Food Sources of Plant Sterols in the EPIC Norfolk Population

Total Page:16

File Type:pdf, Size:1020Kb

Food Sources of Plant Sterols in the EPIC Norfolk Population European Journal of Clinical Nutrition (2008) 62, 695–703 & 2008 Nature Publishing Group All rights reserved 0954-3007/08 $30.00 www.nature.com/ejcn ORIGINAL ARTICLE Food sources of plant sterols in the EPIC Norfolk population S Klingberg1, H Andersson1, A Mulligan2, A Bhaniani2, A Welch2, S Bingham3, K-T Khaw2,4, S Andersson1 and L Ellega˚rd1 1Department of Clinical Nutrition, Sahlgrenska Academy at Go¨teborg University, Go¨teborg, Sweden; 2Department of Public Health and Primary Care, University of Cambridge, Strangeways Site, Wort’s Causeway, Cambridge, UK; 3Medical Research Council Dunn Human Nutrition Unit, Cambridge, UK; 4Clinical Gerontology Unit, University of Cambridge School of Medicine, Addenbrooke’s Hospital, Cambridge, UK Objective: To investigate the intake of plant sterols and identify major dietary sources of plant sterols in the British diet. Subjects: A total of 24 798 men and women recruited during 1993–1997, participating in the European Prospective Investigation into Cancer (EPIC-Norfolk). Interventions: A database of the plant sterol (campesterol, b-sitosterol, stigmasterol, campestanol and b-sitostanol) content in foods, based on gas-liquid chromatography (GLC) analyses, was linked to nutritional intake data from food frequency questionnaires in the EPIC-Norfolk population. Results: The mean (s.d.) intake of total plant sterols was 300 (108) mg/d for men and 293 (100) mg/d for women. Bread and other cereals, vegetables and added fats were the three major food sources of plant sterols representing 18.6 (8.9), 18.4 (8.5) and 17.3 (10.4)% of the total plant sterol intake respectively. Women had a higher plant sterol density than men (36.4 vs 32.8 mg/1000 kJ, Po0.001) and in relation to energy intake higher intakes of plant sterols from vegetables, bread and other cereals, added fats, fruits and mixed dishes (all Po0.001), whilst men had higher intakes of plant sterols from cakes, scones and chocolate, potatoes (all Po0.001) and other foods (Po0.01). Conclusions: The intake of plant sterols in UK, mainly from bread, cereals, fats and vegetables, is much higher than previously reported but comparable to recent European studies. European Journal of Clinical Nutrition (2008) 62, 695–703; doi:10.1038/sj.ejcn.1602765; published online 18 April 2007 Keywords: plant sterols; food sources; population; diet Introduction The chemical structure of plant sterols resembles that of cholesterol but with an additional methyl- or ethyl group in Plant sterols are bioactive compounds found in all vegetable the side chain. More than 250 different plant sterols have foods at varying concentrations. There is, however, limited been identified (Piironen et al., 2000). Plant sterols are information on the plant sterol intake from common foods known to reduce the absorption of cholesterol and the serum in Britain. level of cholesterol, although the mechanisms are not fully understood. In addition to the well-known effect of decreased intestinal cholesterol absorption due to reduced Correspondence: S Klingberg, Department of Clinical Nutrition, Sahlgrenska incorporation of cholesterol into mixed micelles, plant Academy at Go¨teborg University, Box 459, Gothenburg 40530, Sweden. sterols are suggested to influence cellular cholesterol meta- E-mail: [email protected] bolism within the intestinal enterocytes (Plat and Mensink, Guarantor: S Klingberg. Contributors: K-TK and SB are principal investigators in the EPIC-Norfolk 2005). population study. AW and SB are responsible for the nutritional analyses. HA, It is well documented that commercial products enriched SA and LE developed the plant sterol nutrient database. AM and AB prepared with plant sterols reduce serum cholesterol levels. A the plant sterol data set in the EPIC cohort. SK was principal investigator for metaanalysis of 41 different studies has shown that a plant this study and wrote the paper with contributions from co-authors. Received 3 July 2006; revised 12 March 2007; accepted 14 March 2007; sterol dose of 2 g/day reduces low-density lipoprotein (LDL) published online 18 April 2007 cholesterol levels by 10% (Katan et al., 2003). In contrast to Food sources of plant sterols S Klingberg et al 696 these studies with products supplemented with plant sterols, 0.01 mg/100 g fresh material of the tested product. The much less is known about the effects of dietary plant sterol concentration of the five most frequently occurring plant intake (Ostlund, 2002). Traditionally plant sterols from the sterols (the unsaturated plant sterols campesterol (24a- habitual diet have not been considered to have any methyl-5-cholesten-3b-ol), stigmasterol (5,22-cholestadien- significant effect on the serum cholesterol level but this 24a-ethyl-3b-ol) b-sitosterol (24a-ethylcholest-5-en-3b-ol), view has been questioned (Fraser, 1994; Ostlund, 2002). and the saturated plant stanols campestanol (24a-methyl- Serum cholesterol lowering effects of the plant sterol intake 5a-cholestan-3b-ol), and b-sitostanol (24a-ethyl-5a-cholestan- from the natural diet could probably have been under- 3b-ol)) was analysed. The sum of the five plant sterols estimated (Ostlund, 2002). As recently shown in a large-scale constitutes ‘total plant sterols’. All foods were analysed in epidemiological study using the current database, a high duplicate. All fruits and vegetables were bought in 1996, intake of natural dietary plant sterols is significantly cereals in 1997 and fatty foods in 1997 and 2001 in two inversely related to total and LDL cholesterol levels shops in the Gothenburg area. Specific British food items (Andersson et al., 2004). were bought in Cambridge in 2004 and 2005. Fruits and Knowledge of major food sources of plant sterols could be vegetables were analysed as a mix of two different samples an important tool when trying to further improve the and analysis of cereal and fatty foods were made from a mix natural intake of plant sterols as a component in the of two to seven samples. British food items were analysed in prevention of cardiovascular disease. The aim of the current duplicate from a single sample. Seasonal variation in fruits study was to investigate the natural intake of plant sterols in and vegetables was not taken into account. the Norfolk population of The European Prospective In- vestigation of Cancer (EPIC) and to identify major dietary sources of plant sterols in the British diet. Plant sterol database Analyses of more than 330 food items were collected in a plant sterol database and this database was used to estimate Methods plant sterol intake. This database includes vegetables, fruits, cereals, bread, fats, nuts, confectionery, beverages and The study population specific British food items. Food items from this database The EPIC-Norfolk cohort recruited approximately 25 000 were matched with the food items present in the FFQ. The men and women aged 40–79 years of age between 1993 and plant sterol data on vegetables, fruits, cereals and fatty foods 1997 (Day et al., 1999). EPIC-Norfolk is part of the Europe- have been published (Norme´n et al., 1999, 2002, 2007). Plant wide EPIC study designed to investigate dietary and other sterol content of specific British food items used in this study determinants of cancer. The EPIC-Norfolk cohort also is shown in Appendix 1. included end points other than cancer, for example cardio- vascular disease. Informed consent was given by all partici- pants and the study was approved by the Norfolk and Food frequency questionnaire Norwich Hospital Ethics Committee. Food intake and At recruitment participants completed a FFQ consisting of nutrient data from food frequency questionnaires (FFQ) a food list of 130 questionnaire lines corresponding to were available for 24 838 participants. 275 food items (Bingham et al., 2001; Welch et al., 2005). The FFQ was validated against a 16-day weighed records and the biomarkers 24-h urine N and K, plasma carotenoids and Plant sterol analysis plasma vitamin C (Bingham et al., 1994, 1995, 1997). The Analyses of the food items were performed at the Depart- questions about intake of different fruits and vegetables were ment of Clinical Nutrition, Go¨teborg University, Sweden, detailed and types of bread, pasta, breakfast cereals and types using a gas-liquid chromatography (GLC) procedure of fat used for frying, baking and spreading had been modified after Jonker et al. (1985) and validated with gas specified which assisted in the correct assignment of plant chromatography mass spectrometry (Dutta and Norme´n, sterol values. Based either on pure animal origin or on 1998). In short, the method comprised acid hydrolysis (6 M ingredients not containing plant sterols, 63 food items were HCl), alkaline saponification (96% ethanolic KOH), lipid set to zero. For plant sterol containing food items the plant extraction with toluene, and a final step of washing in sterol value was based on direct analysis in 119 food items. de-ionized water until neutral pH was reached. Internal Fifty-six food items were assigned a value from similar standard, containing 5a-cholestane, was added to all samples analysed products or proportions of analysed products. For before saponification to quantify the sterols. Samples were 23 food items the plant sterol content was based on dehydrated with Na2SO4, filtered and evaporated under calculations of British standard receipts with analysed vacuum at 501C. The residue was dissolved in chloroform ingredients. Fourteen food items were assigned plant sterol and stored at À201C. Silylation of sterols to trimethylsilyl values from the UK food composition database ‘McCance ether derivatives was performed before analysis by gas liquid and Widdowson’s The composition of Foods’ (Food Stan- chromatography (GLC). The limit of detection was set to dards Agency, 2002). As plant sterol enriched products were European Journal of Clinical Nutrition Food sources of plant sterols S Klingberg et al 697 not launched until 1999 in the UK, no such products were higher intakes of plant sterols from cakes, scones and present in the FFQ:s.
Recommended publications
  • Ononis Spinosa Alleviated Capsaicin-Induced Mechanical
    Korean J Pain 2021;34(3):262-270 https://doi.org/10.3344/kjp.2021.34.3.262 pISSN 2005-9159 eISSN 2093-0569 Experimental Research Article Ononis spinosa alleviated capsaicin-induced mechanical allodynia in a rat model through transient receptor potential vanilloid 1 modulation Sahar Majdi Jaffal1, Belal Omar Al-Najjar2,3, and Manal Ahmad Abbas3,4 1Department of Biological Sciences, Faculty of Science, The University of Jordan, Amman, Jordan 2Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan 3Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman, Jordan 4Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan Received January 2, 2021 Revised April 7, 2021 Background: Transient receptor potential vanilloid 1 (TRPV1) is a non-selective Accepted April 8, 2021 cation channel implicated in pain sensation in response to heat, protons, and cap- saicin (CAPS). It is well established that TRPV1 is involved in mechanical allodynia. Handling Editor: Sang Hun Kim This study investigates the effect of Ononis spinosa (Fabaceae) in CAPS-induced mechanical allodynia and its mechanism of action. Correspondence Methods: Mechanical allodynia was induced by the intraplantar (ipl) injection of 40 Sahar Majdi Jaffal µg CAPS into the left hind paw of male Wistar rats. Animals received an ipl injection Department of Biological Sciences, of 100 µg O. spinosa methanolic leaf extract or 2.5% diclofenac sodium 20 minutes Faculty of Science, The University of before CAPS injection. Paw withdrawal threshold (PWT) was measured using von Jordan, Amman 11942, Jordan Tel: +962787924254 Frey filament 30, 90, and 150 minutes after CAPS injection.
    [Show full text]
  • PHYTOSTEROLS, PHYTOSTANOLS and THEIR ESTERS Chemical and Technical Assessment
    PHYTOSTEROLS, PHYTOSTANOLS AND THEIR ESTERS Chemical and Technical Assessment 1 Prepared by Richard Cantrill, Ph.D., reviewed by Yoko Kawamura, Ph.D., for the 69th JECFA 1. Summary Phytosterols and phytostanols, also referred to as plant sterols and stanols, are common plant and vegetable constituents and are therefore normal constituents of the human diet. They are structurally related to cholesterol, but differ from cholesterol in the structure of the side chain. Commercially, phytosterols are isolated from vegetable oils, such as soybean oil, rapeseed (canola) oil, sunflower oil or corn oil, or from so-called "tall oil", a by-product of the manufacture of wood pulp. These sterols can be hydrogenated to obtain phytostanols. Both phytosterols- and stanols, which are high melting powders, can be esterified with fatty acids of vegetable (oil) origin. The resulting esters are liquid or semi-liquid materials, having comparable chemical and physical properties to edible fats and oils, enabling supplementation of various processed foods with phytosterol- and phytostanol esters. The most common phytosterols and phytostanols are sitosterol (3β-stigmast-5-en-3ol; CAS Number 83- 46-5), sitostanol (3β,5α-stigmastan-3-ol; CAS Number 83-45-4), campesterol (3β-ergost-5-en-3-ol; CAS Number 474-62-4), campestanol (3β,5α-ergostan-3-ol; CAS Number 474-60-2), stigmasterol (3β- stigmasta-5,22-dien-3-ol; CAS Number 83-48-7) and brassicasterol (3β-ergosta-5,22-dien-3-ol; CAS Number 474-67-9). Each commercial source has its own typical composition. Dietary intake of phytosterols ranges from 150-400 mg /day in a typical western diet.
    [Show full text]
  • Natural Product Standards (1)
    Natural Product Standards (1) Group Name Product Name CAS No Purity Storage Cat. No. PKG Size List Price ($) Soy Bean Daidzein 486-66-8 98% (HPLC) R NH010102 10 mg 58.00 NH010103 100 mg 344.00 Glycitein 40957-83-3 98% (HPLC) R NH010202 10 mg 156.00 NH010203 100 mg 1,130.00 Genistein 446-72-0 98% (HPLC) R NH010302 10 mg 58.00 NH010303 100 mg 219.00 Daidzin 552-66-9 98% (HPLC) R NH012102 10 mg 138.00 NH012103 100 mg 1,130.00 Glycitin 40246-10-4 98% (HPLC) R NH012202 10 mg 156.00 NH012203 100 mg 1,130.00 Genistin 529-59-9 98% (HPLC) R NH012302 10 mg 156.00 NH012303 100 mg 1,130.00 6" -O-Acetyldaidzin 71385-83-6 98% (HPLC) F NH013101 1 mg 173.00 6" -O-Acetylglycitin 134859-96-4 98% (HPLC) F NH013201 1 mg 173.00 6" -O-Acetylgenistin 73566-30-0 98% (HPLC) F NH013301 1 mg 173.00 6" -O-Malonyldaidzin 124590-31-4 98% (HPLC) F NH014101 1 mg 173.00 6" -O-Malonylglycitin 137705-39-6 98% (HPLC) F NH014201 1 mg 173.00 6" -O-Malonylgenistin 51011-05-3 98% (HPLC) F NH014301 1 mg 173.00 Isoflavone Aglycon Mixture B Total 95% (HPLC) RT NH015204 1 g 344.00 Isoflavone Glucoside Mixture A Total 95% (HPLC) RT NH016104 1 g 346.00 8-Hydroxydaidzein 75187-63-2 98% (HPLC) R NH017102 5 mg 415.00 8-Hydroxyglycitein 113762-90-6 98% (HPLC) R NH017202 5 mg 415.00 8-Hydroxygenistein 13539-27-0 98% (HPLC) R NH017302 5 mg 415.00 Green Tea (-) -Epicatechin 〔(-) -EC 〕 490-46-0 99% (HPLC) R NH020102 10 mg 92.00 NH020103 100 mg 507.00 (-) -Epigallocatechin 〔(-) -EGC 〕 970-74-1 99% (HPLC) R NH020202 10 mg 138.00 NH020203 100 mg 761.00 (-) -Epicatechin gallate 〔(-) -ECg 〕 1257-08-5
    [Show full text]
  • Phytosterols: Applications and Recovery Methods
    Bioresource Technology 98 (2007) 2335–2350 Review Phytosterols: Applications and recovery methods P. Fernandes a,b,c,*, J.M.S. Cabral a a IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Te´cnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal b Biotrend, R. Torcato Jorge, 41 c/v 2675-807 Ramada, Portugal c Departamento de Engenharias e Cieˆncias Naturais, Universidade Luso´fona de Humanidades e Tecnologias, Av. Campo Grande 376, 1749-024 Lisboa, Portugal Received 29 May 2006; received in revised form 9 October 2006; accepted 10 October 2006 Available online 22 November 2006 Abstract Phytosterols, or plant sterols, are compounds that occur naturally and bear close structural resemblance to cholesterol, but have different side-chain configurations. Phytosterols are relevant in pharmaceuticals (production of therapeutic steroids), nutrition (anti- cholesterol additives in functional foods, anti-cancer properties), and cosmetics (creams, lipstick). Phytosterols can be obtained from vegetable oils or from industrial wastes, which gives an added value to the latter. Considerable efforts have been recently dedicated to the development of efficient processes for phytosterol isolation from natural sources. The present work aims to summarize information on the applications of phytosterols and to review recent approaches, mainly from the industry, for the large-scale recovery of phytosterols. Ó 2006 Elsevier Ltd. All rights reserved. Keywords: Phytosterols; Recovery; Extraction; Purification;
    [Show full text]
  • Campesterol from Glycine Max (Soybean) (C5157)
    Campesterol from Glycine max (soybean) Product Number C 5157 Storage Temperature -0 °C Product Description Preparation Instructions Molecular Formula: C28H48O Campesterol is soluble in chloroform (20 mg/ml), Molecular Weight: 400.7 yielding a clear, colorless solution. Campesterol may CAS Number: 474-62-4 also be dissolved in diacylglycerol and triacylglycerol.5 Synonyms: 24α-Methyl-5-cholesten-3β-ol; 24(R)-Ergost-5-en-3β-ol References 1. Beveridge, T. H., et al., Phytosterol Content in Campesterol is a sterol found in many plant species. American Ginseng Seed Oil. J. Agric. Food It occurs in a wide variety of dietary sources, including Chem., 50(4), 744-750 (2002). plant oils,1 fruits, and spices. Campesterol has been 2. Plat, J., and Mensink, R. P., Effects of Plant widely investigated in studies of diet, dietary Sterols and Stanols on Lipid Metabolism and cholesterol, and lipid metabolism.2,3 Cardiovascular Risk. Nutr. Metab. Cardiovasc. Dis., 11(1), 31-40 (2001). By HPLC and GC analysis, the product will have an 3. Awad, A. B., and Fink, C. S., Phytosterols as apparent purity of approximately 98%. However, Anticancer Dietary Components: Evidence and analysis by 13C-NMR has shown that the naturally Mechanism of Action. J. Nutr., 130(9), 2127-2130 occuring campesterol will contain approximately 35% (2000). dihydrobrassiasterol (24β-methyl-5-cholesten-3β-ol, 4. Careri, M., et al., Liquid Chromatography-UV 24(S)-ergost-5-en-3β-ol). A technique for the Determination and Liquid Chromatography- determination of campesterol in vegetable oils using atmospheric Pressure Chemical Ionization Mass HPLC-UV and HPLC-atmospheric pressure chemical Spectrometric Characterization of Sitosterol and ionization MS has been published.4 Stigmasterol in Soybean Oil.
    [Show full text]
  • A Screening Study Investigating the Presence of Emerging Contaminants Within the Ohio River Basin
    A screening study investigating the presence of Emerging Contaminants within the Ohio River Basin The Ohio River Valley Water Sanitation Commission (ORSANCO) and United States Environmental Protection Agency Office of Research and Development National Risk Management Research Laboratory ORSANCO Page 1 of 279 A screening study investigating the presence of Emerging Contaminants within the Ohio River Basin Prepared by: Erich Emery, Manager of Research and Biological Programs John Spaeth, Aquatic Biologist The Ohio River Valley Water Sanitation Commission 5735 Kellogg Ave Cincinnati, Ohio 45230 and Marc Mills, Ph.D. Shoji Nakayama, Ph.D. Jamin Frommel U.S. Environmental Protection Agency National Risk Management Research Laboratory 26 West Martin Luther King Drive, MS 190 Cincinnati, Ohio 45268 May 25, 2010 ORSANCO Page 2 of 279 Executive Summary Background: Recent improvements in analytical detection capabilities and the availability of these methods to researchers via commercial labs have now enabled water resource managers to conduct studies such as this on broader spatial scales and on a wider range of compounds. Analytes are now being detected and quantified in the part per trillion (ng/L) range. In 2002, ORSANCO’s Research Committee identified Contaminants of Emerging Concern (CECs) as a top research priority. Research has demonstrated there are many sources of CECs to the environment, including wastewater treatment plants (WWTPs), confined animal feeding operations (CAFOs), industrial discharges, etc. It has been shown that WWTPs are not currently designed to remove these chemicals to the very low levels, nor are they required by regulatory agencies to do so. Therefore, we anticipated finding detectable levels of CECs in the Ohio River at locations below possible sources and potentially at background areas.
    [Show full text]
  • Beta-Sitosterol Synonyms 24-Ethylcholest-5-En-3Beta-Ol; Alpha-Dihydrofucosterol; 22,23- Dihydrostigmasterol; 24Beta-Ethylcholesterol; 5-Stigmasten-3Beta-Ol1 CAS No
    RISK PROFILE Beta -sitosterol C A S N o . 83- 46- 5 Date of reporting 19.10.201 2 Content of document 1. Identification of substance ..................................................................... p. 1 2. Uses and origin .............................................................................................. p. 2 3. Regulation .............................................................................................. p. 4 4. Relevant toxicity studies ..................................................................... p. 4 5. Exposure estimates and critical NOAEL/NOEL ........................................... p. 5 6. Other sources of exposure than cosmetic products .............................. p. 7 7. Assessment .............................................................................................. p. 9 8. Conclusion .............................................................................................. p. 11 9. References .............................................................................................. p. 12 10. Annexes .............................................................................................. p. 15 1. Identification of substance Chemical name (IUPAC): Stigmast-5-en-3-.beta.-ol INCI Beta-sitosterol Synonyms 24-Ethylcholest-5-en-3beta-ol; alpha-Dihydrofucosterol; 22,23- Dihydrostigmasterol; 24beta-Ethylcholesterol; 5-Stigmasten-3beta-ol1 CAS No. 83-46-5 EINECS No. 201-480-6 Molecular formula C29H50O Chemical structure 1 http://www.chemblink.com/products/83-46-5.htm (Online
    [Show full text]
  • Sitosterol/Stigmasterol Ratio Caused by the Plant Parasitic Nematode Meloidogyne Incognita
    plants Article Changes in the Plant β-Sitosterol/Stigmasterol Ratio Caused by the Plant Parasitic Nematode Meloidogyne incognita Alessandro Cabianca 1 , Laurin Müller 1 , Katharina Pawlowski 2 and Paul Dahlin 1,* 1 Agroscope, Research Division, Plant Protection, Phytopathology and Zoology in Fruit and Vegetable Production, 8820 Wädenswil, Switzerland; [email protected] (A.C.); [email protected] (L.M.) 2 Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden; [email protected] * Correspondence: [email protected] Abstract: Sterols play a key role in various physiological processes of plants. Commonly, stigmasterol, β-sitosterol and campesterol represent the main plant sterols, and cholesterol is often reported as a trace sterol. Changes in plant sterols, especially in β-sitosterol/stigmasterol levels, can be induced by different biotic and abiotic factors. Plant parasitic nematodes, such as the root-knot nematode Meloidogyne incognita, are devastating pathogens known to circumvent plant defense mechanisms. In this study, we investigated the changes in sterols of agricultural important crops, Brassica juncea (brown mustard), Cucumis sativus (cucumber), Glycine max (soybean), Solanum lycopersicum (tomato) and Zea mays (corn), 21 days post inoculation (dpi) with M. incognita. The main changes affected the β-sitosterol/stigmasterol ratio, with an increase of β-sitosterol and a decrease of stigmasterol in S. lycopersicum, G. max, C. sativus and Z. mays. Furthermore, cholesterol levels increased in tomato, cucumber and corn, while cholesterol levels often were below the detection limit in the respective uninfected plants. To better understand the changes in the β-sitosterol/stigmasterol ratio, gene Citation: Cabianca, A.; Müller, L.; expression analysis was conducted in tomato cv.
    [Show full text]
  • Capsaicinoid: Studie S on Chemical Deflow Ering For
    CAPSAICINOID: STUDIE S ON CHEMICAL DEFLOW ERING FOR ENHANCING HARVESTABL E CAPSAICINOID PRODU CTION AND MECHANISMS FOR CAPSAICINOID -SPEC IFIC METABOLISM IN PEPPER FRUIT BY JANAKIRAMAN MARUTHAV ANAN Bachelor of Science Tamilnadu Agricultural University , Ciombatore, India 1999 Master of Science Acharya N.G. Ranga Agricultural University , Hyderabad, India 2002 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY MAY 2006 CAPSAICINOID: STUDIE S ON CHEMICAL DEFLOW ERING FOR ENHANCING HARVESTAB LE CAPSAICINOID PROD UCTION AND MECHANISMS FOR CAPSAICINOID -SPEC IFIC METABOLISM IN PEPPER FRUIT Dissertation Approved: Dr. Niels Maness ________________________________________________ Dissertation Adviser Dr. James Motes ________________________________________________ Dr. Jack Dillwith ________________________________________________ Dr. Bjorn Martin ________________________________________________ A. Gordon Emslie _______________________________________________ Dean of the Graduate College ACKNOWLEDGEMENTS This thesis is the result of the cooperation, support, and guidance of many individuals. At this time, I would like to express my gratitude to those who have helped me in this accomplishment. First and foremost, I would like to thank Dr. Niels O. Maness for providing me an opportunity to work in this project a nd to pursue my Doctoral degree in his lab. I am grateful for his encouragement, kindness , understanding and his guidance. Were it not for his unwavering support and patience, I could not have become the scientist I am today. I kindly appreciate Dr. James E. Motes for his support, kindness and encouragement in completing my degree. I sincerely thank Dr. Jack W. Dillwith for his guidance, supervision, and expertise. I am eternally grateful for his patience , invaluable suggestions and help in conducting resea rch .
    [Show full text]
  • Plant Sterol-Enriched Margarines and Reduction of Plasma Total- and LDL-Cholesterol Concentrations in Normocholesterolaemic and Mildly Hypercholesterolaemic Subjects
    European Journal of Clinical Nutrition (1998) 52, 334±343 ß 1998 Stockton Press. All rights reserved 0954±3007/98 $12.00 http://www.stockton-press.co.uk/ejcn Plant sterol-enriched margarines and reduction of plasma total- and LDL-cholesterol concentrations in normocholesterolaemic and mildly hypercholesterolaemic subjects JA Weststrate and GW Meijer Unilever Nutrition Centre, Unilever Research Laboratorium, Olivier van Noortlaan 120, 3130 AT Vlaardingen, The Netherlands Objectives: To compare effects on plasma total-, LDL-, and HDL-cholesterol concentrations of margarines enriched with different vegetable oil sterols or sitostanol-ester. Design: A randomized double-blind placebo-controlled balanced incomplete Latin square design with ®ve treatments and four periods of 3.5 weeks. Margarines enriched with sterols from soybean, sheanut or ricebran oil or with sitostanol-ester were compared to a non-enriched control margarine. Sterol intake was between 1.5±3.3 g=d. Two thirds of the soybean oil sterols were esteri®ed to fatty acids. Setting: Unilever Research Laboratory, Vlaardingen, The Netherlands. Subjects: One hundred healthy non-obese normocholesterolaemic and mildly hypercholesterolaemic volunteers aged 45 Æ 12.8 y, with plasma total cholesterol levels below 8 mmol=L at entry. Main outcome measures: Plasma lipid, carotenoid and sterol concentrations, blood clinical chemistry and haematology, fatty acid composition of plasma cholesterylesters and food intake. Results: Ninety-®ve volunteers completed the study. None of the margarines induced adverse changes in blood clinical chemistry, serum total bile acids or haematology. Plasma total- and LDL-cholesterol concentrations were signi®cantly reduced by 8±13% (0.37±0.44 mmol=L) compared to control for margarines enriched in soybean oil sterol-esters or sitostanol-ester.
    [Show full text]
  • A DATABASE of PLANT STEROLS and THEIR ASSESSMENT in the DIET of the ADULT POPULATION of POLAND Anna M
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2021 doi:10.20944/preprints202105.0714.v1 Article A DATABASE OF PLANT STEROLS AND THEIR ASSESSMENT IN THE DIET OF THE ADULT POPULATION OF POLAND Anna M. Witkowska 1,†,*, Anna Waśkiewicz 2,†, Małgorzata E. Zujko 1, Iwona Mirończuk-Chodakowska 1, Alicja Cicha-Mikołajczyk 2 and Wojciech Drygas 2,3 1 Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; [email protected] (M.E.Z.); [email protected] (I.M.-Ch.) 2 Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland; [email protected] (A.W.); [email protected] (A.C.-M.); [email protected] (W.D.) 3 Department of Social and Preventive Medicine, Faculty of Health Sciences, Medical University of Lodz, Hallera 1, 90-001 Lodz, Poland * Correspondence: [email protected]; Tel.: +48-85-6865088; Fax: +48-85-6865089. † A.M.W. and A.W. contributed equally to this work. Abstract: Plant sterols are compounds with multiple biological functions, mainly cholester- ol-reducing. There are no comprehensive databases on plant sterols, which makes it difficult to es- timate their intake in the Polish population. In this study we used international food databases, supplemented by scientific data from the literature, to create a database on plant sterols in the food consumed in Poland to assess the size and sources of dietary plant sterols in the adult population of Poland. The literature search was conducted using PubMed, Web of Science, Scopus, and Google Scholar to identify possible sources of published food composition data for plant sterols.
    [Show full text]
  • Plants Are Capable of Synthesizing Animal Steroid Hormones
    molecules Review Plants are Capable of Synthesizing Animal Steroid Hormones Danuše Tarkowská Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Czech Academy of Sciences, and Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic; [email protected]; Tel.: +420-585-631-478 Received: 27 June 2019; Accepted: 15 July 2019; Published: 16 July 2019 Abstract: As a result of the findings of scientists working on the biosynthesis and metabolism of steroids in the plant and animal kingdoms over the past five decades, it has become apparent that those compounds that naturally occur in animals can also be found as natural constituents of plants and vice versa, i.e., they have essentially the same fate in the majority of living organisms. This review summarizes the current state of knowledge on the occurrence of animal steroid hormones in the plant kingdom, particularly focusing on progesterone, testosterone, androstadienedione (boldione), androstenedione, and estrogens. Keywords: natural sterols; plants; animals; steroid hormones; estrogens; progesterone; testosterone; boldenone; boldione; androstenedione 1. Introduction The plant and animal kingdoms are not two completely separate worlds coexisting on this planet, but, on the contrary, they are two worlds whose evolution has taken place simultaneously, hand in hand with each other. It is therefore more than obvious that some substances being synthesized in nature for a particular purpose can occur in both plant and animal organisms. Certain compounds that regulate growth and development in plants may also control cellular growth and differentiation processes in animals, and vice versa. An example of such compounds may be sterols, i.e., steroid alcohols.
    [Show full text]