Signaling Complexes of Voltage-Gated Calcium Channels

Total Page:16

File Type:pdf, Size:1020Kb

Signaling Complexes of Voltage-Gated Calcium Channels University of Calgary PRISM: University of Calgary's Digital Repository Cumming School of Medicine Cumming School of Medicine Research & Publications 2011-09 Signaling complexes of voltage-gated calcium channels Turner, Ray W.; Anderson, Dustin M.; Zamponi, Gerald W. Taylor and Francis Turner, R. W., Anderson, D., & Zamponi, G. W. (2011). Signaling complexes of voltage-gated calcium channels. Channels. Taylor and Francis Inc. https://doi.org/10.4161/chan.5.5.16473 http://hdl.handle.net/1880/106654 unknown https://creativecommons.org/licenses/by/4.0 Downloaded from PRISM: https://prism.ucalgary.ca review REVIEW Channels 5:5, 1-9; September/October 2011; © 2011 Landes Bioscience Signaling complexes of voltage-gated calcium channels Ray W. Turner,1 Dustin Anderson1,2 and Gerald W. Zamponi2,* 1Department of Cell Biology and Anatomy; 2Department of Physiology and Pharmacology; Hotchkiss Brain Institute; University of Calgary; Calgary, AB Canada Key words: calcium channels, G proteins, potassium channels, calcium, GPCR Voltage-gated calcium channels are key mediators of contraction coupling in the heart and muscle, insulin secretion depolarization induced calcium entry into electrically and calcium dependent gene transcription.17-21 Along these lines, excitable cells. There is increasing evidence that voltage-gated different calcium channels isoforms are targeted by clinically calcium channels, like many other types of ionic channels, active drugs such as analgesics, general anesthetics, antiepileptics do not operate in isolation, but instead form complexes with 12,15,22-24 signaling molecules, G protein coupled receptors, and other and cardioactive drugs, and mutations in various calcium types of ion channels. Furthermore, there appears to be channel isoforms have been associated with conditions such as bidirectional signaling within these protein complexes, thus familial migraine, deafness, epilepsy, cardiac arrhythmias and allowing not only for efficient translation of calcium signals ataxia (reviewed in refs. 25 and 26). into cellular responses, but also for tight control of calcium Common to all types of voltage-gated calcium channels is entry per se. In this review, we will focus predominantly on a pore forming Cavα1 subunit that contains four homologous signaling complexes between G protein-coupled receptors membrane domains that are flanked by cytoplasmic N- and and high voltage activated calcium channels, and on C-termini and connected by cytoplasmic linker regions.9 While complexes of voltage-gated calcium channels and members T-type calcium channels are thought to contain only a Ca α1 of the©2011 potassium channel superfamily. Landes Bioscience.v subunit, members of the HVA calcium channel family also con- tain a cytoplasmic Cavβ subunit, as well as a larger extracellular membrane anchored Cavα2δ subunit, and both of these subunits are represented by four different genes (reviewed in refs. 27 and IntroductionDo not distribute.28). This coassembly with ancillary subunits is necessary in order to promote export of the channels from the endoplasmic reticu- Calcium ions serve as important mediators of cell signaling in lum,29 and also results in alteration of the functional properties both excitable and non-excitable tissues. Elevation in intracel- of the channels.27,30 In addition, all of the known HVA chan- lular calcium levels triggers physiological responses that include nels co-assemble with calmodulin, a calcium binding protein cardiac muscle contraction, hormone secretion, neurotransmitter that bestows calcium feedback regulation onto the channels in release, activation of calcium-dependent enzymes and calcium the form of calcium-dependent inactivation and facilitation.31-33 dependent gene transcription.1-5 In electrically excitable cells such The incorporation of a calcium signaling protein into the chan- as neurons and muscle cells, action potential evoked calcium nel complex is indicative of the notion that calcium channels do entry is primarily due to the activation of both low and high volt- not operate in isolation, but tend to form larger signaling com- age-gated calcium channels.6 Low voltage activated (LVA),7 and plexes that are not only designed to enhance coupling efficiency high voltage activated (HVA) calcium channels can be distin- between calcium entry and downstream signaling events, but also guished based on their threshold of activation, with LVA chan- provide for a means of regulating calcium channel activity per se. nels activating close to resting membrane potentials.8 In contrast, There are numerous examples of cytoplasmic protein inter- the family of HVA channels that includes subtypes such as L-, actions with different types of voltage-gated calcium channels. N-, P/Q- and R-types require larger membrane depolarizations For example, N and P/Q-type calcium channels tightly associate 9 This manuscript has been published online, prior to printing. Once the issue is complete and page numbers have been assigned, the citation will change accordingly. the issue is complete and page numbers have Once to printing. has been published online, prior This manuscript in order to open. Individual calcium channel subtypes differ in with proteins of the synaptic vesicle release machinery, such as their cellular and subcellular distributions, functional proper- syntaxin 1 and SNAP-25, thus effectively coupling calcium entry ties and pharmacological profiles.10-13 They also support distinct to fast vessel release, but also to confer feedback regulation onto physiological functions. For example, T-type calcium channels channel activity.34-38 Small GTPases such as Rem, Gem and Rem2 are involved in regulating cellular excitability,14-16 N and P/Q- associate with HVA channels to regulate channel surface expres- type channels mediate fast evoked neurotransmitter release,1 and sion (reviewed in ref. 39). A-Kinase anchoring proteins, protein L-type calcium channels mediate functions such as excitation kinase A, and phosphatase 2A associate with certain L-type chan- nel isoforms to tightly control the regulation of channel activity by *Correspondence to: Gerald W. Zamponi; Email: [email protected] phosphorylation.40-43 However, it has only emerged recently that Submitted: 07/05/11; Revised: 07/16/11; Accepted: 07/20/11 various types of calcium channels interact not only with cytoplas- DOI: mic signaling molecules, but also with other membrane proteins www.landesbioscience.com Channels 1 such as receptors and ion channels to form physical signaling three known βAR subtypes expressed in the mammalian heart complexes that either allow for more efficient regulation of cal- (β1AR, β2AR, β3AR),58 with the β1AR and β2AR subtypes cium channel activity or facilitate the specificity of calcium sig- able to activate PKA and stimulate calcium entry via L-type cal- naling.44 Here we will focus on two such examples: We will first cium channels into cardiac myocytes.59-61 It has been shown that discuss how protein interactions with G protein coupled recep- β2ARs form macromolecular signaling complexes with Cav1.2 tors enhance calcium channel modulation and trafficking. We calcium channels.62 These complexes also contain other ele- will then review how interactions between calcium channels and ments of the signaling machinery, such as G proteins and caveo- potassium channels bestow calcium regulation onto potassium lin. The functional significance of these assemblies has not yet channel function and thus modify neuronal output. been demonstrated in cardiac myocytes, nor have the molecu- lar determinants that underlie the interactions between L-type G Protein Coupled Receptor—Calcium Channel calcium channels and receptors been identified. The investiga- Complexes tion into coupling between these receptors and the channels has been hampered by the fact that it has proven to be a challenge Most types of voltage-gated calcium channels are modulated fol- to reconstitute βAR signaling to L-type channels in heterolo- lowing the activation of various types of G protein coupled receptors gous systems—a problem that has only been solved recently.40 (GPCRs) (reviewed in refs. 45 and 46). Upon receptor activation, Nonetheless, the existence of receptor-Cav1.2 channel complexes GDP bound constitutively to the Gα subunit is exchanged for suggests that they may help optimize the coupling between the GTP, resulting in a conformational change that either leads to a receptor and the channels. breakup of the Gαβγ trimer, or at the least in a conformational change within the trimer that results in the generation of two sepa- P/Q-Type Channels rate signaling entities—activated Gα and Gβγ dimers. Both Gα and Gβγ act on various effector molecules. For example, Gαs may Like N-type calcium channels, P/Q-type channels can be regu- stimulate the activity of adenylyl cyclase, leading to the produc- lated by a membrane delimited Gβγ mediated pathway in response tion of cyclic AMP and the activation of protein kinase A.47 In to activation of a number of different receptor subtypes. These the context©2011 of voltage-gated calcium channels,Landes a classic example channels Bioscience. are expressed at high levels in cerebellar Purkinje neu- of such a soluble second messenger pathway is the regulation of rons where they are regulated by activation of metabotropic glu- 63-65 L-type calcium channels by β-adrenergic receptors (βARs), which tamate receptors. Coexpression of these receptors with Cav2.1 results in protein kinase A dependent phosphorylation of the chan-
Recommended publications
  • De Novo BK Channel Variant Causes Epilepsy by Affecting Voltage Gating but Not Ca2+ Sensitivity
    European Journal of Human Genetics (2018) 26:220–229 https://doi.org/10.1038/s41431-017-0073-3 ARTICLE De novo BK channel variant causes epilepsy by affecting voltage gating but not Ca2+ sensitivity 1 2 3,4 5 6 Xia Li ● Sibylle Poschmann ● Qiuyun Chen ● Walid Fazeli ● Nelly Jouayed Oundjian ● 7 8 9 9,10 Francesca M. Snoeijen-Schouwenaars ● Oliver Fricke ● Erik-Jan Kamsteeg ● Marjolein Willemsen ● Qing Kenneth Wang1,3,4 Received: 18 August 2017 / Revised: 6 November 2017 / Accepted: 23 November 2017 / Published online: 12 January 2018 © European Society of Human Genetics 2018 Abstract Epilepsy is one of the most common neurological diseases and it causes profound morbidity and mortality. We identified the first de novo variant in KCNMA1 (c.2984 A > G (p.(N995S)))—encoding the BK channel—that causes epilepsy, but not paroxysmal dyskinesia, in two independent families. The c.2984 A > G (p.(N995S)) variant markedly increased the macroscopic potassium current by increasing both the channel open probability and channel open dwell time. The c.2984 A > G (p.(N995S)) variant did not affect the calcium sensitivity of the channel. We also identified three other variants of fi > > > 1234567890 unknown signi cance (c.1554 G T (p.(K518N)), c.1967A C (p.(E656A)), and c.3476 A G (p.(N1159S))) in three separate patients with divergent epileptic phenotypes. However, these variants did not affect the BK potassium current, and are therefore unlikely to be disease-causing. These results demonstrate that BK channel variants can cause epilepsy without paroxysmal dyskinesia. The underlying molecular mechanism can be increased activation of the BK channel by increased sensitivity to the voltage-dependent activation without affecting the sensitivity to the calcium-dependent activation.
    [Show full text]
  • Emerging Roles for Multifunctional Ion Channel Auxiliary Subunits in Cancer T ⁎ Alexander S
    Cell Calcium 80 (2019) 125–140 Contents lists available at ScienceDirect Cell Calcium journal homepage: www.elsevier.com/locate/ceca Emerging roles for multifunctional ion channel auxiliary subunits in cancer T ⁎ Alexander S. Hawortha,b, William J. Brackenburya,b, a Department of Biology, University of York, Heslington, York, YO10 5DD, UK b York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK ARTICLE INFO ABSTRACT Keywords: Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been Auxiliary subunit shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are Cancer typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Calcium channel Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further Chloride channel expanding the repertoire of cellular processes governed by ion channel complexes to processes such as trans- Potassium channel cellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it Sodium channel is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will − focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+,K+,Na+ and Cl channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregu- lated (e.g. Cavβ,Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1,Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets.
    [Show full text]
  • Expression Profiling of Ion Channel Genes Predicts Clinical Outcome in Breast Cancer
    UCSF UC San Francisco Previously Published Works Title Expression profiling of ion channel genes predicts clinical outcome in breast cancer Permalink https://escholarship.org/uc/item/1zq9j4nw Journal Molecular Cancer, 12(1) ISSN 1476-4598 Authors Ko, Jae-Hong Ko, Eun A Gu, Wanjun et al. Publication Date 2013-09-22 DOI http://dx.doi.org/10.1186/1476-4598-12-106 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Ko et al. Molecular Cancer 2013, 12:106 http://www.molecular-cancer.com/content/12/1/106 RESEARCH Open Access Expression profiling of ion channel genes predicts clinical outcome in breast cancer Jae-Hong Ko1, Eun A Ko2, Wanjun Gu3, Inja Lim1, Hyoweon Bang1* and Tong Zhou4,5* Abstract Background: Ion channels play a critical role in a wide variety of biological processes, including the development of human cancer. However, the overall impact of ion channels on tumorigenicity in breast cancer remains controversial. Methods: We conduct microarray meta-analysis on 280 ion channel genes. We identify candidate ion channels that are implicated in breast cancer based on gene expression profiling. We test the relationship between the expression of ion channel genes and p53 mutation status, ER status, and histological tumor grade in the discovery cohort. A molecular signature consisting of ion channel genes (IC30) is identified by Spearman’s rank correlation test conducted between tumor grade and gene expression. A risk scoring system is developed based on IC30. We test the prognostic power of IC30 in the discovery and seven validation cohorts by both Cox proportional hazard regression and log-rank test.
    [Show full text]
  • Thermodynamics and Electrophysiological Analysis of the Cold Receptor TRPM8
    Clues to understanding cold sensation: Thermodynamics and electrophysiological analysis of the cold receptor TRPM8 Sebastian Brauchi*†, Patricio Orio*§, and Ramon Latorre*§¶ *Centro de Estudios Cientı´ficos,Valdivia 509-9100, Chile; †Universidad Austral de Chile, Valdivia 509-9200, Chile; and §Universidad de Chile, Santiago 780-0024, Chile Contributed by Ramon Latorre, September 13, 2004 The cold and menthol receptor, TRPM8, also designated CMR1, is a thermodynamics (20) of TRPV1, one of the molecular trans- member of the transient receptor potential (TRP) family of excita- ducers of heat sensation. Large values for transitional entropy, tory ion channels. TRPM8 is a channel activated by cold tempera- enthalpy, and Q10 were found, (20) indicating large rearrange- tures, voltage, and menthol. In this study, we characterize the cold- ments in the channel structure during activation. In contrast, and voltage-induced activation of TRPM8 channel in an attempt to little is known about regulation of its counterpart, TRPM8. identify the temperature- and voltage-dependent components Here we show that the large changes in TRPM8 channel gating involved in channel activation. Under equilibrium conditions, de- induced by temperature are mainly due to modifications of the creasing temperature has two effects. (i) It shifts the normalized maximum probability of opening and to a shift along the voltage conductance vs. voltage curves toward the left, along the voltage axis of the conductance-voltage curves. Moreover, the results axis. This effect indicates that the degree of order is higher when can be fully explained by using an allosteric model in which the channel is in the open configuration. (ii) It increases the temperature has only a moderate effect on the voltage sensors maximum channel open probability, suggesting that temperature (Q10 Ϸ 3) when channels are closed.
    [Show full text]
  • The Chondrocyte Channelome: a Novel Ion Channel Candidate in the Pathogenesis of Pectus Deformities
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Summer 2017 The Chondrocyte Channelome: A Novel Ion Channel Candidate in the Pathogenesis of Pectus Deformities Anthony J. Asmar Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biology Commons, Molecular Biology Commons, and the Physiology Commons Recommended Citation Asmar, Anthony J.. "The Chondrocyte Channelome: A Novel Ion Channel Candidate in the Pathogenesis of Pectus Deformities" (2017). Doctor of Philosophy (PhD), Dissertation, Biological Sciences, Old Dominion University, DOI: 10.25777/pyha-7838 https://digitalcommons.odu.edu/biology_etds/19 This Dissertation is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. THE CHONDROCYTE CHANNELOME: A NOVEL ION CHANNEL CANDIDATE IN THE PATHOGENESIS OF PECTUS DEFORMITIES by Anthony J. Asmar B.S. Biology May 2010, Virginia Polytechnic Institute M.S. Biology May 2013, Old Dominion University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY BIOMEDICAL SCIENCES OLD DOMINION UNIVERSITY August 2017 Approved by: Christopher Osgood (Co-Director) Michael Stacey (Co-Director) Lesley Greene (Member) Andrei Pakhomov (Member) Jing He (Member) ABSTRACT THE CHONDROCYTE CHANNELOME: A NOVEL ION CHANNEL CANDIDATE IN THE PATHOGENESIS OF PECTUS DEFORMITIES Anthony J. Asmar Old Dominion University, 2017 Co-Directors: Dr. Christopher Osgood Dr. Michael Stacey Costal cartilage is a type of rod-like hyaline cartilage connecting the ribs to the sternum.
    [Show full text]
  • Co-Assembly of N-Type Ca and BK Channels Underlies Functional
    Research Article 985 Co-assembly of N-type Ca2+ and BK channels underlies functional coupling in rat brain David J. Loane*, Pedro A. Lima‡ and Neil V. Marrion§ Department of Pharmacology and MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, BS8 1TD, UK *Present address: Laboratory for the Study of CNS Injury, Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA ‡Present address: Dep. Fisiologia, Fac. Ciências Médicas, UNL, 1169-056 Lisboa, Portugal §Author for correspondence (e-mail: [email protected]) Accepted 9 January 2007 Journal of Cell Science 120, 985-995 Published by The Company of Biologists 2007 doi:10.1242/jcs.03399 Summary Activation of large conductance Ca2+-activated potassium and reproduced the interaction. Co-expression of (BK) channels hastens action potential repolarisation and CaV2.2/CaV␤3 subunits with Slo27 channels revealed rapid generates the fast afterhyperpolarisation in hippocampal functional coupling. By contrast, extremely rare examples pyramidal neurons. A rapid coupling of Ca2+ entry with of rapid functional coupling were observed with co- BK channel activation is necessary for this to occur, which expression of CaV1.2/CaV␤3 and Slo27 channels. Action might result from an identified coupling of Ca2+ entry potential repolarisation in hippocampal pyramidal neurons through N-type Ca2+ channels to BK channel activation. was slowed by the N-type channel blocker ␻-conotoxin This selective coupling was extremely rapid and resistant GVIA, but not by the L-type channel blocker isradipine. to intracellular BAPTA, suggesting that the two channel These data showed that selective functional coupling types are close.
    [Show full text]
  • Phenotypic Alteration of a Human BK (Hslo) Channel by Hsloя Subunit
    The Journal of Neuroscience, August 1, 1996, 16(15):4543–4550 Phenotypic Alteration of a Human BK (hSlo) Channel by hSlob Subunit Coexpression: Changes in Blocker Sensitivity, Activation/ Relaxation and Inactivation Kinetics, and Protein Kinase A Modulation Steven I. Dworetzky, Christopher G. Boissard, Janet T. Lum-Ragan, M. Craig McKay, Debra J. Post-Munson, Joanne T. Trojnacki, Chia-Ping Chang, and Valentin K. Gribkoff Central Nervous System Drug Discovery, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut 06492 A human homolog of the large-conductance calcium-activated mediated currents compared with hSlo currents alone. No sig- potassium (BK) channel b subunit (hSlob) was cloned, and its nificant differences in the response to charybdotoxin or the BK effects on a human BK channel (hSlo) phenotype are reported. channel opener NS1619 were observed. Modulation of BK Coexpression of hSlo and hSlob, in both oocytes and human channel activity by phosphorylation was also affected by the 21 embryonic kidney 293 cells, resulted in increased Ca sensi- presence of the hSlob subunit. Application of cAMP-dependent tivity, marked slowing of BK channel activation and relaxation, protein kinase increased POPEN of hSlo channels, but de- and a significant reduction in slow inactivation. In addition, creased POPEN of most hSlo 1 hSlob channels. Taken together, coexpression changed the pharmacology of the BK channel these altered characteristics may explain some of the wide phenotype: hSlo-mediated currents in oocytes were more sen- diversity of BK channel phenotypes observed in native tissues. sitive to the peptide toxin iberiotoxin than were hSlo 1 hSlob currents, and the potency of blockade by the alkaloid BK Key words: BK channels; coexpression; hSlo; modulation; blocker tetrandrine was much greater on hSlo 1 hSlob- channel blockers; BK phenotypes Potassium channels are the most diverse class of ion channels.
    [Show full text]
  • Zoledronic Acid Modulation of TRPV1 Channel Currents in Osteoblast
    cancers Article Zoledronic Acid Modulation of TRPV1 Channel Currents in Osteoblast Cell Line and Native Rat and Mouse Bone Marrow-Derived Osteoblasts: Cell Proliferation and Mineralization Effect Rosa Scala 1, Fatima Maqoud 1, Mariacristina Angelelli 1, Ramon Latorre 2 , Maria Grazia Perrone 3, Antonio Scilimati 3,* and Domenico Tricarico 1,* 1 Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, I-70125 Bari, Italy; [email protected] (R.S.); [email protected] (F.M.); [email protected] (M.A.) 2 Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2366103, Chile; [email protected] 3 Medicinal Chemistry Section, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, I-70125 Bari, Italy; [email protected] * Correspondence: [email protected] (A.S.); [email protected] (D.T.) Received: 21 December 2018; Accepted: 6 February 2019; Published: 11 February 2019 Abstract: Bisphosphonates (BPs) reduce bone pain and fractures by balancing the osteoblast/ osteoclast ratio. The behavior of ion channels in the presence of BPs is not known. To investigate this, the effect of zoledronic acid BP (ZOL) (3 × 10−8 to 5 × 10−4 M) treatment, on ion channels, cell proliferation, and mineralization, has been investigated on preosteoclast-like cells, RAW264.7, preosteoblast-like cells MC3T3-E1, and rat/mouse native bone marrow-derived osteoblasts. In whole-cell patch clamp on cell line- and bone marrow-derived osteoblasts, ZOL potentiated outward currents. On RAW264.7, ZOL (10−4 M)-evoked current was reduced by the Kv channel blocker tetraethylammonium hydrochloride (TEA), but not by the selective TRPV1-channel antagonist capsazepine.
    [Show full text]
  • Views the Authors Declare That They Have No Competing Interests
    Journal of Biomedical Science BioMed Central Research Open Access Menthol increases human glioblastoma intracellular Ca2+, BK channel activity and cell migration Robert Wondergem* and Jeremy W Bartley Address: Department of Physiology, James H Quillen College of Medicine, East Tennessee State University, PO Box 70,576, Johnson City, Tennessee 37614-1708, USA Email: Robert Wondergem* - [email protected]; Jeremy W Bartley - [email protected] * Corresponding author Published: 24 September 2009 Received: 13 July 2009 Accepted: 24 September 2009 Journal of Biomedical Science 2009, 16:90 doi:10.1186/1423-0127-16-90 This article is available from: http://www.jbiomedsci.com/content/16/1/90 © 2009 Wondergem and Bartley; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract This study examined the effect of menthol, an agonist for transient receptor potential melastatin 8 2+ 2+ (TRPM8) ion channels, to increase intracellular Ca concentration, [Ca ]i, in human glioblastoma cells (DBTRG cells), which resulted in activation of the large-conductance Ca2+-activated K+ membrane ion channels (BK channels). Voltage ramps applied over 300 ms from -100 to 100 mV resulted in membrane currents with marked inwardly- and outwardly-rectifying components. Paxilline (2 PM) abolished the outwardly-rectifying current. Outwardly-rectifying on-cell patch currents were increased markedly by menthol (100 PM) added to the bath. The estimated on-cell conductance of these channels was 253 pS.
    [Show full text]
  • SK3 Channel and Mitochondrial ROS Mediate NADPH Oxidase-Independent Netosis Induced by Calcium Influx
    SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx David Nobuhiro Doudaa,b,1,2, Meraj A. Khana,1, Hartmut Grasemannc,d, and Nades Palaniyara,b,d,3 aInnate Immunity Research Laboratory, Program in Physiology and Experimental Medicine, SickKids Research Institute and cDepartment of Paediatrics, Division of Respiratory Medicine, The Hospital For Sick Children, Toronto, ON, Canada M5G 1X8; and bDepartment of Laboratory Medicine and Pathobiology and dInstitute of Medical Sciences, University of Toronto, Toronto, ON, Canada M5S 1A8 Edited by Lily Yeh Jan, University of California, San Francisco, CA, and approved January 15, 2015 (received for review August 13, 2014) Neutrophils cast neutrophil extracellular traps (NETs) to defend the It has been shown that the calcium-activated potassium channel host against invading pathogens. Although effective against micro- of small conductance (SK channel), which is the major calcium- bial pathogens, a growing body of literature now suggests that NETs activated potassium channel known to be present on neutrophils have negative impacts on many inflammatory and autoimmune (8–11), mediates NOX-independent neutrophil “apoptosis” (11). diseases. Identifying mechanisms that regulate the process termed In this pathway, SK channels activate mitochondrial ROS pro- “NETosis” is important for treating these diseases. Although two ma- duction. Interestingly, neutrophils exhibit potassium current acti- jor types of NETosis have been described to date, mechanisms regu- vated by calcium influx, and potassium has been shown to be lating these forms of cell death are not clearly established. NADPH important for neutrophil-mediated killing of several microbial oxidase 2 (NOX2) generates large amounts of reactive oxygen species pathogens (8, 9, 12, 13).
    [Show full text]
  • Flow-Induced Activation of TRPV5 and TRPV6 Channels Stimulates Ca2+-Activated K+ Channel Causing Membrane Hyperpolarization
    Biochimica et Biophysica Acta 1833 (2013) 3046–3053 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamcr Flow-induced activation of TRPV5 and TRPV6 channels stimulates Ca2+-activated K+ channel causing membrane hyperpolarization Seung-Kuy Cha a,b,⁎,Ji-HeeKima, Chou-Long Huang b,⁎⁎ a Department of Physiology, Institute of Lifestyle Medicine and Nuclear Receptor Research Consortium, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea b Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA article info abstract Article history: TRPV5 and TRPV6 channels are expressed in distal renal tubules and play important roles in the transcellular Received 20 May 2013 Ca2+ reabsorption in kidney. They are regulated by multiple intracellular factors including protein kinases A Received in revised form 9 August 2013 2+ 2+ and C, membrane phospholipid PIP2, protons, and divalent ions Ca and Mg . Here, we report that fluid Accepted 26 August 2013 flow that generates shear force within the physiological range of distal tubular fluid flow activated TRPV5 and Available online 31 August 2013 TRPV6 channels expressed in HEK cells. Flow-induced activation of channel activity was reversible and did not desensitize over 2 min. Fluid flow stimulated TRPV5 and 6-mediated Ca2+ entry and increased intracellular Keywords: 2+ fi fl fl TRPV5 Ca concentration. N-glycosylation-de cient TRPV5 channel was relatively insensitive to uid ow. In cells TRPV6 coexpressing TRPV5 (or TRPV6) and Slo1-encoded maxi-K channels, fluid flow induced membrane hyperpolari- Flow-mediated Ca2+ entry zation, which could be prevented by the maxi-K blocker iberiotoxin or TRPV5 and 6 blocker La3+.Incontrast, Ca2+-activated K+ channel fluid flow did not cause membrane hyperpolarization in cells coexpressing ROMK1 and TRPV5 or 6 channel.
    [Show full text]
  • The Contribution of Calcium-Activated Potassium Channel Dysfunction to Altered Purkinje Neuron Membrane Excitability in Spinocerebellar Ataxia
    The Contribution of Calcium-Activated Potassium Channel Dysfunction to Altered Purkinje Neuron Membrane Excitability in Spinocerebellar Ataxia by David D. Bushart A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Molecular and Integrative Physiology) in The University of Michigan 2018 Doctoral Committee: Professor Geoffrey G. Murphy, Co-Chair Associate Professor Vikram G. Shakkottai, Co-Chair Professor William T. Dauer Professor W. Michael King Professor Andrew P. Lieberman Professor Malcolm J. Low David D. Bushart [email protected] ORCiD: 0000-0002-3852-127X © David D. Bushart 2018 Acknowledgements I would like to acknowledge three groups which provided me with support and motivation to complete the studies in this dissertation, and for helping me keep my research efforts in perspective. First, I would like to acknowledge my friends and family. Their emotional support, and the time they have invested in supporting my growth as both a person and a scientist, cannot be overstated. I am eternally grateful to have a network of such caring people around me. Second, I would like to acknowledge cerebellar ataxia patients for their perseverance and positive outlook in the face of devastating circumstances. My ability to interact with patients at the National Ataxia Foundation meetings, along with the positive messages that my research efforts were met with, was my greatest motivating factor throughout the final years of my dissertation studies. I encourage other researchers to seek out similar interactions, as they will make for a more invested and focused scientist. Third, I would like to acknowledge the research animals used in the studies of this dissertation.
    [Show full text]