Exotic Smoothness and Physics (337 Pages)

Total Page:16

File Type:pdf, Size:1020Kb

Exotic Smoothness and Physics (337 Pages) EXOTIC SMOOTHNESS AND PHYSICS DIFFERENTIAL TOPOLOGY AND SPACETIME MODELS This page intentionally left blank EXOTIC SMOOTHNESS AND PHYSICS DIFFERENTIAL TOPOLOGY AND SPACETIME MODELS TORSTEN ASSELMEYER-MALUGA Humboldt University, Germany CARL H BRANS Loyola University, USA Ka World Scientific NEW JERSEY * LONDON * SINGAPORE - BElJlNG - SHANGHAI HONG KONG * TAIPEI - CHENNAI Published by World Scientific Publishing Co. Re. Ltd. 5 Toh Tuck Link, Singapore 596224 USA oflce: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK ofice: 57 Shelton Street, Covent Garden, London WCSH 9HE British Library CataIoguing-in-PublicationData A catalogue record for this book is available from the British Library. EXOTIC SMOOTHNJ3SS AND PHYSICS Differential Topology and Spacetime Models Copyright Q 2007 by World Scientific Publishing Co. pte. Ltd. All rights reserved. This book, or parts thereoj may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permissionjiom the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN 981-024195-X Printed in Singapore by World Scientific Printers (S)Re Ltd For our wives Andrea and Anna This page intentionally left blank Preface This book is about the physics of spacetime at a deep and fundamental level, encoded in the mathematical assumptions of differentiability. We understand the phrase, “physics of spacetime” in the sense that general relativity has taught us, namely that the geometry, the topology, and now the smoothness of our spacetime mathematical models have physical sig- nificance. Our aim is to introduce some of the exciting developments in the mathe- matics of differential topology over the last fifteen or twenty years to a wider audience than experts. In particular, we are concerned with the discoveries of “exotic” (sometimes called “fake” or “non-standard”) smoothness (differ- entiable) structures on R4 and other topologically simple spaces. We hope to help physicists gain at least a superficial understanding of these results and their potential impact on physical theories involving spacetime mod- els, i.e., all fundamental theories. Diffeomorphisms, the basic morphisms of differential topology, are the mathematical representations of the physical notion of transformations between reference frames. As we have learned from Einstein the investigation of these transformations can lead to deep insights into our physical world, as embodied for example in his General Relativistic theory of spacetime and gravity. What the mathematicians have discovered is that the global properties of diffeomorphisms are not at all trivial, even on topologically trivial spaces, such as R4.Yet in general relativity and other field theories physicists continue to assume that the global covering of such spacetime models with smooth reference frames is trivial. This is strongly reminiscent of the assumption of geometric triviality (flatness) of spacetime physics before Einstein. We hope that by presenting an overview of the mathematical discoveries, we may induce physicists to consider the possible physical significance of this newly discovered wealth vii viii Exotic Smoothness and Physics of previously unexamined spacetime structures. Within each section we attempt to accompany the mathematical pre- sentation with parallel narratives of related physical topics as well as more informal “physical” descriptions if feasible. The abundant cross-fertilization of physics and mathematics in recent differential topology makes this en- deavor quite natural. Chapter 1 is an introduction, discussing the traditional interaction of physics and mathematics and speculations that this interaction extends to these differential topology results. We also review some “exotic” and unexpected or at least counter-intuitive facts in elementary topology and analysis to provide somewhat easier analogs to the more technically chal- lenging “exotic” mathematics coming later. We then survey possible phys- ical consequences of these unexpected structures. Chapter 2 begins with a review of some of the mathematical tools and techniques of algebraic topol- ogy. Chapter 3 concentrates on the notion of “smoothness” as defined by the introduction of differential structures on topological spaces. The field of differential topology is built on these constructions. In Chapter 4 we provide our first introductory look at some additional structures: bundles, geometry and gauge theory. These topics are considered in more detail later. Chapter 5 delves more deeply into gauge theory and introduces the concepts of moduli space especially those associated with solutions of the Yang-Mill theory. The important, but rather technical, tools associated with surgery and Morse theory are presented in Chapter 6. The remaining chapters then deal with the surprising and we believe physically intriguing discoveries of “exotic” smoothness in the unexpected context of topologi- cally uncomplicated spaces. The first results (1957) along these lines were obtained by Milnor, his exotically smooth seven spheres. These are rela- tively easy to construct and analyze, and can be immediately associated with physics as having the underlying topology of the bundle of Yang-Mills SU(2) gauge fields over compactified spacetime, S4. These topics occupy us in Chapter 7. For the next 20 years or so, much work was done in the field, but some important outstanding questions remained. By various tech- niques, it was shown that Euclidean topology, R” of dimension n can carry only the standard smoothness structures for all n # 4. The discovery that the missing dimension, 4, the dimension of classical spacetime, concealed a wealth of surprising results came as the results of the work of F’reedman, Donaldson et al, having roots in the physically motivated work on moduli space of Yang-Mills connections over a four-manifold. We review the orig- inal techniques for studying exotic R4 in Chapter 8 and the more current Preface ix ones based on Seiberg-Witten theory in Chapter 9. Chapter 10 discusses possible physical implications and Chapter 11 introduces some ideas still in the speculative stage. We have been warned by many colleagues of the difficulty inherent in writing this book with its mix of recent deep mathematics probably unfamiliar to many physicists and physical topics similarly unfamiliar to mathematicians. Nevertheless, the long and rich history of the interplay of these two disciplines, and a wide variety of books aimed at non-experts on these subjects, makes us believe that this is not a hopeless task. However, we must remind the reader that since the presentation is aimed at %on- experts,” we will necessarily be somewhat superficial and informal in our treatment of many topics, both from the physics and mathematics sides. Full rigor will sometimes be sacrificed, but not at the price of introducing egregious error we hope. In all of our work we were patiently helped by many colleagues. Especial thanks should go to our mathematician colleagues who showed admirable patience in helping us through the mathematical intricacies leading to the beautiful exotica. Among these we must single out Duane Randall whose patient, expert, and always friendly help was absolutely essential to the completion of this book. We have also received help from others, including R. Gompf, T. Lawson, T. Mautsch, A. Nestke, D. Randall, andH. Rose. We repeat the standard phrase that this work incorporates the knowledge and insights of many people, but any errors are ours alone. This statement is especially true in a book such as this which includes topics from a very wide area. We also were aided by the financial support of a LASpace grant. The second author gratefully acknowledges the hospitality of the Institute for Advanced Studies, Princeton, a Humboldt Senior Research Prize, the hos- pitality of Friedrich Hehl and others at the Institut &r Theoretische Physik, Koln, and the J. C. Carter Professorship at Loyola. Melissa Minneci and Stella VonMeer generously contributed excellent and much needed proof reading assistance. Most importantly, the second author is deeply indebted to Ron Fintushel, then at Tulane, for introducing him to the exciting pos- sibilities of exotic smoothness during stimulating talks. Finally, the second author must affirm the indispensable help of Bill Wilson, Bob Smith and their students, without whom he could not have contributed to this work. This page intentionally left blank Contents Preface vii 1. Introduction and Background 1 1.1 Interaction of Physics and Mathematics .......... 1 1.2 Manifolds: Smoothness and Other Structures ....... 4 1.3 The Basic Questions ..................... 6 1.4 Some Basic Topological Exotica .............. 9 1.4.1 Whitehead continua ................. 9 1.4.2 Weierstrafl functions ................. 10 1.5 The Physics of Certain Mathematical Structures ..... 10 1.6 The Physics of Exotic Smoothness ............. 13 1.7 InSum ............................ 13 2. Algebraic Tools for Topology 15 2.1 Introduction .......................... 15 2.2 Prerequisites ......................... 16 2.3 Concepts in Algebraic Topology ............... 20 2.3.1 Homotopy groups .................. 21 2.3.2 Singular homology .................. 25
Recommended publications
  • Commentary on the Kervaire–Milnor Correspondence 1958–1961
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 52, Number 4, October 2015, Pages 603–609 http://dx.doi.org/10.1090/bull/1508 Article electronically published on July 1, 2015 COMMENTARY ON THE KERVAIRE–MILNOR CORRESPONDENCE 1958–1961 ANDREW RANICKI AND CLAUDE WEBER Abstract. The extant letters exchanged between Kervaire and Milnor during their collaboration from 1958–1961 concerned their work on the classification of exotic spheres, culminating in their 1963 Annals of Mathematics paper. Michel Kervaire died in 2007; for an account of his life, see the obituary by Shalom Eliahou, Pierre de la Harpe, Jean-Claude Hausmann, and Claude We- ber in the September 2008 issue of the Notices of the American Mathematical Society. The letters were made public at the 2009 Kervaire Memorial Confer- ence in Geneva. Their publication in this issue of the Bulletin of the American Mathematical Society is preceded by our commentary on these letters, provid- ing some historical background. Letter 1. From Milnor, 22 August 1958 Kervaire and Milnor both attended the International Congress of Mathemati- cians held in Edinburgh, 14–21 August 1958. Milnor gave an invited half-hour talk on Bernoulli numbers, homotopy groups, and a theorem of Rohlin,andKer- vaire gave a talk in the short communications section on Non-parallelizability of the n-sphere for n>7 (see [2]). In this letter written immediately after the Congress, Milnor invites Kervaire to join him in writing up the lecture he gave at the Con- gress. The joint paper appeared in the Proceedings of the ICM as [10]. Milnor’s name is listed first (contrary to the tradition in mathematics) since it was he who was invited to deliver a talk.
    [Show full text]
  • Arxiv:1303.6028V2 [Math.DG] 29 Dec 2014 B Ahrglrlvlhprufc Scle an Called Is Hypersurface Level Regular Each E Scle the Called Is Set E.[T3 )
    ISOPARAMETRIC FUNCTIONS ON EXOTIC SPHERES CHAO QIAN AND ZIZHOU TANG Abstract. This paper extends widely the work in [GT13]. Existence and non-existence results of isoparametric functions on exotic spheres and Eells-Kuiper projective planes are established. In particular, every homotopy n-sphere (n > 4) carries an isoparametric function (with certain metric) with 2 points as the focal set, in strong contrast to the classification of cohomogeneity one actions on homotopy spheres [St96] ( only exotic Kervaire spheres admit cohomogeneity one actions besides the standard spheres ). As an application, we improve a beautiful result of B´erard-Bergery [BB77] ( see also pp.234-235 of [Be78] ). 1. Introduction Let N be a connected complete Riemannian manifold. A non-constant smooth function f on N is called transnormal, if there exists a smooth function b : R R such that f 2 = → |∇ | b( f ), where f is the gradient of f . If in addition, there exists a continuous function a : ∇ R R so that f = a( f ), where f is the Laplacian of f , then f is called isoparametric. → △ △ Each regular level hypersurface is called an isoparametric hypersurface and the singular level set is called the focal set. The two equations of the function f mean that the regular level hypersurfaces of f are parallel and have constant mean curvatures, which may be regarded as a geometric generalization of cohomogeneity one actions in the theory of transformation groups ( ref. [GT13] ). Owing to E. Cartan and H. F. M¨unzner [M¨u80], the classification of isoparametric hy- persurfaces in a unit sphere has been one of the most challenging problems in submanifold geometry.
    [Show full text]
  • EXOTIC SPHERES and CURVATURE 1. Introduction Exotic
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 45, Number 4, October 2008, Pages 595–616 S 0273-0979(08)01213-5 Article electronically published on July 1, 2008 EXOTIC SPHERES AND CURVATURE M. JOACHIM AND D. J. WRAITH Abstract. Since their discovery by Milnor in 1956, exotic spheres have pro- vided a fascinating object of study for geometers. In this article we survey what is known about the curvature of exotic spheres. 1. Introduction Exotic spheres are manifolds which are homeomorphic but not diffeomorphic to a standard sphere. In this introduction our aims are twofold: First, to give a brief account of the discovery of exotic spheres and to make some general remarks about the structure of these objects as smooth manifolds. Second, to outline the basics of curvature for Riemannian manifolds which we will need later on. In subsequent sections, we will explore the interaction between topology and geometry for exotic spheres. We will use the term differentiable to mean differentiable of class C∞,and all diffeomorphisms will be assumed to be smooth. As every graduate student knows, a smooth manifold is a topological manifold that is equipped with a smooth (differentiable) structure, that is, a smooth maximal atlas. Recall that an atlas is a collection of charts (homeomorphisms from open neighbourhoods in the manifold onto open subsets of some Euclidean space), the domains of which cover the manifold. Where the chart domains overlap, we impose a smooth compatibility condition for the charts [doC, chapter 0] if we wish our manifold to be smooth. Such an atlas can then be extended to a maximal smooth atlas by including all possible charts which satisfy the compatibility condition with the original maps.
    [Show full text]
  • Nominations for President
    ISSN 0002-9920 (print) ISSN 1088-9477 (online) of the American Mathematical Society September 2013 Volume 60, Number 8 The Calculus Concept Inventory— Measurement of the Effect of Teaching Methodology in Mathematics page 1018 DML-CZ: The Experience of a Medium- Sized Digital Mathematics Library page 1028 Fingerprint Databases for Theorems page 1034 A History of the Arf-Kervaire Invariant Problem page 1040 About the cover: 63 years since ENIAC broke the ice (see page 1113) Solve the differential equation. Solve the differential equation. t ln t dr + r = 7tet dt t ln t dr + r = 7tet dt 7et + C r = 7et + C ln t ✓r = ln t ✓ WHO HAS THE #1 HOMEWORK SYSTEM FOR CALCULUS? THE ANSWER IS IN THE QUESTIONS. When it comes to online calculus, you need a solution that can grade the toughest open-ended questions. And for that there is one answer: WebAssign. WebAssign’s patent pending grading engine can recognize multiple correct answers to the same complex question. Competitive systems, on the other hand, are forced to use multiple choice answers because, well they have no choice. And speaking of choice, only WebAssign supports every major textbook from every major publisher. With new interactive tutorials and videos offered to every student, it’s not hard to see why WebAssign is the perfect answer to your online homework needs. It’s all part of the WebAssign commitment to excellence in education. Learn all about it now at webassign.net/math. 800.955.8275 webassign.net/math WA Calculus Question ad Notices.indd 1 11/29/12 1:06 PM Notices 1051 of the American Mathematical Society September 2013 Communications 1048 WHAT IS…the p-adic Mandelbrot Set? Joseph H.
    [Show full text]
  • A Topologist's View of Symmetric and Quadratic
    1 A TOPOLOGIST'S VIEW OF SYMMETRIC AND QUADRATIC FORMS Andrew Ranicki (Edinburgh) http://www.maths.ed.ac.uk/eaar Patterson 60++, G¨ottingen,27 July 2009 2 The mathematical ancestors of S.J.Patterson Augustus Edward Hough Love Eidgenössische Technische Hochschule Zürich G. H. (Godfrey Harold) Hardy University of Cambridge Mary Lucy Cartwright University of Oxford (1930) Walter Kurt Hayman Alan Frank Beardon Samuel James Patterson University of Cambridge (1975) 3 The 35 students and 11 grandstudents of S.J.Patterson Schubert, Volcker (Vlotho) Do Stünkel, Matthias (Göttingen) Di Möhring, Leonhard (Hannover) Di,Do Bruns, Hans-Jürgen (Oldenburg?) Di Bauer, Friedrich Wolfgang (Frankfurt) Di,Do Hopf, Christof () Di Cromm, Oliver ( ) Di Klose, Joachim (Bonn) Do Talom, Fossi (Montreal) Do Kellner, Berndt (Göttingen) Di Martial Hille (St. Andrews) Do Matthews, Charles (Cambridge) Do (JWS Casels) Stratmann, Bernd O. (St. Andrews) Di,Do Falk, Kurt (Maynooth ) Di Kern, Thomas () M.Sc. (USA) Mirgel, Christa (Frankfurt?) Di Thirase, Jan (Göttingen) Di,Do Autenrieth, Michael (Hannover) Di, Do Karaschewski, Horst (Hamburg) Do Wellhausen, Gunther (Hannover) Di,Do Giovannopolous, Fotios (Göttingen) Do (ongoing) S.J.Patterson Mandouvalos, Nikolaos (Thessaloniki) Do Thiel, Björn (Göttingen(?)) Di,Do Louvel, Benoit (Lausanne) Di (Rennes), Do Wright, David (Oklahoma State) Do (B. Mazur) Widera, Manuela (Hannover) Di Krämer, Stefan (Göttingen) Di (Burmann) Hill, Richard (UC London) Do Monnerjahn, Thomas ( ) St.Ex. (Kriete) Propach, Ralf ( ) Di Beyerstedt, Bernd
    [Show full text]
  • Metrics of Positive Ricci Curvature on Connected Sums: Projective Spaces, Products, and Plumbings
    METRICS OF POSITIVE RICCI CURVATURE ON CONNECTED SUMS: PROJECTIVE SPACES, PRODUCTS, AND PLUMBINGS by BRADLEY LEWIS BURDICK ADISSERTATION Presented to the Department of Mathematics and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Doctor of Philosophy June 2019 DISSERTATION APPROVAL PAGE Student: Bradley Lewis Burdick Title: Metrics of Positive Ricci Curvature on Connected Sums: Projective Spaces, Products, and Plumbings This dissertation has been accepted and approved in partial fulfillment of the requirements for the Doctor of Philosophy degree in the Department of Mathematics by: Boris Botvinnik Chair NicholasProudfoot CoreMember Robert Lipshitz Core Member Micah Warren Core Member Graham Kribs Institutional Representative and Janet Woodru↵-Borden Vice Provost & Dean of the Graduate School Original approval signatures are on file with the University of Oregon Graduate School. Degree awarded June 2019 ii c 2019 Bradley Lewis Burdick This work is licensed under a Creative Commons Attribution 4.0 International License iii DISSERTATION ABSTRACT Bradley Lewis Burdick Doctor of Philosophy Department of Mathematics June 2019 Title: Metrics of Positive Ricci Curvature on Connected Sums: Projective Spaces, Products, and Plumbings The classification of simply connected manifolds admitting metrics of positive scalar curvature of initiated by Gromov-Lawson, at its core, relies on a careful geometric construction that preserves positive scalar curvature under surgery and, in particular, under connected sum. For simply connected manifolds admitting metrics of positive Ricci curvature, it is conjectured that a similar classification should be possible, and, in particular, there is no suspected obstruction to preserving positive Ricci curvature under connected sum.
    [Show full text]
  • Milnor, John W. Groups of Homotopy Spheres
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 52, Number 4, October 2015, Pages 699–710 http://dx.doi.org/10.1090/bull/1506 Article electronically published on June 12, 2015 SELECTED MATHEMATICAL REVIEWS related to the paper in the previous section by JOHN MILNOR MR0148075 (26 #5584) 57.10 Kervaire, Michel A.; Milnor, John W. Groups of homotopy spheres. I. Annals of Mathematics. Second Series 77 (1963), 504–537. The authors aim to study the set of h-cobordism classes of smooth homotopy n-spheres; they call this set Θn. They remark that for n =3 , 4thesetΘn can also be described as the set of diffeomorphism classes of differentiable structures on Sn; but this observation rests on the “higher-dimensional Poincar´e conjecture” plus work of Smale [Amer. J. Math. 84 (1962), 387–399], and it does not really form part of the logical structure of the paper. The authors show (Theorem 1.1) that Θn is an abelian group under the connected sum operation. (In § 2, the authors give a careful treatment of the connected sum and of the lemmas necessary to prove Theorem 1.1.) The main task of the present paper, Part I, is to set up methods for use in Part II, and to prove that for n = 3 the group Θn is finite (Theorem 1.2). (For n =3the authors’ methods break down; but the Poincar´e conjecture for n =3wouldimply that Θ3 = 0.) We are promised more detailed information about the groups Θn in Part II. The authors’ method depends on introducing a subgroup bPn+1 ⊂ Θn;asmooth homotopy n-sphere qualifies for bPn+1 if it is the boundary of a parallelizable man- ifold.
    [Show full text]
  • Scientific Workplace· • Mathematical Word Processing • LATEX Typesetting Scientific Word· • Computer Algebra
    Scientific WorkPlace· • Mathematical Word Processing • LATEX Typesetting Scientific Word· • Computer Algebra (-l +lr,:znt:,-1 + 2r) ,..,_' '"""""Ke~r~UrN- r o~ r PooiliorK 1.931'J1 Po6'lf ·1.:1l26!.1 Pod:iDnZ 3.881()2 UfW'IICI(JI)( -2.801~ ""'"""U!NecteoZ l!l!iS'11 v~ 0.7815399 Animated plots ln spherical coordln1tes > To make an anlm.ted plot In spherical coordinates 1. Type an expression In thr.. variables . 2 WMh the Insertion poilt In the expression, choose Plot 3D The next exampfe shows a sphere that grows ftom radius 1 to .. Plot 3D Animated + Spherical The Gold Standard for Mathematical Publishing Scientific WorkPlace and Scientific Word Version 5.5 make writing, sharing, and doing mathematics easier. You compose and edit your documents directly on the screen, without having to think in a programming language. A click of a button allows you to typeset your documents in LAT£X. You choose to print with or without LATEX typesetting, or publish on the web. Scientific WorkPlace and Scientific Word enable both professionals and support staff to produce stunning books and articles. Also, the integrated computer algebra system in Scientific WorkPlace enables you to solve and plot equations, animate 20 and 30 plots, rotate, move, and fly through 3D plots, create 3D implicit plots, and more. MuPAD' Pro MuPAD Pro is an integrated and open mathematical problem­ solving environment for symbolic and numeric computing. Visit our website for details. cK.ichan SOFTWARE , I NC. Visit our website for free trial versions of all our products. www.mackichan.com/notices • Email: info@mac kichan.com • Toll free: 877-724-9673 It@\ A I M S \W ELEGRONIC EDITORIAL BOARD http://www.math.psu.edu/era/ Managing Editors: This electronic-only journal publishes research announcements (up to about 10 Keith Burns journal pages) of significant advances in all branches of mathematics.
    [Show full text]
  • Problems in Low-Dimensional Topology
    Problems in Low-Dimensional Topology Edited by Rob Kirby Berkeley - 22 Dec 95 Contents 1 Knot Theory 7 2 Surfaces 85 3 3-Manifolds 97 4 4-Manifolds 179 5 Miscellany 259 Index of Conjectures 282 Index 284 Old Problem Lists 294 Bibliography 301 1 2 CONTENTS Introduction In April, 1977 when my first problem list [38,Kirby,1978] was finished, a good topologist could reasonably hope to understand the main topics in all of low dimensional topology. But at that time Bill Thurston was already starting to greatly influence the study of 2- and 3-manifolds through the introduction of geometry, especially hyperbolic. Four years later in September, 1981, Mike Freedman turned a subject, topological 4-manifolds, in which we expected no progress for years, into a subject in which it seemed we knew everything. A few months later in spring 1982, Simon Donaldson brought gauge theory to 4-manifolds with the first of a remarkable string of theorems showing that smooth 4-manifolds which might not exist or might not be diffeomorphic, in fact, didn’t and weren’t. Exotic R4’s, the strangest of smooth manifolds, followed. And then in late spring 1984, Vaughan Jones brought us the Jones polynomial and later Witten a host of other topological quantum field theories (TQFT’s). Physics has had for at least two decades a remarkable record for guiding mathematicians to remarkable mathematics (Seiberg–Witten gauge theory, new in October, 1994, is the latest example). Lest one think that progress was only made using non-topological techniques, note that Freedman’s work, and other results like knot complements determining knots (Gordon- Luecke) or the Seifert fibered space conjecture (Mess, Scott, Gabai, Casson & Jungreis) were all or mostly classical topology.
    [Show full text]
  • Download .Pdf
    THE 4 DIMENSIONAL POINCARÉ CONJECTURE DANNY CALEGARI Abstract. This book aims to give a self-contained proof of the 4 dimensional Poincaré Conjecture and some related theorems, all due to Michael Freedman [7]. Contents Preface 1 1. The Poincaré Conjecture2 2. Decompositions 10 3. Kinks and Gropes and Flexible Handles 27 4. Proof of the 4 dimensional Poincaré Conjecture 48 5. Acknowledgments 60 Appendix A. Bad points in codimension 1 61 Appendix B. Quadratic forms and Rochlin’s Theorem 62 References 62 Preface My main goal writing this book is threefold. I want the book to be clear and simple enough for any sufficiently motivated mathematician to be able to follow it. I want the book to be self-contained, and have enough details that any sufficiently motivated mathematician will be able to extract complete and rigorous proofs. And I want the book to be short enough that you can get to the ‘good stuff’ without making too enormous a time investment. Actually, fourfold — I want the book to be fun enough that people will want to read it for pleasure. This pleasure is implicit in the extraordinary beauty of Freedman’s ideas, and in the Platonic reality of 4-manifold topology itself. I learned this subject to a great extent from the excellent book of Freedman–Quinn [9] and Freedman’s 2013 UCSB lectures (archived online at MPI Bonn; see [8]), and the outline of the arguments in this book owes a great deal to both of these. I taught a graduate course on this material at the University of Chicago in Fall 2018, and wrote up notes as I went along.
    [Show full text]
  • The Role of Intuition and Formal Thinking in Kant, Riemann, Husserl, Poincare, Weyl, and in Current Mathematics and Physics
    Kairos. Journal of Philosophy & Science 22, 2019 Center for the Philosophy of Sciences of Lisbon University The Role of Intuition and Formal Thinking in Kant, Riemann, Husserl, Poincare, Weyl, and in Current Mathematics and Physics “Mathematics is a very human exploration of the patterns of the world, one which thrives on play and surprise and beauty”. (Hermann Weyl, 1949) “Many people have an impression that mathematics is an austere and formal subject concerned with complicated and ultimately confusing rules for the manipulation of numbers, symbols and equations, rather like the preparation of a complicated income tax return. Good mathematics is quite opposite to this. Mathematics is an art of human understanding… […] A given mathematical concept might be primarily a symbolic equation, a picture, a rhythmic pattern, a short movie — or best of all, an integrated combination of several different representations”. (William Thurston, 2009) Luciano Boi Ecole des Hautes Etudes en Sciences Sociales, Centre de Mathématiques [email protected] DOI 10.2478/kjps-2019–0007 Abstract. According to Kant, the axioms of intuition, i.e. space and time, must pro- vide an organization of the sensory experience. However, this first orderliness of empirical sensations seems to depend on a kind of faculty pertaining to subjecti- vity, rather than to the encounter of these same intuitions with the real properties of phenomena. Starting from an analysis of some very significant developments in mathematical and theoretical physics in the last decades, in which intuition played an important role, we argue that nevertheless intuition comes into play in a fun- damentally different way to that which Kant had foreseen: in the form of a formal or “categorical” yet not sensible intuition.
    [Show full text]
  • Part 1. Prelude to Topology
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000{000 S 0273-0979(XX)0000-0 TOPOLOGY THROUGH THE CENTURIES: LOW DIMENSIONAL MANIFOLDS JOHN MILNOR Based on the Abel Lecture at the 2014 International Congress of Mathematicians in Seoul Abstract. This note will provide a lightning tour through the centuries, con- centrating on the study of manifolds of dimension 2, 3, and 4. Further com- ments and more technical details about many of the sections may be found in the Appendix. Part 1. Prelude to Topology The subject known as topology took shape in the 19th century, made dramatic progress during the 20th century, and is flourishing in the 21st. But before there was any idea of topology, there were isolated results which hinted that there should be such a field of study. 1.1. Leonhard Euler, St.Petersburg, 1736. K¨onigsberg in the 18th century Euler Perhaps the first topological statement in the mathematical literature came with Euler's solution to the problem of the Seven Bridges of K¨onigsberg: the prob- lem of taking a walk which traverses each of the seven bridges exactly once. In fact, Euler showed that no such walk is possible. The problem can be represented by 2010 Mathematics Subject Classification. Primary 57N05{57N13, Secondary 01A5*, 01A6*. c 0000 (copyright holder) 1 2 JOHN MILNOR a graph, as shown below, where each land mass is represented by a dot, and each bridge by an edge. 3 Theorem. There exists a path traversing each edge of such a graph exactly once if and only if the graph has at most two ver- 5 3 tices which are \odd", in the sense that an odd number of edges meet there.
    [Show full text]