Applications of the H-Cobordism Theorem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Commentary on the Kervaire–Milnor Correspondence 1958–1961
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 52, Number 4, October 2015, Pages 603–609 http://dx.doi.org/10.1090/bull/1508 Article electronically published on July 1, 2015 COMMENTARY ON THE KERVAIRE–MILNOR CORRESPONDENCE 1958–1961 ANDREW RANICKI AND CLAUDE WEBER Abstract. The extant letters exchanged between Kervaire and Milnor during their collaboration from 1958–1961 concerned their work on the classification of exotic spheres, culminating in their 1963 Annals of Mathematics paper. Michel Kervaire died in 2007; for an account of his life, see the obituary by Shalom Eliahou, Pierre de la Harpe, Jean-Claude Hausmann, and Claude We- ber in the September 2008 issue of the Notices of the American Mathematical Society. The letters were made public at the 2009 Kervaire Memorial Confer- ence in Geneva. Their publication in this issue of the Bulletin of the American Mathematical Society is preceded by our commentary on these letters, provid- ing some historical background. Letter 1. From Milnor, 22 August 1958 Kervaire and Milnor both attended the International Congress of Mathemati- cians held in Edinburgh, 14–21 August 1958. Milnor gave an invited half-hour talk on Bernoulli numbers, homotopy groups, and a theorem of Rohlin,andKer- vaire gave a talk in the short communications section on Non-parallelizability of the n-sphere for n>7 (see [2]). In this letter written immediately after the Congress, Milnor invites Kervaire to join him in writing up the lecture he gave at the Con- gress. The joint paper appeared in the Proceedings of the ICM as [10]. Milnor’s name is listed first (contrary to the tradition in mathematics) since it was he who was invited to deliver a talk. -
Millennium Prize for the Poincaré
FOR IMMEDIATE RELEASE • March 18, 2010 Press contact: James Carlson: [email protected]; 617-852-7490 See also the Clay Mathematics Institute website: • The Poincaré conjecture and Dr. Perelmanʼs work: http://www.claymath.org/poincare • The Millennium Prizes: http://www.claymath.org/millennium/ • Full text: http://www.claymath.org/poincare/millenniumprize.pdf First Clay Mathematics Institute Millennium Prize Announced Today Prize for Resolution of the Poincaré Conjecture a Awarded to Dr. Grigoriy Perelman The Clay Mathematics Institute (CMI) announces today that Dr. Grigoriy Perelman of St. Petersburg, Russia, is the recipient of the Millennium Prize for resolution of the Poincaré conjecture. The citation for the award reads: The Clay Mathematics Institute hereby awards the Millennium Prize for resolution of the Poincaré conjecture to Grigoriy Perelman. The Poincaré conjecture is one of the seven Millennium Prize Problems established by CMI in 2000. The Prizes were conceived to record some of the most difficult problems with which mathematicians were grappling at the turn of the second millennium; to elevate in the consciousness of the general public the fact that in mathematics, the frontier is still open and abounds in important unsolved problems; to emphasize the importance of working towards a solution of the deepest, most difficult problems; and to recognize achievement in mathematics of historical magnitude. The award of the Millennium Prize to Dr. Perelman was made in accord with their governing rules: recommendation first by a Special Advisory Committee (Simon Donaldson, David Gabai, Mikhail Gromov, Terence Tao, and Andrew Wiles), then by the CMI Scientific Advisory Board (James Carlson, Simon Donaldson, Gregory Margulis, Richard Melrose, Yum-Tong Siu, and Andrew Wiles), with final decision by the Board of Directors (Landon T. -
Arxiv:1303.6028V2 [Math.DG] 29 Dec 2014 B Ahrglrlvlhprufc Scle an Called Is Hypersurface Level Regular Each E Scle the Called Is Set E.[T3 )
ISOPARAMETRIC FUNCTIONS ON EXOTIC SPHERES CHAO QIAN AND ZIZHOU TANG Abstract. This paper extends widely the work in [GT13]. Existence and non-existence results of isoparametric functions on exotic spheres and Eells-Kuiper projective planes are established. In particular, every homotopy n-sphere (n > 4) carries an isoparametric function (with certain metric) with 2 points as the focal set, in strong contrast to the classification of cohomogeneity one actions on homotopy spheres [St96] ( only exotic Kervaire spheres admit cohomogeneity one actions besides the standard spheres ). As an application, we improve a beautiful result of B´erard-Bergery [BB77] ( see also pp.234-235 of [Be78] ). 1. Introduction Let N be a connected complete Riemannian manifold. A non-constant smooth function f on N is called transnormal, if there exists a smooth function b : R R such that f 2 = → |∇ | b( f ), where f is the gradient of f . If in addition, there exists a continuous function a : ∇ R R so that f = a( f ), where f is the Laplacian of f , then f is called isoparametric. → △ △ Each regular level hypersurface is called an isoparametric hypersurface and the singular level set is called the focal set. The two equations of the function f mean that the regular level hypersurfaces of f are parallel and have constant mean curvatures, which may be regarded as a geometric generalization of cohomogeneity one actions in the theory of transformation groups ( ref. [GT13] ). Owing to E. Cartan and H. F. M¨unzner [M¨u80], the classification of isoparametric hy- persurfaces in a unit sphere has been one of the most challenging problems in submanifold geometry. -
The Work of Grigory Perelman
The work of Grigory Perelman John Lott Grigory Perelman has been awarded the Fields Medal for his contributions to geom- etry and his revolutionary insights into the analytical and geometric structure of the Ricci flow. Perelman was born in 1966 and received his doctorate from St. Petersburg State University. He quickly became renowned for his work in Riemannian geometry and Alexandrov geometry, the latter being a form of Riemannian geometry for metric spaces. Some of Perelman’s results in Alexandrov geometry are summarized in his 1994 ICM talk [20]. We state one of his results in Riemannian geometry. In a short and striking article, Perelman proved the so-called Soul Conjecture. Soul Conjecture (conjectured by Cheeger–Gromoll [2] in 1972, proved by Perelman [19] in 1994). Let M be a complete connected noncompact Riemannian manifold with nonnegative sectional curvatures. If there is a point where all of the sectional curvatures are positive then M is diffeomorphic to Euclidean space. In the 1990s, Perelman shifted the focus of his research to the Ricci flow and its applications to the geometrization of three-dimensional manifolds. In three preprints [21], [22], [23] posted on the arXiv in 2002–2003, Perelman presented proofs of the Poincaré conjecture and the geometrization conjecture. The Poincaré conjecture dates back to 1904 [24]. The version stated by Poincaré is equivalent to the following. Poincaré conjecture. A simply-connected closed (= compact boundaryless) smooth 3-dimensional manifold is diffeomorphic to the 3-sphere. Thurston’s geometrization conjecture is a far-reaching generalization of the Poin- caré conjecture. It says that any closed orientable 3-dimensional manifold can be canonically cut along 2-spheres and 2-tori into “geometric pieces” [27]. -
A Survey of the Elastic Flow of Curves and Networks
A survey of the elastic flow of curves and networks Carlo Mantegazza ∗ Alessandra Pluda y Marco Pozzetta y September 28, 2020 Abstract We collect and present in a unified way several results in recent years about the elastic flow of curves and networks, trying to draw the state of the art of the subject. In par- ticular, we give a complete proof of global existence and smooth convergence to critical points of the solution of the elastic flow of closed curves in R2. In the last section of the paper we also discuss a list of open problems. Mathematics Subject Classification (2020): 53E40 (primary); 35G31, 35A01, 35B40. 1 Introduction The study of geometric flows is a very flourishing mathematical field and geometric evolution equations have been applied to a variety of topological, analytical and physical problems, giving in some cases very fruitful results. In particular, a great attention has been devoted to the analysis of harmonic map flow, mean curvature flow and Ricci flow. With serious efforts from the members of the mathematical community the understanding of these topics grad- ually improved and it culminated with Perelman’s proof of the Poincare´ conjecture making use of the Ricci flow, completing Hamilton’s program. The enthusiasm for such a marvelous result encouraged more and more researchers to investigate properties and applications of general geometric flows and the field branched out in various different directions, including higher order flows, among which we mention the Willmore flow. In the last two decades a certain number of authors focused on the one dimensional analog of the Willmore flow (see [26]): the elastic flow of curves and networks. -
EXOTIC SPHERES and CURVATURE 1. Introduction Exotic
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 45, Number 4, October 2008, Pages 595–616 S 0273-0979(08)01213-5 Article electronically published on July 1, 2008 EXOTIC SPHERES AND CURVATURE M. JOACHIM AND D. J. WRAITH Abstract. Since their discovery by Milnor in 1956, exotic spheres have pro- vided a fascinating object of study for geometers. In this article we survey what is known about the curvature of exotic spheres. 1. Introduction Exotic spheres are manifolds which are homeomorphic but not diffeomorphic to a standard sphere. In this introduction our aims are twofold: First, to give a brief account of the discovery of exotic spheres and to make some general remarks about the structure of these objects as smooth manifolds. Second, to outline the basics of curvature for Riemannian manifolds which we will need later on. In subsequent sections, we will explore the interaction between topology and geometry for exotic spheres. We will use the term differentiable to mean differentiable of class C∞,and all diffeomorphisms will be assumed to be smooth. As every graduate student knows, a smooth manifold is a topological manifold that is equipped with a smooth (differentiable) structure, that is, a smooth maximal atlas. Recall that an atlas is a collection of charts (homeomorphisms from open neighbourhoods in the manifold onto open subsets of some Euclidean space), the domains of which cover the manifold. Where the chart domains overlap, we impose a smooth compatibility condition for the charts [doC, chapter 0] if we wish our manifold to be smooth. Such an atlas can then be extended to a maximal smooth atlas by including all possible charts which satisfy the compatibility condition with the original maps. -
Nominations for President
ISSN 0002-9920 (print) ISSN 1088-9477 (online) of the American Mathematical Society September 2013 Volume 60, Number 8 The Calculus Concept Inventory— Measurement of the Effect of Teaching Methodology in Mathematics page 1018 DML-CZ: The Experience of a Medium- Sized Digital Mathematics Library page 1028 Fingerprint Databases for Theorems page 1034 A History of the Arf-Kervaire Invariant Problem page 1040 About the cover: 63 years since ENIAC broke the ice (see page 1113) Solve the differential equation. Solve the differential equation. t ln t dr + r = 7tet dt t ln t dr + r = 7tet dt 7et + C r = 7et + C ln t ✓r = ln t ✓ WHO HAS THE #1 HOMEWORK SYSTEM FOR CALCULUS? THE ANSWER IS IN THE QUESTIONS. When it comes to online calculus, you need a solution that can grade the toughest open-ended questions. And for that there is one answer: WebAssign. WebAssign’s patent pending grading engine can recognize multiple correct answers to the same complex question. Competitive systems, on the other hand, are forced to use multiple choice answers because, well they have no choice. And speaking of choice, only WebAssign supports every major textbook from every major publisher. With new interactive tutorials and videos offered to every student, it’s not hard to see why WebAssign is the perfect answer to your online homework needs. It’s all part of the WebAssign commitment to excellence in education. Learn all about it now at webassign.net/math. 800.955.8275 webassign.net/math WA Calculus Question ad Notices.indd 1 11/29/12 1:06 PM Notices 1051 of the American Mathematical Society September 2013 Communications 1048 WHAT IS…the p-adic Mandelbrot Set? Joseph H. -
Non-Singular Solutions of the Ricci Flow on Three-Manifolds
COMMUNICATIONS IN ANALYSIS AND GEOMETRY Volume 7, Number 4, 695-729, 1999 Non-singular solutions of the Ricci flow on three-manifolds RICHARD S. HAMILTON Contents. 1. Classification 695 2. The lower bound on scalar curvature 697 3. Limits 698 4. Long Time Pinching 699 5. Positive Curvature Limits 701 6. Zero Curvature Limits 702 7. Negative Curvature Limits 705 8. Rigidity of Hyperbolic metrics 707 9. Harmonic Parametrizations 709 10. Hyperbolic Pieces 713 11. Variation of Area 716 12. Bounding Length by Area 720 1. Classification. In this paper we shall analyze the behavior of all non-singular solutions to the Ricci flow on a compact three-manifold. We consider only essential singularities, those which cannot be removed by rescaling alone. Recall that the normalized Ricci flow ([HI]) is given by a metric g(x,y) evolving 695 696 Richard Hamilton by its Ricci curvature Rc(x,y) with a "cosmological constant" r = r{t) representing the mean scalar curvature: !*<XfY) = 2 ^rg{X,Y) - Rc(X,Y) where -h/h- This differs from the unnormalized flow (without r) only by rescaling in space and time so that the total volume V = /1 remains constant. Definition 1.1. A non-singular solution of the Ricci flow is one where the solution of the normalized flow exists for all time 0 < t < oo, and the curvature remains bounded |jRra| < M < oo for all time with some constant M independent of t. For example, any solution to the Ricci flow on a compact three-manifold with positive Ricci curvature is non-singular, as are the equivariant solutions on torus bundles over the circle found by Isenberg and the author [H-I] which has a homogeneous solution, or the Koiso soliton on a certain four-manifold [K]; by contrast the solutions on a four-manifold with positive isotropic curvature in [H5] definitely become singular, and these singularities must be removed by surgery. -
Ricci Flow and Nonlinear Reaction--Diffusion Systems In
Ricci Flow and Nonlinear Reaction–Diffusion Systems in Biology, Chemistry, and Physics Vladimir G. Ivancevic∗ Tijana T. Ivancevic† Abstract This paper proposes the Ricci–flow equation from Riemannian geometry as a general ge- ometric framework for various nonlinear reaction–diffusion systems (and related dissipative solitons) in mathematical biology. More precisely, we propose a conjecture that any kind of reaction–diffusion processes in biology, chemistry and physics can be modelled by the com- bined geometric–diffusion system. In order to demonstrate the validity of this hypothesis, we review a number of popular nonlinear reaction–diffusion systems and try to show that they can all be subsumed by the presented geometric framework of the Ricci flow. Keywords: geometrical Ricci flow, nonlinear bio–reaction–diffusion, dissipative solitons and breathers 1 Introduction Parabolic reaction–diffusion systems are abundant in mathematical biology. They are mathemat- ical models that describe how the concentration of one or more substances distributed in space changes under the influence of two processes: local chemical reactions in which the substances are converted into each other, and diffusion which causes the substances to spread out in space. More formally, they are expressed as semi–linear parabolic partial differential equations (PDEs, see e.g., [55]). The evolution of the state vector u(x,t) describing the concentration of the different reagents is determined by anisotropic diffusion as well as local reactions: ∂tu = D∆u + R(u), (∂t = ∂/∂t), (1) arXiv:0806.2194v6 [nlin.PS] 19 May 2011 where each component of the state vector u(x,t) represents the concentration of one substance, ∆ is the standard Laplacian operator, D is a symmetric positive–definite matrix of diffusion coefficients (which are proportional to the velocity of the diffusing particles) and R(u) accounts for all local reactions. -
A Topologist's View of Symmetric and Quadratic
1 A TOPOLOGIST'S VIEW OF SYMMETRIC AND QUADRATIC FORMS Andrew Ranicki (Edinburgh) http://www.maths.ed.ac.uk/eaar Patterson 60++, G¨ottingen,27 July 2009 2 The mathematical ancestors of S.J.Patterson Augustus Edward Hough Love Eidgenössische Technische Hochschule Zürich G. H. (Godfrey Harold) Hardy University of Cambridge Mary Lucy Cartwright University of Oxford (1930) Walter Kurt Hayman Alan Frank Beardon Samuel James Patterson University of Cambridge (1975) 3 The 35 students and 11 grandstudents of S.J.Patterson Schubert, Volcker (Vlotho) Do Stünkel, Matthias (Göttingen) Di Möhring, Leonhard (Hannover) Di,Do Bruns, Hans-Jürgen (Oldenburg?) Di Bauer, Friedrich Wolfgang (Frankfurt) Di,Do Hopf, Christof () Di Cromm, Oliver ( ) Di Klose, Joachim (Bonn) Do Talom, Fossi (Montreal) Do Kellner, Berndt (Göttingen) Di Martial Hille (St. Andrews) Do Matthews, Charles (Cambridge) Do (JWS Casels) Stratmann, Bernd O. (St. Andrews) Di,Do Falk, Kurt (Maynooth ) Di Kern, Thomas () M.Sc. (USA) Mirgel, Christa (Frankfurt?) Di Thirase, Jan (Göttingen) Di,Do Autenrieth, Michael (Hannover) Di, Do Karaschewski, Horst (Hamburg) Do Wellhausen, Gunther (Hannover) Di,Do Giovannopolous, Fotios (Göttingen) Do (ongoing) S.J.Patterson Mandouvalos, Nikolaos (Thessaloniki) Do Thiel, Björn (Göttingen(?)) Di,Do Louvel, Benoit (Lausanne) Di (Rennes), Do Wright, David (Oklahoma State) Do (B. Mazur) Widera, Manuela (Hannover) Di Krämer, Stefan (Göttingen) Di (Burmann) Hill, Richard (UC London) Do Monnerjahn, Thomas ( ) St.Ex. (Kriete) Propach, Ralf ( ) Di Beyerstedt, Bernd -
Visualization of 2-Dimensional Ricci Flow
Pure and Applied Mathematics Quarterly Volume 9, Number 3 417—435, 2013 Visualization of 2-Dimensional Ricci Flow Junfei Dai, Wei Luo∗, Min Zhang, Xianfeng Gu and Shing-Tung Yau Abstract: The Ricci flow is a powerful curvature flow method, which has been successfully applied in proving the Poincar´e conjecture. This work introduces a series of algorithms for visualizing Ricci flows on general surfaces. The Ricci flow refers to deforming a Riemannian metric on a surface pro- portional to its Gaussian curvature, such that the curvature evolves like a heat diffusion process. Eventually, the curvature on the surface converges to a con- stant function. Furthermore, during the deformation, the conformal structure of the surfaces is preserved. By using Ricci flow, any closed compact surface can be deformed into either a round sphere, a flat torus or a hyperbolic surface. This work aims at visualizing the abstract Ricci curvature flow partially us- ing the recent work of Izmestiev [8]. The major challenges are to represent the intrinsic Riemannian metric of a surface by extrinsic embedding in the three dimensional Euclidean space and demonstrate the deformation process which preserves the conformal structure. A series of rigorous and practical algorithms are introduced to tackle the problem. First, the Ricci flow is discretized to be carried out on meshes. The preservation of the conformal structure is demon- strated using texture mapping. The curvature redistribution and flow pattern is depicted as vector fields and flow fields on the surface. The embedding of convex surfaces with prescribed Riemannian metrics is illustrated by embedding meshes with given edge lengths. -
Hamilton's Ricci Flow
The University of Melbourne, Department of Mathematics and Statistics Hamilton's Ricci Flow Nick Sheridan Supervisor: Associate Professor Craig Hodgson Second Reader: Professor Hyam Rubinstein Honours Thesis, November 2006. Abstract The aim of this project is to introduce the basics of Hamilton's Ricci Flow. The Ricci flow is a pde for evolving the metric tensor in a Riemannian manifold to make it \rounder", in the hope that one may draw topological conclusions from the existence of such \round" metrics. Indeed, the Ricci flow has recently been used to prove two very deep theorems in topology, namely the Geometrization and Poincar´eConjectures. We begin with a brief survey of the differential geometry that is needed in the Ricci flow, then proceed to introduce its basic properties and the basic techniques used to understand it, for example, proving existence and uniqueness and bounds on derivatives of curvature under the Ricci flow using the maximum principle. We use these results to prove the \original" Ricci flow theorem { the 1982 theorem of Richard Hamilton that closed 3-manifolds which admit metrics of strictly positive Ricci curvature are diffeomorphic to quotients of the round 3-sphere by finite groups of isometries acting freely. We conclude with a qualitative discussion of the ideas behind the proof of the Geometrization Conjecture using the Ricci flow. Most of the project is based on the book by Chow and Knopf [6], the notes by Peter Topping [28] (which have recently been made into a book, see [29]), the papers of Richard Hamilton (in particular [9]) and the lecture course on Geometric Evolution Equations presented by Ben Andrews at the 2006 ICE-EM Graduate School held at the University of Queensland.