformance.Adjustmentstothebandwidthofthe lockingsystemallowforthesystemtobemoreversatileandhelptominimizesteady stateerror.Todeterminehowadjustmentstotheloopfilteraffectsystemcharacteristics, thelockingcircuit was modeledin CadenceDesignEntryCISforthemaximumdata rates with 5GHz components. Initial loop filter parameters for the prototype were determined in MathCADandthoseresultsareusedtotesttheaccuracyoftheSPICE simulationmodel.Figure24givestheidealformofthemodelemployedinSPICE.

Figure24:IdealPESUSimulationBlockDiagram

ThemodelappliesasteptothecontrollooperrorsignalreturnedtothePFD.The step simulates an instantaneous change in the reference frequency while the returned error signal emulates the frequency difference between the initial reference trigger and 38 themodulatedPPGtrigger.Themodelshiftsthemagnitudeofthetriggersfrequenciesto zerotoallowaninitialoperationalfeedbacksignalof0volt.Thedatastreamfrequency isscaledproportionatelytomaintaintheoverallmodel’sfrequencyresponse.Theloop filter adjusts the returned signal to cancel the disturbance. As this model is meant to modeltheloopfilter,standardcontrolfunctionblocksareusedasreplacementsforthe surrounding system components, namely the phase lock loop (PLL) and the FM modulationoftheslavePPGclockingsource.Figure25istheactualSPICEcircuit,with theloopfilterenclosedinaseparatingbox.

Figure25:ActualSPICESimulationModelofPESUinSystem

ThetransientresponseofthemodelisgiveninFigure26.Thedisturbancetothe systemisa2mVstepat500mswithriseandfalltimesof1µs.Thiscorrespondstoan increaseinthe5GHzcarrierof5kHz.Theloopfilterrespondsbyalteringthefeedback to5voltstothe1000Hz/voltFMmodulation.Thedivider,representingadjustmentofthe 39 datafrequencytothePPGtriggerfrequency,reducesthistoa2mVsignaltocounterthe disturbance.Theresponsetimeoftheloopfiltertomatchthestepimpulseisontheorder of100ms.AnticipateddisturbancesbetweenthetwoPPGclocksareonascaleofless thanoneHz.

Figure26:ModeledTransientResponseofPESUinSystem

Figure27showstheresultsoftheinitialsimulationsincharacterizingthe devicefrequencyresponse. 40

Figure27:ClosedLoopFrequencyResponseofPESUinSystem

TheMathCADmodelplacedthe3dBpointatapproximately55Hz.ThePSPICE simulationusinganidealoperationalamplifierintheclosedloopsystemmodelplaces the3dBpointatnear80Hz.Thesefrequenciesarecloseandprovideevidencethatthe loopfilterisbeingmodeledadequately.Whenthemodelfortheactualamplifierbeing usedissubstitutedfortheidealamplifier,the3dBfrequencylowersbyafactorof1000 to70mHz.Thisdifferenceinfrequenciesisduetotheinputbiascharacteristicsofthe non-ideal amplifier. Changes to the loop filter model were made to attempt to compensateforthenon-idealnatureoftheamplifierbutnochangesallowedthemodelto 41 reachtheideal3dBfrequency.Anadditionofanoperationalamplifierpolemayprovide further correction and will be implemented if PESU redesign is undertaken.

Measurementsoftheactualloopfilterweretakentocomparetothemodelsandwas found to be at approximately 4Hz. The amplifier operation does lower the 3dB frequency,butonlybyafactorof10.AnalternateamplifiermodelreplacedtheLF356 amplifier model in the simulation and the resulting 3dB frequency increased to 6Hz, which is much closer to the observed response. The results indicate that operational amplifiercharacteristicshadamoresignificanteffectontheloopfilterresponsethanthe variationsinresistorandcapacitorvalues.

Direct measurement of the loop filter response was not possible in thesystem whenoperatingnormally.TheadaptedtestsystemisshowninFigure28.Theresponse was determined by adding a sinusoidal voltage to the PESU’s control signal as it modulated the slave PPG’s clock through a fixed resistance. Outside of the system’s bandwidth,thePESUcannotcompensateforthismodulationandthesignalappearson theexternalPPGclocksignal.Byincreasingthegainofthecontrolloop,the3dBloop bandwidthbecomeshigherinfrequency.Themodelexpectsalinearrelationbetweenthe gain and operating bandwidth; however, the real circuit deviates from linear response.

Figure 27 displays the model’s predicted bandwidth for different gains as well as the measuredresponse.

42

Figure28:SetupforTestingtheSystemFrequencyResponse

While the model is of the right order of magnitude of the actual bandwidths, considerableerrorispresent.Figure29ashowsplotofhowthe3dBfrequencyvariesas theopenloopgainofthesystemisadjusted.Thisdifferenceincreaseswithgainand tryingtoincreasetheloopgainmuchfurtheractuallycausesadecreaseinbandwidth.

Thisindicatesthatanothersystemcomponentactstolimitthe3dBbandwidth.Small changes in the supplied voltage to the PESU prototype also affect the system’s 3dB responsewhichindicatesthePFDwasanothersignificantfactor.ThePFDICistheonly

ICtooperateonnon-standardvoltages.Thebandwidthdatawastakenattheoptimized voltagesupplysetting.Thesmalloffsetscauseddifferencesoftwoordersofmagnitude.

TheoperatingvoltageofthePFDhasastrongeffectontheabsolutelevelsoftheUand 43 Dsignals.Thisanalysisistheprimaryreasonforthechangefromtheuseofsingleended

UandDsignalstoconvertingthedifferentialUandDsignalsbeforetheintegratorinthe loopfilter.

Figure29:ComparisonofModeledandObservedSystemClosedLoopBandwidth 44 DEVICEPERFORMANCE SystemSetup While the development of the PESU enables 20GBPS operation with older equipment,thesizeofthesystemisnolongercompact.Aphotographofthesystemis giveninFigure30.ThePESUisconnectedtothesystembycoaxialcablesfromthe patterntriggerportsonthePPGsandacablelinkingthePESUoutputtotheexternal inputoftheslavePPGclockingsignalgenerator.TheconnectorsofthecablesareSMA informandthecablesareratedto18GHz.Whilethepatterntriggerrepetitionratehasa maximumofapproximately5MHz,the18GHzaidinmaintainingthesharprisingedgeof thepulse.ThePESUispoweredbyaDCsupplysetto+/-6voltsthroughthree,twisted wires with banana plugs at the supply interface and a 3 pin Molex connection to the device.TheothersignalgeneratorinthesystemsuppliestheclocktotheMUX.The

MUXinterfaceswithbothPPGsanditsclockinggenerator.Thecoaxialcablesupplying the MUX clock is a testing cable rated to 36GHz. The PPG data lines are 18GHz matchingcoaxiallinesofalengthof2meters.Thecablingofthissetupisnotideal.

BetterperformancecanbeachievedusingcablingforthePPGdatalinesandthepattern triggers that is semi-rigid in nature. The standard, flexible cabling changes its characteristicswhensubjectedtomovement,suchasvibration.Largemovementscause enoughchangeinthepulseedgeofthePPGtriggersignalformisalignmenttooccur.

Rigid cabling addresses this issue, but it adds extra cost and does not allow for easy rearrangementofthesystemdevices. 45

Figure30:SSH-ADCReferenceSignalSystemSetup DeviceOperation Figure31displaystheinitialmisalignmentofthepatterntriggersatPPGstartup.

ThetracesaretakenbeforethePFDattheoutputsofU3B(channel1)andU4B(channel

2) in the PESU and do not have the same phase offset at every startup. Once the feedbacksignal(channel3)isFMmodulatedtotheslavePPGsexternalclock,thetraces alignasinFigure32.

46

Figure31:PatternTriggerMisalignmentatEquipmentStart-up

Figure32:PatternTriggerAlignmentwithPESUat100nsperdivision 47 Onthescaleofthereferencedtraces,thealignmentlookstobeexact.Figure33 providesascopetracewithamuchsmallertimescale.TheslavePPGtracedisplays satisfactoryalignmentevenonthe100pstimescale.Someoscillationinitiallyoccurred duetothesteadystateerrorofthecontrolloop.

Figure33:PatternTriggerAlignmentwithPESUat100psperdivision

In addition to accurately aligning the triggers, the time taken to perform the alignment is of importance. The alignment time at device startup can be rather long, dependingonthepatternlength.Forparticularlylongcodes,severalminutesmaybe 48 requiredforthetriggeredgestoprecesstoeachother.Thelockingtimecanbedecreased byincreasingthecontrolloopgainofthesystembyafactorof100temporarily,typically byincreasingtheFMdeviationconstantontheclockgenerator.Oncethetriggerpulses areincloseproximity,thecontrolloopgainisloweredtoasuitablelevelforoperation.

Thelargerthecontrolloopgain,thelargerthesteadystateoscillationoftheslavetrigger pulsetothereferencetriggerpulsewillbeandcanbeenoughtokeepthePESUfrom achievingaconsistentlock.Typically,thecontrolgainisadjustedmoreforlowersteady stateerrorthanfasterresponsetime.Disturbancestothetriggerpulseedgestendtobe smallandlargegainsarenotneededtocorrectlyadjustthetriggeralignmenttomaintain acceptabledatapatternphasedifferences.Figure34containsatraceofthemodulation signalasthetriggersapproachalockposition.Whenthetriggerpulsesaresignificantly apart, the modulation signal is maximized. The modulation signal responds exponentiallywithaslightovershootwhenthepulsesbecomecloseenough.Steadystate errorisalwayspresentbetweenpulseedges.Iferroraccumulationislargeenough,the slavetriggeredgewilloscillatewithrespecttothereferencetriggerpulse.Thiseffect becomesmoreevidentatlargerdatapatternlengths,whichcauselowerpatterntrigger repetitionrates.Whenthetimebetweentriggerpulseslengthens,integrationappliesa largererrortothemodulationsignalbeforebeingcorrected.

49

Figure34:ModulationSignalfromPESUduringTriggerPhaseLock

WhilethetriggerpulsesarewhatthePESUdirectlyactson,theultimategoalis the alignment of the data patterns, so the trigger signal delays must be adjusted to compensateforsystemdelays.Figure35displaysthesynchronizeddatastreamsofthe

PPG1andPPG2dataoutputs,settothesame16bitpattern.Asmallertimescaleofthe datapatternsisshowninFigure36anddisplaysaminimummisalignmentforthatpattern arrangement. The alignment is optimized by adjusting the delay between the trigger pulses,whichcountersdifferencesinphaseduetosignalpathsandequipmentlimitations.

Thecorrectamountofdelayisnotconstantovertimehowever,astemperaturevariations, vibrations,anddevicecontinuallyvarythephasedifferencesbetweenthetrigger pulseedgesattheinputtothePESUandtheedgeofthefirstbitinthedatastreamsatthe 50 oscilloscope.ThePESUcontinuallyactstoalignthetriggerpulsestothesetdelaybut doesnotautomaticallyadjustthatdelaywhensmallchangesappearinthepaths.This requiresamanualadjustmentofthePESUtriggerpulsedelay.Thisadjustmentisnot needed often once the system achieves an equilibrium temperature and cabling is not repositioned.

Figure35:FullPatternDataAlignmentwithPESU 51

Figure36:MinimumAchievedDataEdgeAlignment

Figure37givesarandomsamplingofpatternmisalignmentsoveraperiodofan hour.Whilethedatapointsshowaverylowfrequencyvariation,theactualdifferencein patternedgesalsovariedonafarfasterscale,alternatingbetweennegativeandpositive offsetsinthecourseofseconds.Mostimportantaboutthevariationistherelationithas tothetemporalpositionofthenextbitinthedataseries.Thedifferencebetweenedges tendstobeintherangeof50pswhilethenextbitinthepatternis200ps.Keepingthe edgedifferencemuchlowerthanthebitdifferencelowersthechancethattheMUXwill readanincorrectbit.Again,improvementstocablingreducetheamountoftheabsolute 52 phasevariation.ThetimescaleofthealignmentrequiredbytheSSH-ADCexperimentis ontheorderof10ms,soslowerdriftsdonotcauseasignificantimpact.

LeadingBitTemporalOffsetforPhaseSynchronizedPPGs

250 200 150 100

50 AlignmentOffset 0 NextBit -50 PreviousBit -100 -150 TemporalOffset,delta,ps -200 -250 0 10 20 30 40 50 60 ElapsedTime,t,min

Figure37:BitAlignmentStabilityofPESU

SystemOperation ThetruetestofthePESUisintheperformanceofthesystemattheMUXoutput rather than the PPG data streams. The MUX operates by sampling and holding the signalsappliedtotheinputsandthenusingashiftregistertooutputthepatternsatarate of20GBPS.Thismethodofmultiplexinghastheadvantageofnotrequiringextremely exactpositioningofthe5GBPSdatastreams.Thisisevidentwhenobservingtheoutput patternasthetriggerpulsedelayisvaried.Thereisasignificantrangeofbittobitdelay 53 thatallowsstableoperation.Optimally,thedelayshouldbesettothemiddleofthis rangetoguardagainstsystemdisturbances.

ThepatternsusedtotesttheMUXaregiveninTable4.Thechannelsareapplied totheMUXsuchthatthe20GBPSdatastreamhasthefollowingorder:PPG1, PPG2 ,

PPG1 ,PPG2.

Table4:PPGDataPatternsforMUXTesting PPG1DataPattern Bit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Value 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 PPG2DataPatterns Bit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Pattern1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 Pattern2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

EyediagramsoftheMUXoutputaregiveninFigure38andFigure39.Whilethe patternchangetoPPG2couldeasilybeaccomplishedbyadjustingthetriggerdelay,for thistest,theactualPPGdatapatternwaschanged.Thiswastodemonstratethatthelock ofthePPGtriggerpulseswasnotaffectedbychangingindividualbitvaluesinapattern.

Moresignificantchanges,suchastobitrateorpatternlengthdorequirethePESUto reacquire the lock. The eye diagrams provide visual proof that the PPG data edge differencedoesnotvaryenoughtocauseslippedbitsinthemultiplexedoutput.

54

Figure38:EyeDiagramofMultiplexedPattern1

Figure39:EyeDiagramofMultiplexedPattern2 55 Fromaneyediagram,therepeatabilityoftheMUXsignalcanbequantifiedin termsofthejitterinthesignal.Byaccumulatingsamplesofarepeateddatastreamat regularintervals,thetemporalpositionofthatdatastreamwithrespecttotheregular intervalcanbedetermined,whichisknownasthesignal’sjitter.Figure40displaysa sampledpatternfromtheslavePPGdatastreamwhentriggeredbythereferencetrigger signalfromthePESU.TheRMSjitter,widthofthedatapatternatmidlevelofthe signal,variedfrom3to7psover59measurements.Thistimingerror(orthicknessinthe observedeyediagrams)canbethoughtofasthetemporaldifferencebetweenPPG1and

PPG2.Figure41givesthejitterperformanceoftheMUXoutputwithrespecttothe

MUXclocksignal.TheRMSjitteroftheMUXoutputpatternisapproximately1ps, whichisveryclosetothelimitsofthesamplingoscilloscope.

Figure40:PPGDataStreamJitterwithRespecttotheReferenceTriggerSignal 56

Figure41:MultiplexedDataStreamwithRespecttotheDividedMUXClock

Fromthesetwofigures,itisclearthatthejitterfromthePESUalignmentofthe devicesisnottransferredthroughtheMUX. 57 EXTENSIONOFDEVICEFUNCTIONALITY AlignmenttoOtherDevices Figure42displaysanapplicationmadeablebythechangesinthelatestrevision tothePESU.This applicationinvolvessynchronizingtheslavedPPGtoan alternate sourceoperatingatthesamerateasthePPGpatterntrigger.

Figure42:ProposedSet-upforExternalPatternDataFrequencyModulation 58 Thechangestothefirststageofthecircuitallowforthisextension.Theinitial firststagewasdesignedtoactasapulsestretcherfortheparticularformofthePPG patterntrigger.Othermastertriggerpulsesourceswouldneedtobeadaptedtobesimilar inlevelstothePPGtriggertopassthetransistorcorrectly.Thechangewiththesecond revision uses a comparator to create a standard level trigger signal to be used for triggering the ICs requiring the wider triggering pulses. The setup used to test this functionalityfeaturedasignalgeneratorsettothetriggerpulserepetitionrate.Various waveformswereusedtoverifythatthePPGwasabletoalignthedatapatternstarttoa particularlevelofthemastersignal.TheslavedeviceisalsonotrequiredtobeaPPG, onlythatitcanbeclockedexternallywithafrequencymodulatedsignal.

An interesting application of the setup in Figure 42 was using the PESU to synchronizetheslavePPGtoamastersignalwithafrequencymodulationappliedtoit.

WiththepatternofPPG2settoasimplesquarewave,thePESUsattempttoaligntothe modulatedmastersignalreproducingthemodulationonthedatasignalfromthePPG.

ThisshowsthatasetPPGpatterncanbemodulatedbasedtoanexternalsource,which mimicsthefunctionalityofanexpensive,commerciallyavailableaddonmodule.

Arbitrary20GBPSCodeProduction Theuseof5GBPSdatapatternstoformcomplimentarycodesat20GBPSfora seedpatternutilizingthePPG1and PPG1 channelsissuitableforthereferencesignal generation.However,beingabletocreatearbitrary20GBPScomplimentarycodeswith 59 theequipmentavailableishighlydesirable.SinceeachPPGcanproducedatastreamsup to12GBPS,enougharbitrarybitsareavailabletoproducea24GBPSsignal,iftheycan bemultiplexed.TheInphiMUXisdesignedtoonlyacceptfour5GBPSdatastreams.

However,asimple2bitserialtoparallelconvertercouldtransformthetwo10GBPSdata streamsavailableintotheneededfour5GBPSdatastreams.Figure43givesawaythe arbitrarysignalcanbeaccomplishedutilizingthePPG1and PPG1 in a single ended fashion.

Figure43:TimingDiagramforArbitrary20GBPSSignalProduction

Thecircuittodividethetwo10GBPSdatastreamsisrathersimpleandageneric diagramisgiveninFigure44.TheDFFwillneedtooperateat5GHzandtheclockcan besuppliedbytheMUXasithasanoutputofitsclockdividedbyfour.AdditionalICs willbeneededtoprovideenoughbranchesoftheclocksignaltodriveeightDFFs.The 60 components for such a converter are chosen and the circuit board is currently being designed.

5GHz CLK

> > PPG1 D Q D Q MUX 0 DFF DFF

> > PPG1 D Q D Q MUX 1 DFF DFF

> > PPG2 D Q D Q MUX 2 DFF DFF

> > PPG2 D Q D Q MUX 3 DFF DFF Figure44:SerialtoParallelConversionCircuit 61 CONCLUSIONS Theprimarydesign goalforthedevice featuredinthisthesisistoprovidean inexpensive way to create 40GBPS binary data streams that can take the form of complementary sequences. Using a relatively inexpensive multiplexer, a proof of concept system was built and the system delivered the reference signal needed. The system operates using a less expensive, 20GBPS multiplexer available in-house at

MontanaStateUniversitySpectrumLabandcanbeupgradedtofunctionat40GBPSby replacingtheMUXanditsclockwiththeequivalent40GBPSInphiMUXanda40GHz clockingsource.Theotherin-housepiecesoftheproofofconceptsystemconsistoftwo

12GBPS PPGs operating at 5GBPS, a signal generator capable of producing a 5GHz, frequencymodulatedsignal,anda20GHzclocksource.DuetoPPGlimitations,the

PESU is needed to provide the ability to align the PPG data streams for correct multiplexing.

The PESU and external PPG frequency modulated clock source operate in the systemasaphaselockedloop.TheunittakesasinputtwopulsestreamsfromthePPGs, eachmarkingthebeginningofitsPPG’soutputdatastream.Theunitconvertstheinput pulsesintoareferencesignalfromthemasterPPGandamodulatedsignalfromtheslave

PPG, both of which are optimized for use by the PESU’s onboard PFD. The PFD receivesthesesignalsandproducestwooutputsignals,UandD,suchthatthedifference betweenUandDisdirectlyproportionaltothephasedifferenceofthereferenceand modulatedsignals.ThefinalactionofthePESUistointegratethedifferenceofUandD andoutputthatdifferenceasacontrolsignal.Thecontrolsignalisthenfedtotheslave 62 PPG’sRFsignalgeneratortobefrequencymodulatedontotheclocksignalitprovides theslavePPG.

TheoverallfunctionofPESUistocauseslightfrequencydifferencesbetweenthe masterandslavePPGswhichcausetheslavedatastreamtoprecesswithrespecttothe master data stream. Once the streams are aligned, the control signal from the PESU approaches zero volts and both PPGs operate at identical clock frequencies. Once locked, the control loop of the system acts to correct disturbances occurring at frequencies of 10 Hz or less. Compared to the operating frequencies of the other componentsofthesystem,thisfrequencyisextremelysmallandcanbethissmalldueto thestabilityofthePPGclocks.Thecircuitryoperatingatsuchlowfrequenciesisfar easiertoimplementandcomponentsarelessexpensivethanexistingsolutions.

WiththePESU,theproofofconceptsystemproduced20GBPScomplementary datastreamsinatriggerableandreliablefashion.AddedjittertotheslavePPGdata streambythePESUwasnotreflectedintheMUXoutput,onlyhavingtheeffectofbit orderinstabilityiftheslavePPGjitterbecameasignificantportionofthedatastream pulsewidth.

ThefinalversionofthePESUoffersseveraladditionalfeatures.Theimproved triggerpulsemanipulationstageprovidestheabilitytoalignthePPGtootherequipment withdifferenteventsignalforms.UseofRMMsinsteadofDFFsimprovestherangeand accuracyoftheoffsetdelaythatcanbeappliedtoPPGdatastreampositioning,enabling the slave data stream to lead or lag the reference by up to 50ns. Changes to chip operating voltages allows for fewer voltage regulators and cooler board temperatures, 63 improvingalignmentstability.Addingdifferentialtosingleendedamplifierstochange thedifferentialUandDsignalsfromthePFDlowerstheerrorpresentinintegrationdue tomismatchesintheUandDabsolutehighandlowvoltages.Finally,theadditionofa referencetriggersignaloutputpriortothePFDenablesseveralPESUdevicestoeasily alignmorethantwodevices.

While operating satisfactorily for the proof of concept from the SSH-ADC project,thereareimprovementsthatcanbemadetothesystem.ThesizeofthePPGs and signal generators requires cabling being longer than ideal. The current flexible cablesshouldbereplacedwithsemi-rigidcablestoimprovephasestabilityoftherouted data and pulse streams. Use of semi-rigid cables limits will force components to maintainparticularpositionsandorientationstopreventrepeatedcableshaping.There aretwoimprovementsthatcanbemadetothePESUunititself.First,multiplePESU circuits can be combined on one board, allowing multiple device alignment without added errors of cabling several of the current boxes together. Second, the variable resistors providing the reference and modulated signal delay adjustment could be replaced with larger footprint versions to provide easier adjustment. Both of these improvementswouldrequireanewboardlayout. 64 REFERENCESCITED 65 1Demonstrationsofanalog-to-digitalconversionusingafrequencydomainstretched ,MontanaStateUniversitySpectrumLab,(2008),pagestherein

2SHF56GbpsBERTProductOverview,SHFCommunicationTechnologiesAG,(2009), 2

35080MX50GBPS4:1Multiplexer,InphiCorporation,(2009),1

4High-PerformancePhase-LockedLoopTLC2933,TexasInstruments,(1996),1

5RFPLLFrequencySynthesizersADF4116/ADF4117/ADF4118revD,AnalogDevices, (2007),1

6RadarHandbookSecondEdition,SkolnikM,(1990),10.21

7ECL/PECLPhase-FrequencyDetectors19-2234,MaximIC,(2002),8

8D3186PulsePatternGeneratorOperationManual,AdvantestCorporation,(1994),12-1

9D3186PulsePatternGeneratorOperationManual,AdvantestCorporation,(1994),8-8

10D3186PulsePatternGeneratorOperationManual,AdvantestCorporation,(1994),8-7

11ECL/PECLPhase-FrequencyDetectors19-2234,MaximIC,(2002),1

12ECL/PECLPhase-FrequencyDetectors19-2234,MaximIC,(2002),8

13AgilentESGFamilyofRFSignalGenerators,AgilentTechnologies,(2003),4

142080MX_DS_Ver1.0,InphiCorporation,(2006),1

152080MX_DS_Ver1.0,InphiCorporation,(2006),4

16 Agilent83751A/Band83752A/BSynthesizedSweepers,AgilentTechnologies,(2002), 1

17Phase-LockedLoopDesignFundamentalsAN535,Motorola,(1994),2

1874LV123DualRetriggerableMonostableMultivibratorwithReset,Phillips Semiconductor,(1998),10

19ECL/PECLPhase-FrequencyDetectors19-2234,MaximIC,(2002),7

66 ______ 20Phase-LockedLoopDesignFundamentalsAN535,Motorola,(1994),7 21Phase-LockedLoopDesignFundamentalsAN535,Motorola,(1994),4

22Phase-LockedLoopDesignFundamentalsAN535,Motorola,(1994),6 67 APPENDICES 68 APPENDIXA REVISION2PESUCIRCUITSCHEMATIC 69

Figure45:PESUCircuitSchematicPart1(leftside) 70

Figure46:PESUCircuitSchematicPart2(rightside) 71 APPENDIXB REVISION2PESUBOARDLAYOUT 72

Figure47:PESUPCBTopfromPCB123 73

Figure48:PESUPCBBottomfromPCB123 74 Table5:PESUPartList Part DigikeyPart# Qty Footprint BoardID SMResistor82.5 RHM82.5CCT-ND 4 805 R12,14,16,18 SMResistor100 541-100CCT-ND 10 805 R1-4,13-16,28,29 SMResistor120 541-120CCT-ND 1 805 R27 SMResistor124 RHM124CCT-ND 4 805 R11,13,15,17 SMResistor200 RHM200CRCT-ND 4 805 R21-24 SMResistor2k 541-2.00kCCT-ND 2 805 R7,8 SMResistor10k 541-10.0kCCT-ND 4 805 R5,6,9,10 SMResistor100k 541-100kCCT-ND 2 805 R25,26 OPEN 2 805 R19,20 SMPot1k 490-2660-1-nd 3 PVG5A RV3-5 SMPot10k 490-2661-1-nd 2 PVG5A RV1,2 SMCapacitor1p PCC010CNCT-ND 2 805 C3,4 SMCapacitor10p 399-1108-1-ND 2 805 C5,6 SMCapacitor330p PCC1982CT-ND 1 805 C9 SMCapacitor10n PCC103BNCT-ND 1 805 CB13 SMCapacitor100n PCC1828CT-ND 1 805 CB14 SMCapacitor470n PCC2456CT-ND 2 805 C7,8 SMCapacitor1u PCC2319CT-ND 14 805 C1,2,CB1-12,16-18 SMCapacitor10u PCC2400CT-ND 1 805 CB15 SchottkyDiode SD101AW SD101AWTPMSCT-ND 2 SOD123 D1,2 DiffCompTL714CD 296-6631-5-ND 2 SOIC8 U1,2 MultiVib74LV123DB 74LV123DB(ArrowNAC) 2 SSOP16 U3,4 MAX9382ESA+ PhaseDetectorMAX9382 (MaximIC) 1 SOIC8 U5 Diff-SingleEnd MAX4445 MAX4445(MaximIC) 2 SOIC16 U7,8 OpAmpLF356 LF356M-ND 1 SOIC8 U8 +5VRegMC7805 MC7805CD2TGOS-ND 1 D2PAK U9 -5VRegL7905 497-1214-1-ND 1 DPAK U10 SMA SMAPCBBoardLaunch J629-ND 4 End J1-4 PowerConnector 1 Molex-3 J5 75 APPENDIXC MATLABSCRIPTSFORDETERMININGCOMPLEMENTARYCODESEED 76 function[CompA,CompB]=compseq(n); %CompA=[11100111010000010110010000];%Complementary SequenceA %CompB=[00011000101101010110010000];%Complementary SequenceB %Letstrytogeneratesomelongersequences. %closeall [CompA,CompB]=CompGen(n); size(CompA) figure plot(CompA,'green') hold plot(CompB) N=100000; E1=zeros(1,N); E2=zeros(1,N); E1(1:2^(n))=CompA; E2(1:2^(n))=CompB; %NY1=2*CompA-1;%Conversionto-1,1 PP1=xcorr(E1);%AutocorrelationofSeqA %NY2=2*CompB-1;%Conversionto-1,1 PP2=xcorr(E2);%AutocorrelationofSeqB Sum=PP1+PP2;%Sumofthecorrelationfunctions figure plot(PP1.^1./max(PP1.^1),'g') holdon plot(PP2.^1./max(PP2.^1),'r') figure plot(Sum.^2/max(Sum.^2))%Fieldmustsquareforpower. 77 function[Sf,Sfc]=CompGen(n) S0=[1];%[111-1-1111-11-1-1-1-1-11-111-1-11-1-1-1-1]; %[1];%Seed S1=[S0,S0]; S1c=[S0,-S0]; Sf=[S1,S1c]; Sfc=[S1,-S1c]; fori=1:(n-2) Sfo=Sf; Sf=[Sf,Sfc]; Sfc=[Sfo,-Sfc]; end 78 APPENDIXD MATHCADSCRIPTFORADJUSTINGPLLLOOPFILTER 79