Amyloid Clearance Defect in Apoe4 Astrocytes Is Reversed by Epigenetic Correction of Endosomal Ph

Total Page:16

File Type:pdf, Size:1020Kb

Amyloid Clearance Defect in Apoe4 Astrocytes Is Reversed by Epigenetic Correction of Endosomal Ph Amyloid clearance defect in ApoE4 astrocytes is reversed by epigenetic correction of endosomal pH Hari Prasada and Rajini Raoa,1 aDepartment of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 Edited by Reinhard Jahn, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany, and approved June 6, 2018 (received for review January 28, 2018) Endosomes have emerged as a central hub and pathogenic driver ability (7–9). Patients who have CS also show striking age- of Alzheimer’s disease (AD). The earliest brain cytopathology in dependent neurodegeneration, with prominent glial pathology neurodegeneration, occurring decades before amyloid plaques and phosphorylated tau deposits (7). Female carriers have and cognitive decline, is an expansion in the size and number of learning difficulties and behavioral issues, and some present with endosomal compartments. The strongest genetic risk factor for low Mini-Mental State Examination scores suggestive of early sporadic AD is the e4 allele of Apolipoprotein E (ApoE4). Previous cognitive decline (10). Interestingly, NHE6 was among the most studies have shown that ApoE4 potentiates presymptomatic endo- highly down-regulated genes (up to sixfold) in the elderly (70 y) somal dysfunction and defective endocytic clearance of amyloid brain, compared with the adult (40 y) brain (11). These obser- beta (Aβ), although how these two pathways are linked at a cel- vations led us to consider a broader role for NHE6 in neuro- lular and mechanistic level has been unclear. Here, we show that degenerative disorders, including Alzheimer’s disease (AD), a aberrant endosomal acidification in ApoE4 astrocytes traps the major cause of dementia in the elderly. Consistent with this hy- low-density lipoprotein receptor-related protein (LRP1) within in- pothesis, a coexpression analysis of quantitative trait loci in AD tracellular compartments, leading to loss of surface expression and brains revealed NHE6 as a top hub transcript, with 202 network Aβ clearance. Pathological endosome acidification is caused by + + connections and a plethora of potential downstream effects (12). A e4 risk allele-selective down-regulation of the Na /H exchanger knowledge-based approach for predicting gene–disease associa- isoform NHE6, which functions as a critical leak pathway for endo- tions also identified a link between NHE6 and early-stage AD (13). PHYSIOLOGY KO somal protons. In vivo, the NHE6 knockout (NHE6 ) mouse model Stronger evidence emerged from a recent analysis of the meta- showed elevated Aβ in the brain, consistent with a causal effect. stable aggregation-prone proteome in AD brains that identified Increased nuclear translocation of histone deacetylase 4 (HDAC4) NHE6 as a key component of the proteostasis machinery associ- in ApoE4 astrocytes, compared with the nonpathogenic ApoE3 ated with amyloid plaques and neurofibrillary tangles containing allele, suggested a mechanistic basis for transcriptional down- amyloid beta (Aβ) peptide and tau protein, respectively (14). regulation of NHE6. HDAC inhibitors that restored NHE6 expression Petsko and coworkers (15) recently proposed that endosomal normalized ApoE4-specific defects in endosomal pH, LRP1 trafficking, “traffic jams” are the unifying mediators of downstream pathology and amyloid clearance. Thus, NHE6 is a downstream effector of in AD and interventions designed to “unjam” the endosome have ApoE4 and emerges as a promising therapeutic target in AD. These high therapeutic promise. Endosomal aberrations, evidenced by observations have prognostic implications for patients who have enlarged and more numerous endosomes, are the earliest de- Christianson syndrome with loss of function mutations in NHE6 tectable brain cytopathology, emerging several decades before and exhibit prominent glial pathology and progressive hallmarks cognitive dysfunction is apparent in a subset of neurodegenerative of neurodegeneration. disorders, including AD, Niemann–Pick type C, and Down syn- drome (16–19). Genes associated with endosomal trafficking have trichostatin A | amyloid beta | ApoE4 | Na+/H+ exchanger | histone deacetylase Significance he endosome is a central hub for incoming and outgoing traffic Alzheimer’s disease is the most common cause of dementia in and a key recycling/degradation sorting station. Transit through T the elderly. Most cases occur sporadically, with 40–65% of pa- the endolysosomal system is accompanied by an increasingly acidic tients carrying at least one copy of the E4 allele of Apolipopro- pH gradient that controls receptor–ligand uncoupling, vesicle tein E. Because no drug exists that can halt disease progress, budding, exosome formation, membrane turnover, enzyme activa- there is strong interest in understanding the presymptomatic tion, nutrient uptake, and cellular signaling (1). As a defining role of endosomes. We show that excessive endosomal acidifi- feature of compartmental identity and function, the pH of the cation in ApoE4 astrocytes is caused by downregulation of the endolysosomal lumen is precisely set by a balance between proton + + + + Na /H exchanger NHE6 and results in defective clearance of pump and leak pathways (2). The discovery of endosomal Na /H amyloid beta (Aβ) peptide by intracellular sequestration of the exchangers (eNHEs) first in yeast and soon after in plants and LRP1 receptor. Epigenetic modifiers restore NHE6 expression to metazoans, including mammals, established their evolutionarily alkalinize endosomal pH, increase surface expression of LRP1, conserved role as a leak pathway for protons in compartmental pH β + + and correct A clearance in astrocytes. Thus, endosomal pH homeostasis (2–4). Na /H exchangers are estimated to have ex- emerges as a target for the correction of amyloid disorders. ceptionally high transport rates of ∼1,500 ions per second (5), so that even small perturbations in expression or activity result in Author contributions: H.P. and R.R. designed research; H.P. performed research; H.P. and dramatic changes in the ionic milieu within the limited confines of R.R. analyzed data; and H.P. and R.R. wrote the paper. the endosomal lumen. The authors declare no conflict of interest. As a testament to the central role of the endosome at the This article is a PNAS Direct Submission. crossroads of cellular traffic, mutations in eNHEs have been Published under the PNAS license. linked to a host of neurodevelopmental and neurodegenerative 1To whom correspondence should be addressed. Email: [email protected]. + + disorders (2, 6). Loss-of-function mutations in the Na /H ex- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. changer NHE6 (SLC9A6) cause Christianson syndrome (CS), an 1073/pnas.1801612115/-/DCSupplemental. X-linked disorder characterized by autism and intellectual dis- www.pnas.org/cgi/doi/10.1073/pnas.1801612115 PNAS Latest Articles | 1of10 Downloaded by guest on October 1, 2021 also been implicated as major risk factors in AD (20). Indeed, the Appendix, Fig. S3 A and B). Meta-analysis of nine independent strongest genetic risk factor in sporadic AD is the e4 allele of gene expression studies from anatomically and functionally dis- Apolipoprotein E (ApoE4), which potentiates both presymptom- tinct brain regions, comprising a total of 103 AD and 87 control atic endosomopathy and defective clearance of Aβ (21–25), al- postmortem brains, also showed no significant changes in LRP1 though how these two pathways are linked at a cellular level has gene expression in AD (SI Appendix, Fig. S3 C and D). Consis- been unclear. tent with these findings, we observed no differences in LRP1 Here, we show that a pathological acidification of endosomal pH transcript (SI Appendix, Fig. S3E) and total LRP1 protein ex- in humanized mouse ApoE4 astrocytes is caused by the selective pression between ApoE3 and ApoE4 astrocytes (SI Appendix, down-regulation of NHE6. This leads to endosomal sequestration Fig. S3 F and G). and cell surface loss of the Aβ receptor, low-density lipoprotein LRP1 undergoes constitutive endocytosis from the membrane receptor-related protein (LRP1). Increased nuclear translocation and recycling back to the cell surface (37). Therefore, we con- of the histone deacetylase 4 (HDAC4) in ApoE4 astrocytes can be sidered the possibility that alterations in LRP1 receptor recycling abrogated by HDAC inhibitors that restore NHE6 expression, could result in differences in plasma membrane expression. ApoE reroute LRP1 to the cell surface, and effectively restore defective isotype-specific surface expression of LRP1 was evaluated using amyloid clearance to nonpathological ApoE3 levels. Consistent four independent approaches (Fig. 2A). First, surface biotinylation with a proposed role in amyloid pathology, we found that in vivo revealed that plasma membrane expression of LRP1 receptor in Aβ levels were significantly higher in the brains of NHE6 knockout ApoE4 astrocytes was lower by ∼50% (Fig. 2B). Second, an an- (NHE6KO) mice. Our findings could have prognostic implications tibody directed against an external epitope of LRP1 to quantify for patients with CS and suggest therapeutic strategies for the surface expression in live cells by flow cytometry analysis showed a treatmentofamyloiddisorders(7,26). reduction of LRP1-positive cells by ∼55% in ApoE4 astrocytes (Fig. 2C)andby∼51% in patient-derived ApoE4/4 fibroblasts (SI Results Appendix,Fig.S2D). Third, this was confirmed by confocal mi- ApoE4 Astrocytes Have Cargo-Specific Defects
Recommended publications
  • Reframing Psychiatry for Precision Medicine
    Reframing Psychiatry for Precision Medicine Elizabeth B Torres 1,2,3* 1 Rutgers University Department of Psychology; [email protected] 2 Rutgers University Center for Cognitive Science (RUCCS) 3 Rutgers University Computer Science, Center for Biomedicine Imaging and Modelling (CBIM) * Correspondence: [email protected]; Tel.: (011) +858-445-8909 (E.B.T) Supplementary Material Sample Psychological criteria that sidelines sensory motor issues in autism: The ADOS-2 manual [1, 2], under the “Guidelines for Selecting a Module” section states (emphasis added): “Note that the ADOS-2 was developed for and standardized using populations of children and adults without significant sensory and motor impairments. Standardized use of any ADOS-2 module presumes that the individual can walk independently and is free of visual or hearing impairments that could potentially interfere with use of the materials or participation in specific tasks.” Sample Psychiatric criteria from the DSM-5 [3] that does not include sensory-motor issues: A. Persistent deficits in social communication and social interaction across multiple contexts, as manifested by the following, currently or by history (examples are illustrative, not exhaustive, see text): 1. Deficits in social-emotional reciprocity, ranging, for example, from abnormal social approach and failure of normal back-and-forth conversation; to reduced sharing of interests, emotions, or affect; to failure to initiate or respond to social interactions. 2. Deficits in nonverbal communicative behaviors used for social interaction, ranging, for example, from poorly integrated verbal and nonverbal communication; to abnormalities in eye contact and body language or deficits in understanding and use of gestures; to a total lack of facial expressions and nonverbal communication.
    [Show full text]
  • Sensory Deficits in a Mouse Model of Christianson Syndrome Tarheen
    Sensory Deficits in a Mouse Model of Christianson Syndrome Tarheen Fatima Department of Physiology McGill University, Montreal April 2019 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Science. © Tarheen Fatima 2019 Abstract Christianson Syndrome (CS) is a recently characterized X-linked neurodevelopmental disorder caused by loss-of-function mutations in the gene slc9a6, encoding the endosomal Na+/H+ Exchanger 6 (NHE6). The disorder is associated with developmental delay, intellectual disability, loss of motor coordination, mutism, ataxia, epilepsy, as well as autistic features. In addition to these symptoms, CS patients exhibit elevated pain thresholds to noxious stimuli as well as discomfort at normally innocuous stimuli. The underlying causes of these sensory deficits are yet to be determined. Hence, this study aims at understanding how loss-of-function of NHE6 affects transmission and processing of pain. To this end, we examined the expression of NHE6 in peripheral and central neurons implicated in sensation and interpretation of pain. Additionally, we characterized the nociceptive behaviour of NHE6 knockout (KO) mice using a battery of behaviour tests. Our immunohistochemical experiments demonstrate that NHE6 is highly expressed in nociceptive, small-diameter dorsal root ganglia (DRG) neurons. Moreover, mice lacking NHE6 display decreased responses to noxious mechanical, thermal and chemical stimuli but are more responsive to noxious cold than wild-type littermates. Interestingly, immunohistochemical characterization of DRG tissue from aged NHE6 null mice indicates a decrease in some neuronal subsets suggesting cell death. Finally, using light brush-induced Fos activation in the dorsal horn, we found that the spinal processing of innocuous stimuli is not different between wildtype and NHE6 knockout mice.
    [Show full text]
  • What Is Christianson Syndrome? by Dr
    What is Christianson Syndrome? By Dr. Eric Morrow Christianson syndrome is a genetic disorder that affects brain development. It is an “X-linked” disorder (see “Why is CS found only in boys?” section for a description of what X-linked means). Symptoms of CS usually appear in infancy and include epilepsy and intellectual disability. Although the exact prevalence of Christianson syndrome is unknown, a genetic study by Tarpey and colleagues identified Christianson Syndrome in 2 of about 200 families (about 1% of families with apparent X-linked developmental disabilities). This was among the most common genetic change in X-linked forms of intellectual disability. What are the causes of Christianson syndrome? Christianson syndrome is caused by changes in the gene, SLC9A6. Genes are important because they code for proteins, which carry out essential processes in the cells of our bodies. The SLC9A6 gene codes for the NHE6 protein. NHE6 is part of a family of proteins that are sodium (Na+)/hydrogen (H+) exchangers. The NHE6 protein is found in endosomes, which take up molecules to be destroyed or recycled for other processes in our body. NHE6 makes sure that these endosomes have the correct intra-endosomal acid level by letting in Na into the endosome and getting rid of hydrogen, which is the acid molecule. The acid level regulates protein turnover. My analogy our stomach acid, the acidity in endosomes helps degrade cellular proteins. These genetic changes in SLC9A6 cause the NHE6 protein to not work properly. You may have heard words such as “loss-of-function”, “truncation” or “frame- shift”, which describe how the NHE6 protein cannot be made in the cells to carry out these processes in the endosome.
    [Show full text]
  • Luca Bartolini, MD 1 8/9/2021 CURRICULUM VITAE LUCA
    8/9/2021 CURRICULUM VITAE LUCA BARTOLINI, MD Director, Pediatric Epilepsy Program Hasbro Children’s Hospital Assistant Professor of Pediatrics Assistant Professor of Neurology Assistant Professor of Neurosurgery The Warren Alpert Medical School of Brown University Email: [email protected] EDUCATION: Undergraduate Liceo Classico “Tito Livio”, Padova, Italy Medical School University of Padova School of Medicine, Padova, Italy 09/2000 – 07/2006 Doctor of Medicine (M.D.) POSTGRADUATE TRAINING: Residency Obstetrics and Gynecology University of Parma, Italy 07/2007 – 01/2008 Pediatrics (Pediatric Neurology Track) University of Padova, Italy 04/2008 – 10/2013 Pediatrics Children’s National Medical Center / The George Washington University, Washington DC 07/2012 – 06/2013 Child Neurology Children’s National Medical Center / The George Washington University, Washington DC 07/2013 – 06/2016 Luca Bartolini, MD 1 Fellowship Neuroscience Research Children’s National Medical Center / The George Washington University, Washington DC National Institutes of Health, Bethesda, MD 07/2016 – 06/2017 Epilepsy National Institutes of Health, Bethesda, MD 07/2017 – 06/2018 Clinical Neurophysiology National Institutes of Health, Bethesda, MD 07/2018 – 06/2019 POSTGRADUATE HONORS AND AWARDS: Research Career Symposium Scholarship American Academy of Neurology 02/2015 Pediatric Epilepsy Fellow Pipeline Travel Scholarship Epilepsy Foundation of America 12/2015 Sentinel of Science Award (Top 10% of Researchers contributing to the peer-review of the field of Medicine)
    [Show full text]
  • Research Resources: Brown University
    7/31/2019 This resource listing is intended as a source of information that can be selectively cut, pasted and edited into Facilities and Other Resources sections of grant submissions. BROWN ENVIRONMENT AND RESOURCES (QUICK SECTION LINKS) ACADEMIC INSTITUTIONS ACADEMIC HEALTH CENTERS ACADEMIC SCHOOLS, COLLEGES, DEPARTMENTS, CENTERS, INSTITUTES AND PROGRAMS CLINICAL RESEARCH SUPPORT COLLABORATING INSTITUTIONS COMMUNITY ENGAGEMENT ORGANIZATIONS COMPUTING AND INFORMATION SERVICES CORE AND SHARED RESEARCH FACILITIES DIVERSITY PROGRAMS EDUCATION AND MENTORING RESOURCES EDUCATION PROGRAMS EDUCATION TECHNOLOGY RESOURCES LIBRARY RESOURCES MULTISPECIALTY PRACTICE GROUPS RESEARCH ADMINISTRATION RESEARCH BUILDINGS RHODE ISLAND & RESEARCH ENVIRONMENT RHODE ISLAND STATEWIDE COLLABORATIVE PROGRAMS BROWN ENVIRONMENT AND RESOURCES – DETAILED TABLE OF CONTENTS WITH LINKS ACADEMIC INSTITUTIONS Brown University – Long Brown University - Short University of Rhode Island (URI) ACADEMIC HEALTH CENTERS Lifespan Health System Care New England (CNE) Health System Providence VA Medical Center (PVAMC) ACADEMIC SCHOOLS, COLLEGES, DEPARTMENTS, CENTERS, INSTITUTES AND PROGRAMS Center - Advance-CTR: Comprehensive Center - Advance-CTR: Comprehensive - Alternative Center - Advance-CTR: Summary Center - Advance Predictive Biology Center - Alcohol and Addiction Studies (CAAS) Center - Biology of Aging Center - Brown Center for Biomedical Informatics (BCBI) Center - Brown Center for the Study of Children at Risk Center - Center for Biomedical Engineering (CBME) Center -
    [Show full text]
  • A Potential Gain-Of-Function Variant of SLC9A6 Leads to Endosomal T Alkalinization and Neuronal Atrophy Associated with Christianson Syndrome Alina Iliea, Andy Y.L
    Neurobiology of Disease 121 (2019) 187–204 Contents lists available at ScienceDirect Neurobiology of Disease journal homepage: www.elsevier.com/locate/ynbdi A potential gain-of-function variant of SLC9A6 leads to endosomal T alkalinization and neuronal atrophy associated with Christianson Syndrome Alina Iliea, Andy Y.L. Gaob, Annie Bouchera, Jaeok Parkc, Albert M. Berghuisc, ⁎ Mariëtte J.V. Hofferd, Yvonne Hilhorst-Hofsteed, R. Anne McKinneyb, John Orlowskia, a Department of Physiology, McGill University, Montreal, Canada b Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada c Department of Biochemistry, McGill University, Montreal, Canada d Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands ARTICLE INFO ABSTRACT Keywords: Loss-of-function mutations in the recycling endosomal (Na+,K+)/H+ exchanger gene SLC9A6/NHE6 result in Christianson Syndrome overacidification and dysfunction of endosomal-lysosomal compartments, and cause a neurodevelopmental and X-linked intellectual disability degenerative form of X-linked intellectual disability called Christianson Syndrome (CS). However, knowledge of Alkali cation/proton exchangers –SLC9A6/ the disease heterogeneity of CS is limited. Here, we describe the clinical features and underlying molecular and NHE6 cellular mechanisms associated with a CS patient carrying a de novo missense variant (p.Gly218Arg; G218R) of a Endosomal pH homeostasis conserved residue in its ion translocation domain that results in a potential gain-of-function. The patient Membrane trafficking Neurodegeneration manifested several core symptoms typical of CS, including pronounced cognitive impairment, mutism, epilepsy, ataxia and microcephaly; however, deterioration of motor function often observed after the first decade of life in CS children with total loss of SLC9A6/NHE6 function was not evident.
    [Show full text]
  • EURORDIS Member Associations - February 2018
    EURORDIS Member Associations - February 2018 Country Name Website Membership Albania Shoqata e Semundjeve te Rralla - Rare Disease Association www.rda-al.com Associate Member Association ELAMANI pour venir en aide aux malades Algeria Associate Member souffrant de l'anémie héréditaire FUNDACION GEISER - GRUPO DE ENLACE, Argentina www.fundaciongeiser.org Associate Member INVESTIGACION Y SOPORTE ENFERMEDADES RARAS Armenia Doctors and Children Health Care Associate Member Armenia Neurohereditary Diseases Charity Association Associate Member Australia Cystic Fibrosis Australia www.cysticfibrosis.org.au Associate Member Australia Genetic Alliance Australia www.geneticalliance.org.au Associate Member Australia Rare Voices Australia www.rarevoices.org.au Associate Member Austria Angelman Verein Österreich www.angelman.at Full Member Austria Debra International www.debra-international.org Full Member Austria Hand in Hand gegen Tay-Sachs und Sandhoff www.tay-sachs.net Associate Member Austria ICA Österreich www.ica-austria.at Full Member NF Kinder – Verein zur Förderung der Austria www.nfkinder.at Associate Member Neurofibromatoseforschung Österreich Austria Pro Rare Austria, Allianz für seltenen Erkrankungen www.prorare-austria.org Associate Member Austria Pulmonary Hypertension Association Europe www.phaeurope.org Associate Member Selbsthilfegruppe Lungenhochdruck - Austrian Ph Patient Austria www.lungenhochdruck.at Full Member Group Austria Usher Deafblind Forum Austria www.usher-taubblind.at Associate Member Belarussian Organization of patients
    [Show full text]
  • Mutations Responsible for Lipodystrophy with Severe Hypertension Activate the Cellular Renin-Angiotensin System
    Liste des publications Auclair M, Vigouroux C, Boccara F, Capel E, Vigeral C, Guerci B, et al. Peroxisome Proliferator-Activated Receptor-? Mutations Responsible for Lipodystrophy With Severe Hypertension Activate the Cellular Renin-Angiotensin System. Arterioscler Thromb Vasc Biol 2013. Svrcek M, Fontugne J, Duval A, Fléjou JF. Inflammatory Bowel Disease-associated Colorectal Cancers and Microsatellite Instability: An Original Relationship. Am J Surg Pathol 2013;37:460-2. Beydon N, Larroquet M, Coulomb A, Jouannic JM, Ducou le Pointe H, Clément A, et al. Comparison between US and MRI in the prenatal assessment of lung malformations. Pediatr Radiol 2013. Brioude F, Bouligand J, Francou B, Fagart J, Roussel R, Viengchareun S, et al. Two Families with Normosmic Congenital Hypogonadotropic Hypogonadism and Biallelic Mutations in KISS1R (KISS1 Receptor): Clinical Evaluation and Molecular Characterization of a Novel Mutation. PLoS One 2013;8:e53896. Watson JA, Bryan K, Williams R, Popov S, Vujanic G, Coulomb A, et al. miRNA profiles as a predictor of chemoresponsiveness in Wilms' tumor blastema. PLoS One 2013;8:e53417. Svrcek M, El-Murr N, Wanherdrick K, Dumont S, Beaugerie L, Cosnes J, et al. Overexpression of microRNAs-155 and 21 targeting mismatch repair proteins in inflammatory bowel diseases. Carcinogenesis 2013. Eckert C, Burghoffer B, Lalande V, Barbut F. Evaluation of the Chromogenic Agar chromID C. difficile. J Clin Microbiol 2013;51:1002-4. Menacer S, Claessens YE, Meune C, Elfassi Y, Wakim C, Gauthier L, et al. Reference range values of troponin measured by sensitive assays in elderly patients without any cardiac signs/symptoms. Clin Chim Acta 2013;417:45-7.
    [Show full text]
  • View the 2014 C.A.R.E.S. Booklet
    Career Academic and Research Experiences for Students 2014 Hopkins C.A.R.E.S Summer Program Symposium: Celebrating 20 Years of the Summer Internship Program July 30, 2014 Armstrong Medical Education Building 1:00-4:30 p.m. Schedule 1:00- 1:50p.m. Welcome Keynote Speakers: Roger H. Reeves, PhD Rajini Rao, PhD Recognition of 20 years of the Summer Internship Program AMEB, 1st Floor Auditorium 2:00- 2:55p.m. Poster Session 1 AMEB, 2nd Floor Lobby SSSP, MERIT, Odd Numbers 2:00- 3:55p.m. Oral Presentations AMEB, 1st Floor Auditoriums 3:00-3:55p.m. Poster Session 2 AMEB, 2nd Floor P-STAR, SURE, Even Numbers 4:00- 4:30p.m. Closing: Roy Ziegelstein, M.D., Vice Dean for Education Outstanding Students Awards AMEB, 1st Floor Auditorium Presentation of Certificates AMEB, 1st Floor Lobby Keynote Speakers Roger H. Reeves, PhD Dr. Roger Reeves is a professor of physiology at the Johns Hopkins University School of Medicine. Dr. Reeves is also on faculty at the McKusick-Nathans Institute for Genetic Medicine. Dr. Reeves received his B.S. from Bowling Green State University in 1975 and his Ph.D. from the University of Maryland in 1983. His postdoctoral work took place at Johns Hopkins University and he joined the faculty in 1983. He has studied various aspects of Down syndrome for the last 25 years. He is currently the co-Director of the Down Syndrome Cognition Project, whose goal is to develop precise, sensitive and quantitative tests for cognitive problems in DS, and to correlate the overall impact with genetic factors that may contribute to a better or worse outcome.
    [Show full text]
  • Christianson Syndrome Protein NHE6 Modulates Trkb Endosomal Signaling Required for Neuronal Circuit Development
    Neuron Article Christianson Syndrome Protein NHE6 Modulates TrkB Endosomal Signaling Required for Neuronal Circuit Development Qing Ouyang,1,4 Sofia B. Lizarraga,1,4 Michael Schmidt,1 Unikora Yang,1 Jingyi Gong,1 Debra Ellisor,1 Julie A. Kauer,2 and Eric M. Morrow1,3,* 1Departments of Molecular Biology, Cell Biology and Biochemistry and Institute for Brain Science, Brown University, Laboratory for Molecular Medicine, 70 Ship Street, Providence, RI 02903, USA 2Departments of Molecular Pharmacology, Physiology and Biotechnology, and Neuroscience, Brown University, Providence, RI 02912, USA 3Developmental Disorders Genetics Research Program, Emma Pendleton Bradley Hospital and Department of Psychiatry and Human Behavior, Brown University Medical School, 1011 Veteran Memorial Parkway, East Providence, RI 02915, USA 4These authors contributed equally to this work *Correspondence: [email protected] http://dx.doi.org/10.1016/j.neuron.2013.07.043 SUMMARY (Gilfillan et al., 2008). One of the pedigrees determined to have an NHE6 mutation by Gilfillan et al. was a large South African Neuronal arborization is regulated by cell-autono- pedigree previously reported by Christianson et al. (1999). mous and nonautonomous mechanisms including Christianson syndrome (CS) is now the commonly used term endosomal signaling via BDNF/TrkB. The endosomal for the condition associated with NHE6 mutations. In addition Na+/H+ exchanger 6 (NHE6) is mutated in a new to the symptoms described above, CS may also involve cranio- autism-related disorder. NHE6 functions to permit facial dysmorphology, ataxia, ophthalmoplegia, and cerebellar proton leak from endosomes, yet the mechanisms and brainstem atrophy. Christianson also described an associa- tion with autistic symptoms, including autistic regressions, as causing disease are unknown.
    [Show full text]
  • Genetic Testing Medical Policy – Genetics
    Genetic Testing Medical Policy – Genetics Please complete all appropriate questions fully. Suggested medical record documentation: • Current History & Physical • Progress Notes • Family Genetic History • Genetic Counseling Evaluation *Failure to include suggested medical record documentation may result in delay or possible denial of request. PATIENT INFORMATION Name: Member ID: Group ID: PROCEDURE INFORMATION Genetic Counseling performed: c Yes c No **Please check the requested analyte(s), identify number of units requested, and provide indication/rationale for testing. 81400 Molecular Pathology Level 1 Units _____ c ACADM (acyl-CoA dehydrogenase, C-4 to C-12 straight chain, MCAD) (e.g., medium chain acyl dehydrogenase deficiency), K304E variant _____ c ACE (angiotensin converting enzyme) (e.g., hereditary blood pressure regulation), insertion/deletion variant _____ c AGTR1 (angiotensin II receptor, type 1) (e.g., essential hypertension), 1166A>C variant _____ c BCKDHA (branched chain keto acid dehydrogenase E1, alpha polypeptide) (e.g., maple syrup urine disease, type 1A), Y438N variant _____ c CCR5 (chemokine C-C motif receptor 5) (e.g., HIV resistance), 32-bp deletion mutation/794 825del32 deletion _____ c CLRN1 (clarin 1) (e.g., Usher syndrome, type 3), N48K variant _____ c DPYD (dihydropyrimidine dehydrogenase) (e.g., 5-fluorouracil/5-FU and capecitabine drug metabolism), IVS14+1G>A variant _____ c F13B (coagulation factor XIII, B polypeptide) (e.g., hereditary hypercoagulability), V34L variant _____ c F2 (coagulation factor 2) (e.g.,
    [Show full text]
  • Summer Research Symposium 2019
    SUMMER RESEARCH SYMPOSIUM 2019 Presented by The College Sayles Hall 11 am – 1 pm Thursday, August 1 Life Sciences and Humanities & Friday, August 2 Physical and Social Sciences and Student Teams SUMMER RESEARCH SYMPOSIUM SAYLES HALL THURSDAY, AUGUST 1 LIFE SCIENCES AND HUMANITIES INDIVIDUAL PRESENTATIONS 11:00 - 11:05 Welcome Oludurotimi Adetunji, Associate Dean of the College for Undergraduate Research and Inclusive Science 11:05 - 11:10 Brief Remarks Jill Pipher, Vice President for Research Elisha Benjamin Andrews Professor of Mathematics 11:10 - 1:00 Research Poster Presentations FRIDAY, AUGUST 2 PHYSICAL SCIENCES, SOCIAL SCIENCES, AND TEAM PRESENTATIONS 11:00-11:05 Welcome Oludurotimi Adetunji, Associate Dean of the College for Undergraduate Research and Inclusive Science 11:05 - 11:10 Brief Remarks, Presentation of Mentor Award Rashid Zia, Dean of the College 11:10 - 1:00 Research Poster Presentations Light lunch will be provided both days. 2 SYMPOSIUM ORGANIZERS Oludurotimi Adetunji Associate Dean of the College for Undergraduate Research and Inclusive Science Janice Rego Program Coordinator Jessica Minker Symposium Intern ACKNOWLEDGEMENTS Christina Paxson President Richard Locke Provost Rashid Zia Dean of the College Brown University Library Center for Digital Scholarship PRESERVING YOUR RESEARCH Students who opt to upload their posters to the Brown Digital Repository can do so using the self-deposit tool, available at https://repository.library.brown.edu/deposits/srs/ The deadline to upload posters is September 1st, 2019. 3 ROOM
    [Show full text]