The Mayfly Subimago Explained. the Regulation of Metamorphosis in Ephemeroptera
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Ancient Roaches Further Exemplify 'No Land Return' in Aquatic Insects
Gondwana Research 68 (2019) 22–33 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Ancient roaches further exemplify ‘no land return’ in aquatic insects Peter Vršanský a,b,c,d,1, Hemen Sendi e,⁎,1, Danil Aristov d,f,1, Günter Bechly g,PatrickMüllerh, Sieghard Ellenberger i, Dany Azar j,k, Kyoichiro Ueda l, Peter Barna c,ThierryGarciam a Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia b Slovak Academy of Sciences, Institute of Physics, Research Center for Quantum Information, Dúbravská cesta 9, Bratislava 84511, Slovakia c Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, P.O. BOX 106, 840 05 Bratislava, Slovakia d Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya 123, 117868 Moscow, Russia e Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava 84215, Slovakia f Cherepovets State University, Cherepovets 162600, Russia g Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany h Friedhofstraße 9, 66894 Käshofen, Germany i Bodelschwinghstraße 13, 34119 Kassel, Germany j State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, PR China k Lebanese University, Faculty of Science II, Fanar, Natural Sciences Department, PO Box 26110217, Fanar - Matn, Lebanon l Kitakyushu Museum, Japan m River Bigal Conservation Project, Avenida Rafael Andrade y clotario Vargas, 220450 Loreto, Orellana, Ecuador article info abstract Article history: Among insects, 236 families in 18 of 44 orders independently invaded water. We report living amphibiotic cock- Received 13 July 2018 roaches from tropical streams of UNESCO BR Sumaco, Ecuador. -
A New Pupillarial Scale Insect (Hemiptera: Coccoidea: Eriococcidae) from Angophora in Coastal New South Wales, Australia
Zootaxa 4117 (1): 085–100 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4117.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:5C240849-6842-44B0-AD9F-DFB25038B675 A new pupillarial scale insect (Hemiptera: Coccoidea: Eriococcidae) from Angophora in coastal New South Wales, Australia PENNY J. GULLAN1,3 & DOUGLAS J. WILLIAMS2 1Division of Evolution, Ecology & Genetics, Research School of Biology, The Australian National University, Acton, Canberra, A.C.T. 2601, Australia 2The Natural History Museum, Department of Life Sciences (Entomology), London SW7 5BD, UK 3Corresponding author. E-mail: [email protected] Abstract A new scale insect, Aolacoccus angophorae gen. nov. and sp. nov. (Eriococcidae), is described from the bark of Ango- phora (Myrtaceae) growing in the Sydney area of New South Wales, Australia. These insects do not produce honeydew, are not ant-tended and probably feed on cortical parenchyma. The adult female is pupillarial as it is retained within the cuticle of the penultimate (second) instar. The crawlers (mobile first-instar nymphs) emerge via a flap or operculum at the posterior end of the abdomen of the second-instar exuviae. The adult and second-instar females, second-instar male and first-instar nymph, as well as salient features of the apterous adult male, are described and illustrated. The adult female of this new taxon has some morphological similarities to females of the non-pupillarial palm scale Phoenicococcus marlatti Cockerell (Phoenicococcidae), the pupillarial palm scales (Halimococcidae) and some pupillarial genera of armoured scales (Diaspididae), but is related to other Australian Myrtaceae-feeding eriococcids. -
Aquatic Critters Aquatic Critters (Pictures Not to Scale) (Pictures Not to Scale)
Aquatic Critters Aquatic Critters (pictures not to scale) (pictures not to scale) dragonfly naiad↑ ↑ mayfly adult dragonfly adult↓ whirligig beetle larva (fairly common look ↑ water scavenger for beetle larvae) ↑ predaceous diving beetle mayfly naiad No apparent gills ↑ whirligig beetle adult beetle - short, clubbed antenna - 3 “tails” (breathes thru butt) - looks like it has 4 - thread-like antennae - surface head first - abdominal gills Lower jaw to grab prey eyes! (see above) longer than the head - swim by moving hind - surface for air with legs alternately tip of abdomen first water penny -row bklback legs (fbll(type of beetle larva together found under rocks damselfly naiad ↑ in streams - 3 leaf’-like posterior gills - lower jaw to grab prey damselfly adult↓ ←larva ↑adult backswimmer (& head) ↑ giant water bug↑ (toe dobsonfly - swims on back biter) female glues eggs water boatman↑(&head) - pointy, longer beak to back of male - swims on front -predator - rounded, smaller beak stonefly ↑naiad & adult ↑ -herbivore - 2 “tails” - thoracic gills ↑mosquito larva (wiggler) water - find in streams strider ↑mosquito pupa mosquito adult caddisfly adult ↑ & ↑midge larva (males with feather antennae) larva (bloodworm) ↑ hydra ↓ 4 small crustaceans ↓ crane fly ←larva phantom midge larva ↑ adult→ - translucent with silvery bflbuoyancy floats ↑ daphnia ↑ ostracod ↑ scud (amphipod) (water flea) ↑ copepod (seed shrimp) References: Aquatic Entomology by W. Patrick McCafferty ↑ rotifer prepared by Gwen Heistand for ACR Education midge adult ↑ Guide to Microlife by Kenneth G. Rainis and Bruce J. Russel 28 How do Aquatic Critters Get Their Air? Creeks are a lotic (flowing) systems as opposed to lentic (standing, i.e, pond) system. Look for … BREATHING IN AN AQUATIC ENVIRONMENT 1. -
Body-Enlarging Effect of Royal Jelly in a Non-Holometabolous Insect Species, Gryllus Bimaculatus
© 2016. Published by The Company of Biologists Ltd | Biology Open (2016) 5, 770-776 doi:10.1242/bio.019190 RESEARCH ARTICLE Body-enlarging effect of royal jelly in a non-holometabolous insect species, Gryllus bimaculatus Atsushi Miyashita, Hayato Kizaki, Kazuhisa Sekimizu and Chikara Kaito* ABSTRACT (Conlon and Raff, 1999; Otto, 2007). These studies have provided Honeybee royal jelly is reported to have body-enlarging effects in significant insight into the principles of size regulation of living holometabolous insects such as the honeybee, fly and silkmoth, but organisms, although recent concerns over genetically modified its effect in non-holometabolous insect species has not yet been organisms have led researchers to evaluate other types of strategies examined. The present study confirmed the body-enlarging effect in to enlarge animals for industrial purposes. silkmoths fed an artificial diet instead of mulberry leaves used in the As a non-genetic size manipulation, oral ingestion of royal jelly previous literature. Administration of honeybee royal jelly to silkmoth by larvae of the honeybee, Apis mellifera, a holometabolous from early larval stage increased the size of female pupae and hymenopteran insect, induces queen differentiation, leading to adult moths, but not larvae (at the late larval stage) or male pupae. enlarged bodies. Royal jelly contains 12-15% protein, 10-16% We further examined the body-enlarging effect of royal jelly in a sugar, 3-6% lipids (percentages are wet-weight basis), vitamins, non-holometabolous species, the two-spotted cricket Gryllus salts, and free amino acids (Buttstedt et al., 2014). Royal jelly bimaculatus, which belongs to the evolutionarily primitive group contains proteins, named major royal jelly proteins (MRJPs), which Polyneoptera. -
Life Cycle of a Dragonfly, and Will Be Broken Down Into Sections Based on the Chronological Life Stages of This Insect
The Dragonfly Life Cycle Explained A BRIEF DISCUSSION ON THE LIFE CYCLE OF THE COMMON DRAGONFLY Kimberly Malcom | Pennsylvania State University, ENGL 202C: Technical Writing | 2016 Cover Photo: Mitchell, Forrest L and Lasswell, James L., A Dazzle of Dragonflies [Online Image]. Retrieved October 31, 2016 from http://www.audubon.org/magazine/july-august-2012/chasing-dragonflies-and-damselflies Audience and Purpose This document will explain the life cycle of a dragonfly, and will be broken down into sections based on the chronological life stages of this insect. Each section will be further broken down to include a photograph of the stage being discussed, and an explanation of what each stage entails. This document was prepared for the general public, and is meant to be a basic informational description of the life process of the common dragonfly for anyone with a curiosity to learn more about these unique insects. Introduction The dragonfly is a large, colorful, predatory insect generally found in or near watery locations in both the Northern and Southern Hemispheres. There are more than 5,000 known species of dragonflies, and fossil evidence suggests that they’ve been on the earth for many years. They have long, thin, colorful bodies, six legs, large eyes, and two pairs of transparent wings that allow them to propel themselves up, down, forward, backward and side to side Fotolia_1704510_xs [Online Image]. Retrieved October 31, 2016 from http://labs.blogs.com/its_alive_in_the_lab/2009/04/why-dragonfly.html while in flight. They are proficient fliers, and tend to only catch prey and eat while flying. -
Periodical Cicadas SP 341 3/21 21-0190 Programs in Agriculture and Natural Resources, 4-H Youth Development, Family and Consumer Sciences, and Resource Development
SP 341 Periodical Cicadas Frank A. Hale, Professor Originally developed by Harry Williams, former Professor Emeritus and Jaime Yanes Jr., former Assistant Professor Department of Entomology and Plant Pathology The periodical cicada, Magicicada species, has the broods have been described by scientists and are longest developmental period of any insect in North designated by Roman numerals. There are three 13-year America. There is probably no insect that attracts as cicada broods (XIX, XXII and XXIII) and 12 17-year much attention in eastern North America as does the cicada broods (I-X, XIII, and XIV). Also, there are three periodical cicada. Their sudden springtime emergence, distinct species of 17-year cicadas (M. septendecim, filling the air with their high-pitched, shrill-sounding M. cassini, and M. septendecula) and three species of songs, excites much curiosity. 13-year cicadas (M. tredecim, M. tredecassini, and M. tredecula). Two races of the periodical cicada exist. One race has a life cycle of 13 years and is common in the southeastern In Tennessee, Brood XIX of the 13-year cicada had a United States. The other race has a life cycle of 17 years spectacular emergence in 2011 (Map 1). In 2004 and and is generally more northern in distribution. Due 2021, Brood X of the 17-year cicada primarily emerged to Tennessee’s location, both the 13-year and 17-year in East Tennessee (Map 2). Brood X has the largest cicadas occur in the state. emergence of individuals for the 17-year cicada in the United States. Brood XXIII of the 13-year cicada last Although periodical cicadas have a 13- or 17-year cycle, emerged in West Tennessee in 2015 (Map 3). -
Yellow Mayfly (Potamanthus Luteus )
SPECIES MANAGEMENT SHEET Yellow mayfly (Potamanthus luteus ) The Yellow mayfly is one of Britain’s rarest mayflies. The nymphs or larvae of this mayfly typically live in silt trapped amongst stones on the riverbed in pools and margins and grow to between 15 and 17mm. They are streamlined with seven pairs of thick feathery gills that are held outwards from their sides. The adults have three tails and large hindwings. The body is a dull yellowish-orange with a distinctive broad yellowish brown stripe along the back. The wings are yellow and the cross-veins are a dark reddish colour. Due to its rarity and decline in numbers this insect has been made a Priority Species on the UK Biodiversity Action Plan (BAP). Life cycle There is one generation of this mayfly a year which overwinters as larvae. The adult mayflies are short lived and emerge between May and late October (with peak emergence in July). They will typically emerge at dusk and usually from the surface of the water, although they may also emerge by climbing up stones or plant stems partially or entirely out of water. Distribution map This mayfly is historically a rare species with populations in the River Wye and Usk, Herefordshire. The most recent surveys show a dramatic decline in the River Wye population and have failed to find this species in the River Usk. A small population has however recently been found in the River Teme in Worcestershire. Habitat In the Herefordshire streams where this species has been found, the larvae have been found under loose stones, preferring mobile sections of shingle or a mixture of larger stones with loose shingle such as those found downstream of bridges or at the confluence of tributaries. -
Insects Carolina Mantis Mayfly
I l l i n o i s Insects Carolina mantis mayfly elephant stag beetle widow skimmer ichneumon wasp click beetle black locust borer birdwing grasshopper large milkweed bug (adults and nymphs) mantisfly walking stick lady beetle stink bug crane fly stonefly (nymph) horse fly wheel bug bot fly prairie cicada leafhopper robber fly katydid alderfly syrphid fly Order Ephemeroptera mayfly Species List Order Coleoptera black locust borer click beetle This poster was made possible by: nsects and their relatives (arthropods) make up nearly 80 percent of the known animal species. Scientists elephant stag beetle lady beetle Illinois Department of Natural Resources Order Plecoptera stonefly currently estimate that 5 to 15 million species of insects exist. In contrast, 5,000 species of mammals are Order Orthoptera birdwing grasshopper Carolina mantis Division of Education found on our planet. In Illinois, we have more than 20,000 species of insects, and many more likely katydid Illinois Natural History Survey I Order Hemiptera large milkweed bug Illinois State Museum occur, as yet undetected in our state! The scientific study of insects is known as entomology. Entomologists stink bug wheel bug Order Diptera bot fly study insects for many reasons, including their incredible number of species and their wide variety of sizes, crane fly horse fly colors, shapes, and lifestyles. The 24 species depicted on this poster were selected by Michael R. Jeffords of robber fly syrphid fly Order Homoptera leafhopper the Illinois Department of Natural Resources, Illinois Natural History Survey, to represent the variety of prairie cicada Order Phasmida walking stick insects occurring in our state. -
Aquatic Insects
Volume 33 | Issue 8 April 2020 Aquatic Insects Photo CCBY Rhonda Clements on Flickr. Inside: Aquatic Insects Constructing Caddisflies Toothed Dragon Marvelous Mayflies Nature's Red Flags Be Outside - Fishing is Fun idfg.idaho.gov Aquatic Insects Aquatic insects have some things in common with all insects. They have six legs. They have no bones but are covered by an exoskeleton, a shell similar to your fingernails. They also have three main parts to their body: head, thorax and abdomen. To be called aquatic insects, insects must spend part of their lives in water. They may live beneath the water surface or skim along the top. Some examples of aquatic insects are mosquitoes, dragonflies and caddisflies. Aquatic insects come in many shapes and sizes, and they all have some interesting ways of dealing with living in and on water. If you were an insect living underwater, how would you breathe? Insects are animals, so they need oxygen to survive. Many aquatic insects have gills, just like fish. The gills may be attached to the outside of the insect’s body or found inside the body. Some insects have tubes sticking out of their abdomens. They stick the tube above the water and breathe the same air you breathe. They may even stick the tube into plants underwater. They get oxygen straight from the plants that make it! Other aquatic insects, like diving beetles, grab bubbles of air and pull them underwater. The beetles carry the bubble in their back legs as they swim. Once they have used all the air in the bubble, they go up and grab another bubble. -