Surface Area and Pore Size Determination 19/10/2007 A
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Capillary Condensation in Confined Media
Capillary Condensation in Confined Media Elisabeth Charlaix1 and Matteo Ciccotti2,∗ Handbook of Nanophysics - Volume 1 Edited by Klaus Sattler CRC Press (To appear in June 2010) 1Laboratoire de Physique de la Mati`ere Condens´ee et Nanostructures, UMR5586, CNRS, Universit´eClaude Bernard Lyon 1, Domaine Scientifique de la Doua, Bˆatiment L´eon Bril- louin, 43 Boulevard du 11 novembre 1918, 69622, Villeurbanne, France 2Laboratoire des Collo¨ıdes, Verres et Nanomat´eriaux, UMR 5587, CNRS, Universit´e Montpellier 2, Place Bataillon, cc26, 34095, Montpellier, France Keywords : capillary condensation, confined fluids, wetting, SFA, AFM ∗ e-mail: [email protected] phone: +33-(0)4-67143529 Abstract We review here the physics of capillary condensation of liquids in confined media, with a special regard to the application in nanotechnologies. The thermodynamics of capillary condensation and thin film adsorption are first exposed along with all the relevant notions. The focus is then shifted to the modelling of capillary forces, to their measurements techniques (including SFA, AFM and crack tips) and to their influence on AFM imaging techniques as well as on the static and dynamic friction properties of solids (including granular heaps and sliding nanocontacts). A great attention is spent in investigating the delicate role of the surface roughness and all the difficulties involved in the reduction of the probe size to nanometric dimensions. Another major consequence of capillary condensation in nanosystems is the activation of several chemical and corrosive processes that can significantly alter the surface properties, such as dissolution/redeposition of solid materials and stress-corrosion arXiv:0910.4626v1 [physics.flu-dyn] 24 Oct 2009 crack propagation. -
Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy
Int. J. Mol. Sci. 2012, 13, 12773-12856; doi:10.3390/ijms131012773 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy Fabio L. Leite 1,*, Carolina C. Bueno 1, Alessandra L. Da Róz 1, Ervino C. Ziemath 2 and Osvaldo N. Oliveira Jr. 3 1 Nanoneurobiophysics Research Group, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), P.O. Box 3031, CEP 18052-780, Sorocaba, São Paulo, Brazil; E-Mails:[email protected] (C.C.B.); [email protected] (A.L.D.R.) 2 Institute of Geosciences and Exact Sciences, São Paulo State University (UNESP), P.O. Box 178, CEP 13550-970, Rio Claro, São Paulo, Brazil; E-Mail: [email protected] 3 Institute of Physics of São Carlos, University of São Paulo (USP), P.O. Box 369, CEP 13560-970, São Carlos, São Paulo, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-015-3229-6014; Fax: +55-015-3229-5902. Received: 2 July 2012; in revised form: 7 September 2012 / Accepted: 17 September 2012 / Published: 8 October 2012 Abstract: The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. -
Overview of Main Techniques Used for Membrane Characterization
Journal of ChemicalBartosz Technology Tylkowski, and Iren Metallurgy, Tsibranska 50, 1, 2015, 3-12 OVERVIEW OF MAIN TECHNIQUES USED FOR MEMBRANE CHARACTERIZATION Bartosz Tylkowski 1,2, Iren Tsibranska 2 1Universitat Rovira i Virgili, Received 01 October 2014 Departament de Enginyeria Química, Accepted 04 December 2014 Av. Països Catalans, 26 - 43007 Tarragona, Spain E-mail: [email protected] 2Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria ABSTRACT The main force of membrane technology is the fact that it works without the addition of chemicals, with relatively low energy consumption and easy and well-arranged process conductions in a compact module design. Although a good num- ber of articles and books are available on membrane separation processes, many of which are of excellent quality within their scope, most of them present research-oriented approaches of higher levels, thus making them good references in the specific field of recent membrane processes applications. This publication is focused particularly on the main techniques used for membrane characterization with supporting review of the literature and comparative discussion. Keywords: porous membrane characterization, active pore size, pore size distribution, charaterization techniques. INTRODUCTION mainly give information on membrane morphology and structure, chemical and physical properties. The dynamic Membrane technologies have been established as techniques are of fundamental importance when inves- an effective and commercially attractive option for tigating membrane performance. Some characterisation separation and purification processes in the chemical techniques are destructive for the membrane, while the and its allied industries dealing with fuel cell [1, 2], non-destructive ones are applied also to monitor the gas separation [3], food chemistry [4], pharmaceutical membrane performance during its use. -
Studies of Nano-Structured Liquids in Confined Geometries and At
CORE Metadata, citation and similar papers at core.ac.uk Provided by Kent Academic Repository Studies of nano-structured liquids in confined geometries and at surfaces. J. Beau W. Webber∗,a,b aInstitute of Petroleum Engineering, Heriot-Watt University, Edinburgh. EH14 4AS bSchool of Physical Sciences, University of Kent, Canterbury, Kent. CT2 7NH Key words: liquids, water, ice, confined geometry, pores, NMR relaxation, neutron scattering, cryoporometry PACS: 64.60.-i, 65.60.+a, 81.07.-b, 03.75.Hh, 05.70.Fh, 64.60.Qb, 64.70.Dv, 68.03.Cd, 68.08.-p, 82.56.Na, 82.56.Ub, 61.43.Fs, 61.43.Gt, 61.46.+w, 82.60.Qr Contents 1 Introduction. 3 1.1 Samples............................... 5 1.2 Methods............................... 6 2 The thermodynamics of liquids in nano-pores. 6 2.1 The geometry term in the Gibbs-Thomson equation. 9 2.2 Second order (linearity) terms in the Gibbs-Thomson equation. 10 ∗Correspondence address: Beau Webber, Lab-Tools Ltd., Canterbury Enterprise Hub, University of Kent, Canterbury, Kent. CT2 7NJ. +44 (0) 1227 82 4675 Email address: [email protected] (J. Beau W. Webber) URL: http://www.Lab-Tools.com (J. Beau W. Webber) Preprint submitted to Progress in Nuclear Magnetic Resonance SpectroscopyAugust 23, 2009 3 The application of NMR relaxation, diffusion and cryoporom- etry techniques to the study of the properties of liquids in pores. 11 4 NMR Cryoporometry : experimental. 13 4.1 NMR Cryoporometry : experimental calibration of kGT for the meltingtransition. 16 4.2 NMR Cryoporometry : experimental effect of measuring time on the measured melting transition. -
2 Liquid Surfaces 2.1 Microscopic Picture of the Liquid Surface
2 Liquid surfaces 2.1 Microscopic picture of the liquid surface A surface is not an infinitesimal sharp boundary in the direction of its normal, but it has a certain thickness. For example, if we consider the density p normal to the'surface (Fig. 2.1), we can observe that, within a few molecules, the density decreases from that of the bulk liquid to that of its vapor [11]. k (a) (b) Interfacial bulk density region , - - , A IN, k Liquid 1 V f Gas phase \ phase >^ 0.4- 0.2- 1.0 1.5 2.0 3.0 Distance Distance (nm) Figure 2.1: Density of a liquid versus the coordinate normal to its surface: (a) is a schematic plot; (b) results from molecular dynamics simulations of a n-tridecane (Ci3H28) at 27°C adapted from Ref. [12]. Tridecane is practically not volatile. For this reason the density in the vapor phase is negligible. The density is only one criterion to define the thickness of an interface. Another possible parameter is the orientation of the molecules. For example, water molecules at the surface prefer to be oriented with their negative sides "out" towards the vapor phase. This orientation fades with increasing distance from the surface. At a distance of 1-2 nm the molecules are again randomly oriented. Which thickness do we have to use? This depends on the relevant parameter. If we are for instance, interested in the density of a water surface, a realistic thickness is in the order of 1 nm. Let us assume that a salt is dissolved in the water. -
Porométrie Liquide-Liquide, Évaporométrie Et Simulations Sur Réseau De Pores
En vue de l'obtention du DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE Délivré par : Institut National Polytechnique de Toulouse (Toulouse INP) Discipline ou spécialité : Dynamique des fluides Présentée et soutenue par : M. OTMAN MAALAL le mercredi 7 octobre 2020 Titre : Porométrie liquide-liquide, évaporométrie et simulations sur réseau de pores. Ecole doctorale : Mécanique, Energétique, Génie civil, Procédés (MEGeP) Unité de recherche : Institut de Mécanique des Fluides de Toulouse ( IMFT) Directeur(s) de Thèse : M. MARC PRAT M. DIDIER LASSEUX Rapporteurs : M. DENIS BOUYER, UNIVERSITE MONTPELLIER 2 M. PASCAL ROYER, Laboratoire de Mécanique et Génie Civil Membre(s) du jury : Mme CORINNE CABASSUD, INSA TOULOUSE, Président M. ANTHONY SZYMCZYK, UNIVERSITE RENNES 1, Membre M. DIDIER LASSEUX, CNRS AQUITAINE, Membre M. MARC PRAT, CNRS TOULOUSE, Membre Remerciements Je tiens à remercier chaleureusement toutes les personnes qui ont contribué de prés ou de loin à l’élaboration et la réussite de ce travail de thèse. Je remercie d’emblée mes directeurs de thèse Marc Prat et Didier Lasseux pour leurs conseils ainsi que leur grande disponibilité qui a permis à ce travail de se dérouleur dans les meilleures conditions. Ce travail n’aurait pas pu aboutir sans le soutien de l’Institut de la Filtration et des Techniques Séparatives (IFTS) qui s’est amplement investi dans ce projet. Dans ce sens, je tiens à remercier M. Vincent Edery, directeur général de l’IFTS, pour sa confiance et son engagement dans ce projet. Je remercie également René Peinador, ingénieur de recherche à l’IFTS, pour son encadrement et son implication dans l’aspect expérimental de la thèse.