Poly(Lactic Acid)—Mass Production, Processing, Industrial Applications, and End of Life☆
Total Page:16
File Type:pdf, Size:1020Kb
Advanced Drug Delivery Reviews 107 (2016) 333–366 Contents lists available at ScienceDirect Advanced Drug Delivery Reviews journal homepage: www.elsevier.com/locate/addr Poly(lactic acid)—Mass production, processing, industrial applications, and end of life☆ E. Castro-Aguirre a, F. Iñiguez-Franco a,H.Samsudinb, X. Fang c,R.Aurasa,⁎ a School of Packaging, Michigan State University, East Lansing, MI 48824-1223, USA b Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia c Saint-Gobain Performance Plastics, Aurora, OH 44202-8001, USA article info abstract Article history: Global awareness of material sustainability has increased the demand for bio-based polymers like poly(lactic Received 27 January 2016 acid) (PLA), which are seen as a desirable alternative to fossil-based polymers because they have less environ- Received in revised form 1 March 2016 mental impact. PLA is an aliphatic polyester, primarily produced by industrial polycondensation of lactic acid Accepted 22 March 2016 and/or ring-opening polymerization of lactide. Melt processing is the main technique used for mass production Available online 1 April 2016 of PLA products for the medical, textile, plasticulture, and packaging industries. To fulfill additional desirable product properties and extend product use, PLA has been blended with other resins or compounded with differ- Chemical compounds studied in this article: fi fi Lactic acid (PubChem CID: 612) ent llers such as bers, and micro- and nanoparticles. This paper presents a review of the current status of PLA L-lactic acid (PubChem CID: 107689) mass production, processing techniques and current applications, and also covers the methods to tailor PLA prop- D-lactic acid (PubChem CID: 61503) erties, the main PLA degradation reactions, PLA products' end-of-life scenarios and the environmental footprint of Lactate (PubChem CID: 91435) this unique polymer. © 2016 Elsevier B.V. All rights reserved. Keywords: Polylactic acid Lactide Polymer processing Bio-based Compostable Degradation Hydrolysis Life cycle assessment Abbreviations: AATCC, American Association of Textile Chemists and Colorists; ABS, Acrylonitrile butadiene styrene; AD, Anaerobic digestion; APR, Association of Postconsumer Plastic Recyclers; CFA, Chemical foaming agent; CNT, Carbon nanotube; CWM, Corn wet mill; DFS, Direct fuel substitution; DMR, Direct measurement respirometer; δp, Solubility parameter; Eact, Average energy of activation; EFP, Environmental footprint; EGMA, Poly(ethylene-glycidyl methacrylate); EPA, Environmental Protection Agency;ESR,Electronspinresonance;EVOH, Ethylene vinyl alcohol; GHG, Greenhouse gas; GWP, Global warming potential; HA, Hydroxyapatite; HDPE, High density poly(ethylene); HDT, Heat deflection temperature; HHV, Higher heating values; HRC, Hydrogen release compound; IC, Industrial composting; IR, Infrared; ISBM, Injection stretch blow molding; LA, Lactic acid; LCA, Life cycle assessment; LDPE, Low density poly(ethylene); LF, Landfilling; LLDPE, Linear low density poly(ethylene); MCC, Microcrystalline cellulose; MD, Machine direction; MFR, Melt flow rate; MMT, Montmorillonite; MR, Mechanical recycling; MSW, Municipal solid waste; MSWI, Municipal solid waste incineration; MWCNT, Multiwall carbon nanotube; Mw, Weight average molecular weight; Mn, Number average molecular weight; mL, Sound velocity; mSh, Sound velocity of propagation of transverse waves; NAPCOR, National Association for PET Container Resources; η, Intrinsic viscosity; OI, Oxygen index; PA, Polyamide; PAE, Polyamide elastomer; PBAT, Poly(butylene adipate-co-terephthalate); PBS, Polybutylene succinate; PBSA, Poly(butylene succinate-co-adipate); PBSL, Poly(butylene succinate-co-L-lactate); PC, Polycarbonate; PCDI, Polycarbodiimide; PCL, Poly(ε-caprolactone); PCR, Post-consumer recycled; PDLA, Poly(D- lactic acid); PDLLA, Poly(D,L-lactic acid); PE, Polyethylene; PEG, Poly(ethylene glycol); PENNR, Primary energy from nonrenewable resources; PEO, Poly(ethylene oxide); PET, Poly(ethylene terephthalate); PEVA, Poly(ethylene-co-vinyl acetate); PFA, Physical foaming agent; PGA, Polyglycolic acid; PGS, Poly(glycerol sebacate); PHAs, Poly(hydroxyalkanoates); PHB, Polyhydroxybutyrate; PHBHxx, Poly[(3-hydroxybutyrate)-co-(3-hydroxyhexanoate)]; PHBV, poly(3-hydroxybutyrate-co-3-hydroxyvalerate); PIP, Poly(cis-1,4-isoprene); PLA, Poly(lactic acid); PLLA, Poly(L-lactic acid); PP, Poly(propylene); PPC, Poly(propylene carbonate); PS, Polystyrene; PTAT, Poly(tetramethylene adipate-co-tere- phthalate); PTFE, Polytetrafluoroethylene; PTT, Poly(trimentylene terephthalate); PU, Poly(ether)urethane; PVC, Polyvinyl chloride; PVOH, Polyvinyl alcohol; RH, Relative humidity; RIC, Resin identification code; ROP, Ring-opening polymerization; SCORIM, Shear-controlled orientation in injection molding; SF, Silk fibroin; SIC, Solvent induced crystallization; SPC, Soy pro- tein concentrate; SPI, Soy protein isolate; TKGM, Thermoplastic konjac glucomannan; TNPP, Tris(nonylphenyl) phosphite; TPO, Thermoplastic polyolefin elastomer; Td,0, Initial decompo- sition temperature; Td,1/2, Half decomposition temperature; Tg, Glass transition temperature; Tm, Melting temperature; Tmc, Melt crystallization temperature; US, United States; UV, Ultraviolet; Vc, Molar volume of semicrystalline polymer; Vg, Molar volume of glassy amorphous; VW, Van der Waals volume; ΔHm, Enthalpy. ☆ This review is part of the Advanced Drug Delivery Reviews theme issue on “PLA biodegradable polymers”. ⁎ Corresponding author. E-mail address: [email protected] (R. Auras). http://dx.doi.org/10.1016/j.addr.2016.03.010 0169-409X/© 2016 Elsevier B.V. All rights reserved. 334 E. Castro-Aguirre et al. / Advanced Drug Delivery Reviews 107 (2016) 333–366 Contents 1. Introduction.............................................................. 333334 2. PLAresinproduction.......................................................... 334335 3. PLAprocessing............................................................. 336337 3.1. Extrusion............................................................ 337338 3.2. Injectionmolding........................................................ 337338 3.3. Injectionstretchblowmolding.................................................. 339340 3.4. Cast filmandsheet........................................................ 339340 3.5. Thermoforming......................................................... 340341 3.6. Other processes—Foaming and fibers................................................ 340341 4. TailoringPLAproperties......................................................... 342343 5. PLAindustrialapplications........................................................ 343344 5.1. Medical............................................................. 343344 5.2. Fibersandtextiles........................................................ 344345 5.3. Packagingandserviceware.................................................... 344345 5.4. Plasticulture........................................................... 346347 5.5. Environmentalremediation.................................................... 347348 5.6. Otherapplications........................................................ 348349 6. PLAdegradation............................................................ 348349 6.1. Hydrolysis............................................................ 348349 6.2. Thermaldegradation....................................................... 348349 6.3. Photodegradation........................................................ 350351 7. End-of-lifescenariosforPLA....................................................... 351352 7.1. Sourcereduction(reuse).....................................................353 352 7.2. Recycling............................................................ 352353 7.3. Composting........................................................... 353354 7.4. Incinerationwithenergyrecovery................................................. 354355 7.5. Landfill............................................................. 355356 8. EnvironmentalfootprintofPLA.....................................................357 356 9. Finalremarks.............................................................359 358 Acknowledgments..............................................................360 359 References.................................................................360 359 1. Introduction produced by polycondensation and/or ring-opening polymerization (ROP) [4]. NatureWorks LLC is the major producer of PLA, with a capac- Poly(lactic acid) (PLA) is a biodegradable and bio-based aliphatic ity of 150,000 metric ton year in its US manufacturing facility (in Blair, polyester derived from renewable sources such as corn sugar, potato, Nebraska) [2,5]. Due to great market penetration, worldwide attention, and sugar cane. PLA has played a central role in replacing fossil-based and the rise of PLA production [6], the number of published research polymers for certain applications [1,2]. As a compostable polymer, PLA studies and reports about PLA have exponentially increased in the last is considered a promising alternative to reduce the municipal solid 25 years, as shown in Fig. 1. waste (MSW) disposal problem by offering additional end-of-life sce- The use of PLA was initially limited to medical applications due to its narios [3]. High weight average molecular weight (Mw) PLA is generally high cost and low availability, but high Mw PLA now can be processed by injection molding, sheet