Neuro Informatics 2013
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
University of Maryland Establishes Center for Health Related Informatics and Bioimaging
University of Maryland Establishes Center for Health Related Informatics and Bioimaging News & Events UNIVERSITY OF MARYLAND ESTABLISHES CENTER FOR HEALTH CONTACT RELATED INFORMATICS AND BIOIMAGING Monday, June 10, 2013 Karen Robinson, Media Relations New Center, Led By Distinguished Bioinformatics Scientist Owen White, (410) 706-7590 Ph.D., Unites Scientists Across Disciplines to Integrate Genomics and Personalized Medicine into Research and Clinical Care [email protected] University of Maryland, Baltimore campus President Jay A. Perman, M.D., and Media Relations Team University of Maryland School of Medicine Dean E. Albert Reece, M.D., Ph.D., M.B.A., wish to announce the establishment of a new center to unite research scientists and physicians across disciplines. The center will employ these SEARCH ARTICLES interdisciplinary connections to enhance the use of cutting edge medical science such as genomics and personalized medicine to accelerate research discoveries and improve health care outcomes. Participants in the new News Archives University of Maryland Center for Health-Related Informatics and Bioimaging (CHIB) will collaborate with computer scientists, engineers, life scientists and others at a similar center at the University of Maryland, College Park campus, CHIB Co-Director Owen White, Ph.D. together forming a joint center supported by the M-Power Maryland initiative. LEARN MORE University of Maryland School of Medicine Dean E. Albert Reece, M.D., Ph.D., M.B.A., with the concurrence of President Perman, has appointed as co-director of the new center Owen White, Ph.D., Professor of Epidemiology and Public Health and Director of Bioinformatics at the University of Maryland School of Medicine Institute for Genome Sciences. -
Computational Analysis and Predictive Cheminformatics Modeling of Small Molecule Inhibitors of Epigenetic Modifiers
RESEARCH ARTICLE Computational Analysis and Predictive Cheminformatics Modeling of Small Molecule Inhibitors of Epigenetic Modifiers Salma Jamal1☯‡, Sonam Arora2☯‡, Vinod Scaria3* 1 CSIR Open Source Drug Discovery Unit (CSIR-OSDD), Anusandhan Bhawan, Delhi, India, 2 Delhi Technological University, Delhi, India, 3 GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India ☯ These authors contributed equally to this work. ‡ These authors are joint first authors on this work. * [email protected] a11111 Abstract Background The dynamic and differential regulation and expression of genes is majorly governed by the OPEN ACCESS complex interactions of a subset of biomolecules in the cell operating at multiple levels start- Citation: Jamal S, Arora S, Scaria V (2016) ing from genome organisation to protein post-translational regulation. The regulatory layer Computational Analysis and Predictive contributed by the epigenetic layer has been one of the favourite areas of interest recently. Cheminformatics Modeling of Small Molecule Inhibitors of Epigenetic Modifiers. PLoS ONE 11(9): This layer of regulation as we know today largely comprises of DNA modifications, histone e0083032. doi:10.1371/journal.pone.0083032 modifications and noncoding RNA regulation and the interplay between each of these major Editor: Wei Yan, University of Nevada School of components. Epigenetic regulation has been recently shown to be central to development Medicine, UNITED STATES of a number of disease processes. The availability of datasets of high-throughput screens Received: June 10, 2013 for molecules for biological properties offer a new opportunity to develop computational methodologies which would enable in-silico screening of large molecular libraries. -
Genome Informatics 2016 Davide Chicco1 and Michael M
Chicco and Hoffman Genome Biology (2017) 18:5 DOI 10.1186/s13059-016-1135-5 MEETINGREPORT Open Access Genome Informatics 2016 Davide Chicco1 and Michael M. Hoffman1,2,3* Abstract of sequence variants. Konrad Karczewski (Massachusetts General Hospital, USA) presented the Loss Of Func- A report on the Genome Informatics conference, held tion Transcript Effect Estimator (LOFTEE, https://github. at the Wellcome Genome Campus Conference Centre, com/konradjk/loftee). LOFTEE uses a support vector Hinxton, United Kingdom, 19–22 September 2016. machine to identify sequence variants that significantly disrupt a gene and potentially affect biological processes. We report a sampling of the advances in computational Martin Kircher (University of Washington, USA) dis- genomics presented at the most recent Genome Informat- cussed a massively parallel reporter assay (MPRA) that ics conference. As in Genome Informatics 2014 [1], speak- uses a lentivirus for genomic integration, called lentiM- ers presented research on personal and medical genomics, PRA [3]. He used lentiMPRA to predict enhancer activity, transcriptomics, epigenomics, and metagenomics, new and to more generally measure the functional effect of sequencing techniques, and new computational algo- non-coding variants. William McLaren (European Bioin- rithms to crunch ever-larger genomic datasets. Two formatics Institute, UK) presented Haplosaurus, a variant changes were notable. First, there was a marked increase effect predictor that uses haplotype-phased data (https:// in the number of projects involving single-cell analy- github.com/willmclaren/ensembl-vep). ses, especially single-cell RNA-seq (scRNA-seq). Second, Two presenters discussed genome informatics while participants continued the practice of present- approaches to the analysis of cancer immunotherapy ing unpublished results, a large number of the presen- response. -
Teaching Bioinformatics and Neuroinformatics Using Free Web-Based Tools
UCLA Behavioral Neuroscience Title Teaching Bioinformatics and Neuroinformatics Using Free Web-based Tools Permalink https://escholarship.org/uc/item/2689x2hk Author Grisham, William Publication Date 2009 Supplemental Material https://escholarship.org/uc/item/2689x2hk#supplemental Peer reviewed eScholarship.org Powered by the California Digital Library University of California – SUBMITTED – [Article; 34,852 Characters] Teaching Bioinformatics and Neuroinformatics Using Free Web-based Tools William Grisham 1, Natalie A. Schottler 1, Joanne Valli-Marill 2, Lisa Beck 3, Jackson Beatty 1 1Department of Psychology, UCLA; 2 Office of Instructional Development, UCLA; 3Department of Psychology, Bryn Mawr College Keywords: quantitative trait locus, digital teaching tools, web-based learning, genetic analysis, in silico tools DRAFT: Copyright William Grisham, 2009 Address correspondence to: William Grisham Department of Psychology, UCLA PO Box 951563 Los Angeles, CA 90095-1563 [email protected] Grisham Teaching Bioinformatics Using Web-Based Tools ABSTRACT This completely computer-based module’s purpose is to introduce students to bioinformatics resources. We present an easy-to-adopt module that weaves together several important bioinformatic tools so students can grasp how these tools are used in answering research questions. This module integrates information gathered from websites dealing with anatomy (Mouse Brain Library), Quantitative Trait Locus analysis (WebQTL from GeneNetwork), bioinformatics and gene expression analyses (University of California, Santa Cruz Genome Browser, NCBI Entrez Gene, and the Allen Brain Atlas), and information resources (PubMed). This module provides for teaching genetics from the phenotypic level to the molecular level, some neuroanatomy, some aspects of histology, statistics, Quantitaive Trait Locus analysis, molecular biology including in situ hybridization and microarray analysis in addition to introducing bioinformatic resources. -
Gene Selection Using Gene Expression Data in a Virtual Environment
276 Genome Informatics 13: 276-277 (2002) Gene Selection Using Gene Expression Data in a Virtual Environment Kunihiro Nishimura1 Shumpei Ishikawa2 [email protected] [email protected] Shuichi Tsutsumi2 Hiroyuki Aburatani2 [email protected] [email protected] Koichi Hirota2 Michitaka Hirose2 [email protected] [email protected] 1 Graduate School of Information Science and Technology , The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan 2 Reseach Center for Advanced Science and Technology , The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan Keywords: gene selection, gene expression, virtual reality, visualization 1 Gene Selection for Drug Discovery The gene expression data of many normal and diseased tissues enables the selection of genes that satisfy the conditions for finding a new drug. In the process of selecting genes is required to determine many filtering parameters. The system of the selection of genes from all genes is required to have the following features: 1) visualization of the data to provide the users to grasp both holistic and detail views of the data, 2) interactivity to determine many filtering parameters, 3) provides spatial cue to understand intuitively because there are many filtering parameters. In order to visualize various information of large number of genes, the system also needs a wide field of view. Virtual reality technology satisfies these requirements above. 2 Virtual Reality Virtual reality technology can help improve genome data analysis by enabling interactive visualization and providing a three-dimensional virtual environment. -
A. Holzinger LV 709.049
A. Holzinger LV 709.049 Welcome Students! At first some organizational details: 1) Duration This course LV 709.049 (formerly LV 444.152) is a one‐semester course and consists of 12 lectures (see Overview in Slide 0‐1) each with a duration of 90 minutes. 2) Topics This course covers the computer science aspects of biomedical informatics (= medical informatics + bioinformatics) with a focus on new topics such as “big data” concentrating on algorithmic and methodological issues. 3) Audience This course is suited for students of Biomedical Engineering (253), students of Telematics (411), students of Software Engineering (524, 924) and students of Informatics (521, 921) with interest in the computational sciences with the application area biomedicine and health. PhD students and international students are cordially welcome. 4) Language The language of Science and Engineering is English, as it was Greek in ancient times and Latin in mediaeval times, for more information please refer to: Holzinger, A. 2010. Process Guide for Students for Interdisciplinary WorkinComputer Science/Informatics. Second Edition, Norderstedt: BoD. http://www.amazon.de/Process‐Students‐Interdisciplinary‐Computer‐ Informatics/dp/384232457X http://castor.tugraz.at/F?func=direct&doc_number=000403422 WS 2015/16 1 A. Holzinger LV 709.049 Accompanying Reading ALL exam questions with solutions can be found in the Springer textbook available at the Library: Andreas Holzinger (2014). Biomedical Informatics: Discovering Knowledge in Big Data, New York: Springer. DOI: 10.1007/978‐3‐319‐04528‐3 -
Management of Data Elements in Information Processing
PB-249-530 MANAGEMENT OF DATA ELEMENTS IN INFORMATION PROCESSING U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards SECOND NATIONAL SYMPOSIUM NATIONAL BUREAU OF STANDARDS GAITHERSBURG, MARYLAND 1975 OCTOBER 23-24 Available by purchase from the National Technical Information Service, 5285 Port Royal Road, Springfield, Va. 221 Price: $9.25 hardcopy; $2.25 microfiche. National Technical Information Service U. S. DEPARTMENT OF COMMERCE PB-249-530 Management of Data Elements in Information Processing Proceedings of a Second Symposium Sponsored by the American National Standards Institute and by The National Bureau of Standards 1975 October 23-24 NBS, Gaithersburg, Maryland Hazel E. McEwen, Editor Institute for Computer Sciences and Technology National Bureau of Standards Washington, D.C. 20234 U.S. DEPARTMENT OF COMMERCE, Elliot L. Richardson, Secrefary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acfing Direc/or Table of Contents Page Introduction to the Program of the Second National Symposium on The Management of Data Elements in Information Processing ix David V. Savidge, Program Chairman On-Line Tactical Data Inputting: Research in Operator Training and Performance 1 Irving Alderman, Ph.D. "Turning the Corner" on MIS, A Proposed Program of Data Standards in Post-Secondary Education 9 Donald R. Arnold, Ph.D. ASCII - The Data Alphabet That Will Endure 17 Robert W. Bemer Techniques in Developing Standard Procedures for Data Editing 23 George W. Covill An Adaptive File Management Systems 45 Dennis L. Dance and Udo W. Pooch (Given by Dance) A Focus on the Role of the Data Manager 57 Ruth M, Davis, Ph.D. A Proposed Standard Routine for Generating Proposed Standard Check Characters 61 Paul -Andre Desjardins Methodology for Development of Standard Data Elements within Multiple Public Agencies 69 L. -
A Re-Vision of Information Systems Neville Holmes Department Of
A Re-Vision of Information Systems Neville Holmes Department of Applied Computing & Mathematics University of Tasmania Launceston 7250 Australia Email: [email protected] (published in the Proceedings of the 1996 Australasian Conference on Information Systems) Abstract The theme of the Conference, “Revisioning Information Systems”, is examined. A two decades old vision of information systems is reviewed here by its author to establish the groundwork for a re-vision. The original vision, and its prediction, is evaluated, and used as the basis for a re-vision and a new prediction. Some implications of the new prediction, and some impressions gained while arriving at it, are reviewed. THE CONFERENCE THEME The theme of this the 7th Australian Conference on Information Systems is Revisioning Infor- mation Systems. It must be assumed such curious wording was chosen deliberately to provoke, and it is indeed provocative at several levels. Even the use of the phrase information systems is provocative to anyone who is concerned that agreed and legal standards should be upheld. Ian Gould (1972) in reviewing the work that led to the International Standard Vocabulary (ISO 1991) wrote that “ it is difficult, if not impossible, to find a concept that could reasonably be called ‘information processing’; our machines can surely only process data.” So the very popular view that equates an information system with a computer system is, at the very least, non-standard. Although in one sense this battle for correct terminology is unwinnable, (like the battle to pre- serve impact from synonymy with effect), in another sense it must be kept up at least to influence how people see information systems. -
Cognitive Engineering and User Interface Design
BEHAVIOUR & INFORMATION TECHN OLOGY, 1998, VOL. 17, NO. 6, 338 ± 360 Representation still matters: cognitive engineering and user interface design CHRIS STARY² and MARK F. PESCHL³ ² University of Linz, Department of Business Information Systems, Communications Engineering, FreistaÈ dterstraû e 315, A-4040 Linz, Austria; e-mail: stary@ ce.uni-linz.ac.at ³ University of Vienna, Department for Philosophy of Science, Sensengasse 8/10, A-1090 Vienna, Austria; e-mail: Franz-Markus.Peschl@ univie.ac.at Abstract. With the increased utilization of cognitive models knowledge representation as one of its core issues, in for designing user interfaces several disciplines started to particular in the context of human-computer interac- contribute to acquiring and representing knowledge about tion, e.g. Woods et al. (1988, p. 3). At that time a strong users, artifacts, and tasks. Although a wealth of studies already exists on modeling mental processes, and although the goals of need for human-oriented design had been expressed, cognitive engineering have become quite clear over the last since in the ® eld of operator workplace design novel decade, essential epistemological and methodological issues in design solutions were required. It has been recognized the context of developing user interfaces have remained that the introduction of an interactive computer system untouched. However, recent challenging tasks, namely design- often changes the work environment and the cognitive ing information spaces for distributed user communities, have led to a revival of well known problems concerning the demands placed on employees. Several ® ndings help to representation of knowledge and related issues, such as detail the changes caused by the use of computer abstraction, navigation through information spaces, and systems: visualization of abstract knowledge. -
Waxholm Space Atlas of the Sprague Dawley Rat Brain
NeuroImage 97 (2014) 374–386 Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Waxholm Space atlas of the Sprague Dawley rat brain Eszter A. Papp a,TrygveB.Leergaarda, Evan Calabrese b, G. Allan Johnson b, Jan G. Bjaalie a,⁎ a Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway b Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, USA article info abstract Article history: Three-dimensional digital brain atlases represent an important new generation of neuroinformatics tools for Accepted 1 April 2014 understanding complex brain anatomy, assigning location to experimental data, and planning of experiments. Available online 12 April 2014 We have acquired a microscopic resolution isotropic MRI and DTI atlasing template for the Sprague Dawley rat brain with 39 μm isotropic voxels for the MRI volume and 78 μm isotropic voxels for the DTI. Building on this Keywords: template, we have delineated 76 major anatomical structures in the brain. Delineation criteria are provided for Digital brain atlas Waxholm Space each structure. We have applied a spatial reference system based on internal brain landmarks according to the Sprague Dawley Waxholm Space standard, previously developed for the mouse brain, and furthermore connected this spatial Rat brain template reference system to the widely used stereotaxic coordinate system by identifying cranial sutures and related Segmentation stereotaxic landmarks in the template using contrast given by the active staining technique applied to the tissue. Magnetic resonance imaging With the release of the present atlasing template and anatomical delineations, we provide a new tool for spatial Diffusion tensor imaging orientationanalysis of neuroanatomical location, and planning and guidance of experimental procedures in the Neuroinformatics rat brain. -
IIS Phd: Course Descriptions
UNT courses suitable for IIS PhD students Last updated: 18 February 2015 This list is used simply as a guide and should not be considered complete (i.e., new courses are often created and may not appear on this list). New courses may be added when discovered and if appropriate. CONSULT CURRENT COURSE SCHEDULES at http://essc.unt.edu/registrar/schedule/scheduleclass.html to determine if the course is offered in the specific semester and what is the course delivery format (face-to- face, online, or blended). A current Graduate Catalog should also be consulted. KEY P (col. 1) = program area. Codes: m = research methods; r = required; e = elective; 1 = info theory & design concentration; 2 = info & behavior concentration; 3 = info policy & mgmt concentration. P Course m ANTH 5032/5032. Ethnographic and Qualitative Methods. 3 hours. Focuses on ethnographic and qualitative methods and the development of the skills necessary for the practice of anthropology. Special e emphasis is given to qualitative techniques of data collection and analysis, grant writing, the use of computers to analyze qualitative data and ethical problems in conducting qualitative research. m ANTH 5041. Quantitative Methods in Anthropology. 3 hours. Basic principles and techniques of research design, sampling, and elicitation for collecting and comprehending quantitative behavioral data. Procedures for e data analysis and evaluation are reviewed, and students get hands-on experience with SPSS in order to practice organization, summarizing, and presenting data. The goal is to develop a base of quantitative and statistical literacy for practical application across the social sciences, in the academy and the world beyond. -
Reverse-Engineering the Brain, Intersymp-2016, 1 August, 2016 RESU109-IS16
Jens Pohl: Reverse-Engineering the Brain, InterSymp-2016, 1 August, 2016 RESU109-IS16 Reverse-Engineering the Brain: The parts are as complex as the whole. Jens Pohl, PhD Professor of Architecture (Emeritus) California Polytechnic State University (Cal Poly) Vice President, Engineering & Technology Tapestry Solutions (a Boeing Company) San Luis Obispo, California, USA Abstract The purpose of this paper is to review the current state of neuroscience research with a focus on what has been achieved to date in unraveling the mysteries of brain operations, major research initiatives, fundamental challenges, and potentially realizable objectives. General research approaches aimed at constructing a wiring diagram of the brain (i.e., connectome), determining how the brain encodes and computes information, and whole brain simulation attempts are reviewed in terms of strategies employed and difficulties encountered. While promising advances have been made during the past 50 years due to electron microscopy, the development of new experimental methods, and the availability of computer-enabled high throughput imaging systems, brain research is still greatly encumbered by inadequate monitoring and recording capabilities. Four hypotheses relating to comprehension through the assembly of parts, formation of memories, influence of genes, and synapse formation are described as plausible explanations even though they cannot be validated at this time. By assessing the feasibility of overcoming the principal problems that beleaguer brain research in comparison