Porométrie Liquide-Liquide, Évaporométrie Et Simulations Sur Réseau De Pores

Total Page:16

File Type:pdf, Size:1020Kb

Porométrie Liquide-Liquide, Évaporométrie Et Simulations Sur Réseau De Pores En vue de l'obtention du DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE Délivré par : Institut National Polytechnique de Toulouse (Toulouse INP) Discipline ou spécialité : Dynamique des fluides Présentée et soutenue par : M. OTMAN MAALAL le mercredi 7 octobre 2020 Titre : Porométrie liquide-liquide, évaporométrie et simulations sur réseau de pores. Ecole doctorale : Mécanique, Energétique, Génie civil, Procédés (MEGeP) Unité de recherche : Institut de Mécanique des Fluides de Toulouse ( IMFT) Directeur(s) de Thèse : M. MARC PRAT M. DIDIER LASSEUX Rapporteurs : M. DENIS BOUYER, UNIVERSITE MONTPELLIER 2 M. PASCAL ROYER, Laboratoire de Mécanique et Génie Civil Membre(s) du jury : Mme CORINNE CABASSUD, INSA TOULOUSE, Président M. ANTHONY SZYMCZYK, UNIVERSITE RENNES 1, Membre M. DIDIER LASSEUX, CNRS AQUITAINE, Membre M. MARC PRAT, CNRS TOULOUSE, Membre Remerciements Je tiens à remercier chaleureusement toutes les personnes qui ont contribué de prés ou de loin à l’élaboration et la réussite de ce travail de thèse. Je remercie d’emblée mes directeurs de thèse Marc Prat et Didier Lasseux pour leurs conseils ainsi que leur grande disponibilité qui a permis à ce travail de se dérouleur dans les meilleures conditions. Ce travail n’aurait pas pu aboutir sans le soutien de l’Institut de la Filtration et des Techniques Séparatives (IFTS) qui s’est amplement investi dans ce projet. Dans ce sens, je tiens à remercier M. Vincent Edery, directeur général de l’IFTS, pour sa confiance et son engagement dans ce projet. Je remercie également René Peinador, ingénieur de recherche à l’IFTS, pour son encadrement et son implication dans l’aspect expérimental de la thèse. J’en profite aussi pour remercier Pascal Ginisty, Nicolas Petillon, Isabelle Durand, Cecile Mutti ainsi que tout le personnel de l’IFTS. Je tiens aussi à exprimer ma profonde gratitude à Manuel Marcoux, enseignant-chercheur à L’IMFT pour son engagement dans ce travail. Je remercie également mes collègues Malick Niang et Marouane Talbi pour les discussions enrichissantes sur le sujet. Mes derniers remerciements vont à ma famille. En particulier, ma mère Nouzha, ma sœur Dounia et mon frère Mohamed pour leurs encouragements. Finalement, je dédie ce modeste travail à la mémoire de mon père Abdelahad. Résumé Les milieux nanoporeux (milieux dont les tailles de pores sont submicroniques) sont des objets de haute technologie utilisés dans les techniques de séparation ou encore dans les piles à combustible. La distribution de taille de pores (PSD) de ces milieux, en particulier quand ils sont minces, est une information cruciale pour les applications concernées. La porométrie fluide-fluide et l’évapoporométrie sont deux techniques intéressantes de mise en œuvre relativement simple visant à obtenir cette information. Les deux méthodes exploitent les propriétés de capillarité des milieux qui contrôlent la hiérarchie dans les classes de pores selon laquelle se fait l’invasion progressive du milieu lors d’un déplacement fluide-fluide immiscible (cas de la porométrie fluide-fluide) ou le séchage du milieu (cas de l’évapoporométrie). Toutefois, l’exploitation des données obtenues (seuil de pression versus débit ou masse évaporée versus humidité relative) passe par un modèle pour obtenir les données visées. Les modèles actuellement utilisées considèrent le milieu poreux comme un faisceau de tubes parallèles. Ceci convient parfaitement à certains types de membranes poreuses utilisées en filtration par exemple où la nanostructure est similaire à un arrangement de tubes parallèles. En revanche, beaucoup d’autres milieux présentent des nanostructures enchevêtrées considérablement plus complexes, rendant très critiquables ou pour le moins douteuses l’exploitation des données expérimentales selon le modèle de tubes parallèles. Dans ce contexte, l’objectif de la thèse est de développer des modèles et des simulations numériques permettant d’assoir l’exploitation des données des deux techniques de porométrie sur une base plus solide dans le cas des milieux à nanostructures complexes. L’idée est de s’appuyer sur des modélisations de type réseau de pores des processus concernés : évaporation ou déplacement fluide-fluide immiscible en milieu nanoporeux. Les méthodes réseau de pores s’appuient sur des représentations simplifiées de l’espace des pores permettant des calculs rapides (comparé à des méthodes de calcul directes) tout en prenant en compte les propriétés morphologiques de la nanostructure. Ces méthodes sont utilisées pour l’étude des écoulements diphasiques en milieu poreux. Une première étape consistera à réaliser la simulation de drainage pour la porométrie fluide-fluide et la simulation de séchage pour la technique d'évapoporométrie. Cela revient à simuler, à l'aide de la méthode des réseaux poreux, les écoulements diphasiques qui ont lieu lors de l'utilisation de chacune des deux techniques. Nous évaluerons le modèle de tubes parallèles considéré dans l'analyse par le poromètre fluide-fluide ainsi que les résultats obtenus par l'évapoporomètre. Dans un second temps, nous tenterons de proposer un algorithme d'optimisation pour obtenir la PSD en considérant le modèle de réseau de pores adaptable à différentes classes de nanostructures (milieux fibreux, assemblages de particules sphériques, etc.). Enfin, nous exploiterons l'algorithme d'optimisation pour déterminer la fraction de mouillabilité d'un milieu avec une caractéristique de mouillabilité mixte en utilisant les informations qui peuvent être recueillies à partir du poromètre fluide-fluide. 3 Abstract Nanoporous media (media with submicron pore sizes) are high-tech objects used in separation techniques or even in fuel cells. The pore size distribution (PSD) of these media, especially when they are thin, is crucial information for the applications concerned. Fluid-fluid porometry and evapoporometry are two interesting relatively simple techniques to obtain this information. The two methods exploit the properties of capillarity of the media which control the hierarchy in the classes of pores according to which the progressive invasion of the medium takes place during an immiscible fluid-fluid displacement (case of fluid- fluid porometry) or drying (case of evapoporometry). However, the use of the data obtained (pressure threshold versus flow rate or evaporated mass versus relative humidity) requires a model to obtain the targeted data. The models currently in use consider the porous medium as a bundle of parallel tubes. This is perfectly suited to certain types of porous membranes used in filtration, for example where the nanostructure is similar to an arrangement of parallel tubes. On the other hand, many other environments present considerably more complex entangled nanostructures, making it very questionable or at least doubtful the exploitation of experimental data according to the parallel tube model. In this context, the objective of the thesis is to develop models and numerical simulations allowing the exploitation of the data from the two porometry techniques on a more solid basis in the case of media with complex nanostructures. The idea is to rely on pore network type modeling of the processes involved: evaporation or immiscible fluid-fluid displacement in a nanoporous medium. Pore lattice methods are based on simplified representations of pore space allowing fast calculations (compared to direct calculation methods) while taking into account the morphological properties of the nanostructure. These methods are used for the study of two-phase flows in porous media. A first step will consist in performing the simulation of drainage for the fluid-fluid porometry and drying simulation for the evapoporometry technic. This amounts to simulating, using the pore networks method, the two-phase flows that take place during the use of each of the two techniques. We will evaluate the parallel tubes model considered in the analysis by the fluid-fluid porometer as well as the results obtained by the evapoporometer. In a second step, we will try to propose an optimization algorithm to get the PSD by considering the pore network model that can be adapted to different classes of nanostructures (fibrous media, assemblies of spherical particles, etc.). Finally, we will exploit the optimization algorithm to determine the wettability fraction of a medium with a mixed wettability characteristic using the information that can be gathered from the fluid-fluid porometer. 4 Table des matières Introduction ................................................................................................................................................... 6 Determination of the throat size distribution of a porous medium as an inverse optimization problem combining pore network modeling and genetic and hill climbing algorithms. ........................................... 16 Pore network simulations of fluid-fluid displacement porosimetry for evaluation of pore size distribution ..................................................................................................................................................................... 56 Pore network model of drying with kelvin effect........................................................................................ 90 Membrane characterization by evapoporometry and liquid-liquid displacement porosimetry: assessment from pore network simulation .................................................................................................................. 125 Identification of local contact angle distribution
Recommended publications
  • Capillary Condensation in Confined Media
    Capillary Condensation in Confined Media Elisabeth Charlaix1 and Matteo Ciccotti2,∗ Handbook of Nanophysics - Volume 1 Edited by Klaus Sattler CRC Press (To appear in June 2010) 1Laboratoire de Physique de la Mati`ere Condens´ee et Nanostructures, UMR5586, CNRS, Universit´eClaude Bernard Lyon 1, Domaine Scientifique de la Doua, Bˆatiment L´eon Bril- louin, 43 Boulevard du 11 novembre 1918, 69622, Villeurbanne, France 2Laboratoire des Collo¨ıdes, Verres et Nanomat´eriaux, UMR 5587, CNRS, Universit´e Montpellier 2, Place Bataillon, cc26, 34095, Montpellier, France Keywords : capillary condensation, confined fluids, wetting, SFA, AFM ∗ e-mail: [email protected] phone: +33-(0)4-67143529 Abstract We review here the physics of capillary condensation of liquids in confined media, with a special regard to the application in nanotechnologies. The thermodynamics of capillary condensation and thin film adsorption are first exposed along with all the relevant notions. The focus is then shifted to the modelling of capillary forces, to their measurements techniques (including SFA, AFM and crack tips) and to their influence on AFM imaging techniques as well as on the static and dynamic friction properties of solids (including granular heaps and sliding nanocontacts). A great attention is spent in investigating the delicate role of the surface roughness and all the difficulties involved in the reduction of the probe size to nanometric dimensions. Another major consequence of capillary condensation in nanosystems is the activation of several chemical and corrosive processes that can significantly alter the surface properties, such as dissolution/redeposition of solid materials and stress-corrosion arXiv:0910.4626v1 [physics.flu-dyn] 24 Oct 2009 crack propagation.
    [Show full text]
  • Surface Area and Pore Size Determination 19/10/2007 A
    Modern Methods in Heterogeneous Catalysis Research Surface area and pore size determination 19/10/2007 A. Trunschke Further reading S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Kluwer Academic Publisher, Dordrecht, 2004. R. Brdička, Grundlagen der physikalischen Chemie, Deutscher Verlag der Wissenschaften, Berlin 1982. F. Schüth, K.S.W. Sing, J. Weitkamp (Eds.), Handbook of Porous Solids, Vol. 1, Wiley-VCH, Weinheim 2002. G. Ertl, H. Knözinger, J. Weitkamp (Eds.), Handbook of Heterogeneous Catalysis, VCH, Weinheim, 1997. Outline 1. Introduction 2. Adsorption 3. Surface area measurements 4. Adsorption in micropores 5. Capillary condensation in mesopores 6. Experimental Modern Methods in Heterogeneous Catalysis Research; 19/10/2007; Surface Area and Pore Size Determination; A. Trunschke 2 Heterogeneous catalysis 1 600-800°C (NH4)2[PtCl6] → Pt with high surface area 2 H2 + O2 → 2 H2O Johann Wolfgang Döbereiner‘s lighter (1823) adsorbent surface area [m2/g] Some catalysts and support charcoal 300 - 2500 materials in heterogeneous silica gel 300 -350 catalysis γ-alumina 200 - 500 zeolites 500 - 1100 Modern Methods in Heterogeneous Catalysis Research; 19/10/2007; Surface Area and Pore Size Determination; A. Trunschke 3 Factors affecting surface area 1 1 particle of edge 1018 particles of edge lenght = 1 m lenght = 10-6 m size 2 -12 2 S=6 m Si=6x10 m 6 2 Stotal=6x10 m shape MoVTeNbOx porosity Aerosil 300 S = 300 m2/g www.aerosil com Structure of ZSM-5 Modern Methods in Heterogeneous Catalysis Research; 19/10/2007; Surface Area and Pore Size Determination; A.
    [Show full text]
  • Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy
    Int. J. Mol. Sci. 2012, 13, 12773-12856; doi:10.3390/ijms131012773 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy Fabio L. Leite 1,*, Carolina C. Bueno 1, Alessandra L. Da Róz 1, Ervino C. Ziemath 2 and Osvaldo N. Oliveira Jr. 3 1 Nanoneurobiophysics Research Group, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), P.O. Box 3031, CEP 18052-780, Sorocaba, São Paulo, Brazil; E-Mails:[email protected] (C.C.B.); [email protected] (A.L.D.R.) 2 Institute of Geosciences and Exact Sciences, São Paulo State University (UNESP), P.O. Box 178, CEP 13550-970, Rio Claro, São Paulo, Brazil; E-Mail: [email protected] 3 Institute of Physics of São Carlos, University of São Paulo (USP), P.O. Box 369, CEP 13560-970, São Carlos, São Paulo, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-015-3229-6014; Fax: +55-015-3229-5902. Received: 2 July 2012; in revised form: 7 September 2012 / Accepted: 17 September 2012 / Published: 8 October 2012 Abstract: The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion.
    [Show full text]
  • Overview of Main Techniques Used for Membrane Characterization
    Journal of ChemicalBartosz Technology Tylkowski, and Iren Metallurgy, Tsibranska 50, 1, 2015, 3-12 OVERVIEW OF MAIN TECHNIQUES USED FOR MEMBRANE CHARACTERIZATION Bartosz Tylkowski 1,2, Iren Tsibranska 2 1Universitat Rovira i Virgili, Received 01 October 2014 Departament de Enginyeria Química, Accepted 04 December 2014 Av. Països Catalans, 26 - 43007 Tarragona, Spain E-mail: [email protected] 2Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria ABSTRACT The main force of membrane technology is the fact that it works without the addition of chemicals, with relatively low energy consumption and easy and well-arranged process conductions in a compact module design. Although a good num- ber of articles and books are available on membrane separation processes, many of which are of excellent quality within their scope, most of them present research-oriented approaches of higher levels, thus making them good references in the specific field of recent membrane processes applications. This publication is focused particularly on the main techniques used for membrane characterization with supporting review of the literature and comparative discussion. Keywords: porous membrane characterization, active pore size, pore size distribution, charaterization techniques. INTRODUCTION mainly give information on membrane morphology and structure, chemical and physical properties. The dynamic Membrane technologies have been established as techniques are of fundamental importance when inves- an effective and commercially attractive option for tigating membrane performance. Some characterisation separation and purification processes in the chemical techniques are destructive for the membrane, while the and its allied industries dealing with fuel cell [1, 2], non-destructive ones are applied also to monitor the gas separation [3], food chemistry [4], pharmaceutical membrane performance during its use.
    [Show full text]
  • Studies of Nano-Structured Liquids in Confined Geometries and At
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Kent Academic Repository Studies of nano-structured liquids in confined geometries and at surfaces. J. Beau W. Webber∗,a,b aInstitute of Petroleum Engineering, Heriot-Watt University, Edinburgh. EH14 4AS bSchool of Physical Sciences, University of Kent, Canterbury, Kent. CT2 7NH Key words: liquids, water, ice, confined geometry, pores, NMR relaxation, neutron scattering, cryoporometry PACS: 64.60.-i, 65.60.+a, 81.07.-b, 03.75.Hh, 05.70.Fh, 64.60.Qb, 64.70.Dv, 68.03.Cd, 68.08.-p, 82.56.Na, 82.56.Ub, 61.43.Fs, 61.43.Gt, 61.46.+w, 82.60.Qr Contents 1 Introduction. 3 1.1 Samples............................... 5 1.2 Methods............................... 6 2 The thermodynamics of liquids in nano-pores. 6 2.1 The geometry term in the Gibbs-Thomson equation. 9 2.2 Second order (linearity) terms in the Gibbs-Thomson equation. 10 ∗Correspondence address: Beau Webber, Lab-Tools Ltd., Canterbury Enterprise Hub, University of Kent, Canterbury, Kent. CT2 7NJ. +44 (0) 1227 82 4675 Email address: [email protected] (J. Beau W. Webber) URL: http://www.Lab-Tools.com (J. Beau W. Webber) Preprint submitted to Progress in Nuclear Magnetic Resonance SpectroscopyAugust 23, 2009 3 The application of NMR relaxation, diffusion and cryoporom- etry techniques to the study of the properties of liquids in pores. 11 4 NMR Cryoporometry : experimental. 13 4.1 NMR Cryoporometry : experimental calibration of kGT for the meltingtransition. 16 4.2 NMR Cryoporometry : experimental effect of measuring time on the measured melting transition.
    [Show full text]
  • 2 Liquid Surfaces 2.1 Microscopic Picture of the Liquid Surface
    2 Liquid surfaces 2.1 Microscopic picture of the liquid surface A surface is not an infinitesimal sharp boundary in the direction of its normal, but it has a certain thickness. For example, if we consider the density p normal to the'surface (Fig. 2.1), we can observe that, within a few molecules, the density decreases from that of the bulk liquid to that of its vapor [11]. k (a) (b) Interfacial bulk density region , - - , A IN, k Liquid 1 V f Gas phase \ phase >^ 0.4- 0.2- 1.0 1.5 2.0 3.0 Distance Distance (nm) Figure 2.1: Density of a liquid versus the coordinate normal to its surface: (a) is a schematic plot; (b) results from molecular dynamics simulations of a n-tridecane (Ci3H28) at 27°C adapted from Ref. [12]. Tridecane is practically not volatile. For this reason the density in the vapor phase is negligible. The density is only one criterion to define the thickness of an interface. Another possible parameter is the orientation of the molecules. For example, water molecules at the surface prefer to be oriented with their negative sides "out" towards the vapor phase. This orientation fades with increasing distance from the surface. At a distance of 1-2 nm the molecules are again randomly oriented. Which thickness do we have to use? This depends on the relevant parameter. If we are for instance, interested in the density of a water surface, a realistic thickness is in the order of 1 nm. Let us assume that a salt is dissolved in the water.
    [Show full text]