ALABAMA University Libraries
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
A Survey of HC3N in Extragalactic Sources Is HC3N a Tracer of Activity in Ulirgs? Lindberg, J
University of Groningen A survey of HC3N in extragalactic sources Is HC3N a tracer of activity in ULIRGs? Lindberg, J. E.; Aalto, S.; Costagliola, F.; Perez Beaupuits, Juan; Monje, R.; Muller, S. Published in: Astronomy & astrophysics DOI: 10.1051/0004-6361/201015565 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2011 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Lindberg, J. E., Aalto, S., Costagliola, F., Perez Beaupuits, J., Monje, R., & Muller, S. (2011). A survey of HC3N in extragalactic sources Is HC3N a tracer of activity in ULIRGs? Astronomy & astrophysics, 527, [A150]. https://doi.org/10.1051/0004-6361/201015565 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 27-09-2021 A&A 527, A150 (2011) Astronomy DOI: 10.1051/0004-6361/201015565 & c ESO 2011 Astrophysics AsurveyofHC3N in extragalactic sources Is HC3N a tracer of activity in ULIRGs? J. -
CO Multi-Line Imaging of Nearby Galaxies (COMING) IV. Overview Of
Publ. Astron. Soc. Japan (2018) 00(0), 1–33 1 doi: 10.1093/pasj/xxx000 CO Multi-line Imaging of Nearby Galaxies (COMING) IV. Overview of the Project Kazuo SORAI1, 2, 3, 4, 5, Nario KUNO4, 5, Kazuyuki MURAOKA6, Yusuke MIYAMOTO7, 8, Hiroyuki KANEKO7, Hiroyuki NAKANISHI9 , Naomasa NAKAI4, 5, 10, Kazuki YANAGITANI6 , Takahiro TANAKA4, Yuya SATO4, Dragan SALAK10, Michiko UMEI2 , Kana MOROKUMA-MATSUI7, 8, 11, 12, Naoko MATSUMOTO13, 14, Saeko UENO9, Hsi-An PAN15, Yuto NOMA10, Tsutomu, T. TAKEUCHI16 , Moe YODA16, Mayu KURODA6, Atsushi YASUDA4 , Yoshiyuki YAJIMA2 , Nagisa OI17, Shugo SHIBATA2, Masumichi SETA10, Yoshimasa WATANABE4, 5, 18, Shoichiro KITA4, Ryusei KOMATSUZAKI4 , Ayumi KAJIKAWA2, 3, Yu YASHIMA2, 3, Suchetha COORAY16 , Hiroyuki BAJI6 , Yoko SEGAWA2 , Takami TASHIRO2 , Miho TAKEDA6, Nozomi KISHIDA2 , Takuya HATAKEYAMA4 , Yuto TOMIYASU4 and Chey SAITA9 1Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 2Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 3Department of Physics, School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 4Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 5Tomonaga Center for the History of the Universe (TCHoU), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 6Department of Physical Science, Osaka Prefecture University, Gakuen 1-1, -
Structure and Star Formation in Disk Galaxies I. Sample Selection And
Mon. Not. R. Astron. Soc. 000, 1–9 (2003) Printed 31 October 2018 (MN LATEX style file v1.4) Structure and star formation in disk galaxies I. Sample selection and near infrared imaging J. H. Knapen1,2, R. S. de Jong3, S. Stedman1 and D. M. Bramich4 1University of Hertfordshire, Department of Physical Sciences, Hatfield, Herts AL10 9AB 2Isaac Newton Group of Telescopes, Apartado 321, E-38700 Santa Cruz de La Palma, Spain 3Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 4School of Physics and Astronomy, University of St. Andrews, Scotland KY16 9SS Accepted March 2003. Received ; in original form ABSTRACT We present near-infrared imaging of a sample of 57 relatively large, Northern spiral galaxies with low inclination. After describing the selection criteria and some of the basic properties of the sample, we give a detailed description of the data collection and reduction procedures. The Ks λ =2.2µm images cover most of the disk for all galaxies, with a field of view of at least 4.2 arcmin. The spatial resolution is better than an arcsec for most images. We fit bulge and exponential disk components to radial profiles of the light distribution. We then derive the basic parameters of these components, as well as the bulge/disk ratio, and explore correlations of these parameters with several galaxy parameters. Key words: galaxies: spiral – galaxies: structure – infrared: galaxies 1 INTRODUCTION only now starting to be published (e.g., 2MASS: Skrutskie et al. 1997, Jarrett et al. 2003; Seigar & James 1998a, 1998b; Near-infrared (NIR) imaging of galaxies is a better tracer Moriondo et al. -
Arxiv:0903.2008V1
Do Bars Drive Spiral Density Waves? Ronald J. Buta Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA; [email protected] Johan H. Knapen Instituto de Astrof´ısica de Canarias, E-38200 La Laguna, Spain; [email protected] Bruce G. Elmegreen IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA; [email protected] Heikki Salo & Eija Laurikainen Division of Astronomy, Department of Physical Sciences, University of Oulu, Oulu FIN-90014, Finland; [email protected].fi,[email protected].fi Debra Meloy Elmegreen Vassar College, Dept. of Physics & Astronomy, Box 745, Poughkeepsie, NY 12604, USA; [email protected] Ivˆanio Puerari Instituto Nacional de Astrof´ısica, Optica y Electr´onica, Tonantzintla, PUE 72840, Mexico; arXiv:0903.2008v1 [astro-ph.CO] 11 Mar 2009 [email protected] David L. Block Anglo American Cosmic Dust Laboratory, School of Computational & Applied Mathematics University of the Witwatersrand P.O Box 60 Wits, 2050, South Africa; [email protected] Received ; accepted –2– ABSTRACT We present deep near-infrared Ks-band AAT IRIS2 observations of a selected sample of nearby barred spiral galaxies, including some with the strongest known bars. The sample covers a range of Hubble types from SB0− to SBc. The goal is to determine if the torque strengths of the spirals correlate with those of the bars, which might be expected if the bars actually drive the spirals as has been predicted by theoretical studies. This issue has implications for interpreting bar and spiral fractions at high redshift. Analysis of previous samples suggested that such a correlation exists in the near-infrared, where effects of extinction and star formation are less important. -
And Ecclesiastical Cosmology
GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc. -
194 9 Ce Le B Rating 65 Ye Ars O F Br Inging As Tr on Omy T O No Rth Te X As 2
1949 Celebrating 65 Years of Bringing Astronomy to North Texas 2014 Contact information: Inside this issue: Info Officer (General Info) – [email protected] Website Administrator – [email protected] Page Postal Address: November Club Calendar 3 Fort Worth Astronomical Society Celestial Events 4 c/o Matt McCullar 5801 Trail Lake Drive Sky Chart 5 Fort Worth, TX 76133 Moon Phase Calendar 6 Web Site: http://www.fortworthastro.org Facebook: http://tinyurl.com/3eutb22 Lunar Occultations/Conjs 7 Twitter: http://twitter.com/ftwastro Yahoo! eGroup (members only): http://tinyurl.com/7qu5vkn Mercury/Venus Chart 8 Officers (2014-2015): Mars/Minor Planets Charts 9 President – Bruce Cowles, [email protected] Jupiter Charts 10 Vice President – Russ Boatwright, [email protected] Sec/Tres – Michelle Theisen, [email protected] Planet Vis & ISS Passes 11 Board Members: CSAC Event Update 12 2014-2016 Mike Langohr Young Astronomer News 12 Tree Oppermann ‘66 Leonids Remembered 13 2013-2015 Bill Nichols Cloudy Night Library 15 Jim Craft Cover Photo: Monthly AL Observing Club 17 Composite image taken by FWAS mem- bers: Left to right, from top to bottom— Constellation of the Month 18 Laura Cowles, Mike Ahner, Brian Wortham, Constellation Mythology 19 Shawn Kirchdorfer, Mark Wainright, Phil Stage, Patrick McMahon, Dennis Webb, Ben Prior Club Meeting Minutes 20 Hudgens, Shawn Kirchdorfer, John McCrea, and Chris Mlodnicki General Club Information 21 That’s A Fact 21 Observing Site Reminders: Be careful with fire, mind all local burn bans! Full Moon Name 21 Dark Site Usage Requirements (ALL MEMBERS): FWAS Foto Files 22 Maintain Dark-Sky Etiquette (http://tinyurl.com/75hjajy) Turn out your headlights at the gate! Sign the logbook (in camo-painted storage shed. -
ISOCAM Observations of Normal Star-Forming Galaxies: the Key Project Sample’
ISOCAM Observations of Normal Star-Forming Galaxies: The Key Project Sample’ D.A. Dale,2 N.A. Silbermann,2 G. Heloq2 E. Valjaveq2 S. Malhotra,2 C.A. Beichman,2 J. Brauher,2 A. Contursi,2H. Diner~tein,~D. H~llenbach,~D. Hunter,s S. Kolhatkar,2 K.Y. LO,^ S. Lord,2 N.Y. Lu,~R. Rubiq4 G. Stacey,? H. Thronson, Jr.,’ M. Werner,g H. Corwin2 ABSTRACT We present mid-infrared maps and preliminary analysis for 61 galaxies observed with the Infrared Space Observatory. Many of the general features of galaxies observed at optical wavelengths-spiral arms, disks, rings, and bright knots of emission-are also seen in the mid-infrared, except the prominent optical bulges are absent at 6.75 and 15 pm. In addition, the maps are quite similar at 6.75 and 15 pm, except for a few cases where a central starburst leads to lower !dS3~4ratios in the inner region. kVe also present infrared flux densities and mid-infrared sizes for these galasies. The mid-infrared color Iu(6.Zpm) Iu(l.5pm) shows a distincttrend with the far-infrared color m.The quiescent galasies in our sample 1, (60~)g 0.6) show unity,near ( I,( 1OOpm) whereas this ratio drops significantly for galaxies with higher global heating intensity levels. Azimuthally-averaged surface brightness profiles indicate the extent to which the mid-infrared flux is centrally concerltratecl, a,rltl provide information on the radial dependence of mid-infrared colors. The galaxies are mostly well resolved in these maps: almost half of them have < 10% of their flux in the central resolution element. -
Arxiv:1905.01979V1 [Astro-Ph.GA] 6 May 2019 Ies: Evolution – ISM: Jets and Outflows
Astronomy & Astrophysics manuscript no. ngc613 c ESO 2019 May 7, 2019 ALMA captures feeding and feedback from the active galactic nucleus in NGC 613 A. Audibert1, F. Combes1;2, S. García-Burillo3, L. Hunt4, A. Eckart5, S. Aalto6, V. Casasola7, F. Boone8, M. Krips9, S. Viti10, S. Muller6, K. Dasyra11, P. van der Werf12, and S. Martín13;14 1 Observatoire de Paris, LERMA, CNRS, PSL Univ., Sorbonne University, UPMC, Paris, France e-mail: [email protected] 2 Collège de France, 11 Pl. Marcelin Berthelot, 75231, Paris 3 Observatorio Astronómico Nacional (OAN-IGN)-Observatorio de Madrid, Alfonso XII, 3, 28014 Madrid, Spain 4 INAF - Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, 50125, Firenze, Italy 5 I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937, Köln, Germany 6 Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala, Sweden 7 INAF - Isitituto di Radioastronomia, via Piero Gobetti 101, 40129, Bologna, Italy 8 CNRS, IRAP, 9 Av. colonel Roche, BP 44346, 31028, Toulouse Cedex 4, France 9 IRAM, 300 rue de la Piscine, Domaine Universitaire, F-38406 Saint Martin d’Hères, France 10 Dep. of Physics and Astronomy, UCL, Gower Place, London WC1E 6BT, UK 11 Dep. of Astrophysics, Astronomy & Mechanics, Faculty of Physics, National and Kapodistrian University of Athens, Panepis- timiopolis Zografou, 15784, Greece, and National Observatory of Athens, Institute for Astronomy, Astrophysics, Space Applica- tions and Remote Sensing, Penteli, 15236, Athens, Greece 12 Leiden Observatory, Leiden Univ., PO Box 9513, 2300 RA Leiden, Netherlands 13 European Southern Observatory, Alonso de Córdova, 3107, Vitacura, Santiago 763-0355, Chile 14 Joint ALMA Observatory, Alonso de Córdova, 3107, Vitacura, Santiago 763-0355, Chile Received xx xx, 2019; accepted xxxx ABSTRACT We report ALMA observations of CO(3-2) emission in the Seyfert/nuclear starburst galaxy NGC 613, at a spatial resolution of 17 pc, as part of our NUclei of GAlaxies (NUGA) sample. -
The Large Scale Distribution of Radio Continuum in Ε and So Galaxies
THE LARGE SCALE DISTRIBUTION OF RADIO CONTINUUM IN Ε AND SO GALAXIES R.D. Ekers, Kapteyn Astronomical Institute, University of Groningen If we look at the radio properties of the nearby ellipticals we find a situation considerably different from that just described by van der Kruit for the spiral galaxies. For example NGC 5128 (Cen A), the nearest giant elliptical galaxy, is a thousand times more powerful a radio source than the brightest spiral galaxies and furthermore its radio emission comes from a multiple lobed radio structure which bears no resemblance to the optical light distribution (e.g. Ekers, 1975). The other radio emitting elliptical galaxies in our neighbourhood, NGC 1316 (Fornax A), IC 4296 (1333-33), have similar morphology. A question which then arises is whether at lower levels we can detect radio emission coming from the optical image of the elliptical galaxies and which may be more closely related to the kind of emission seen in the spiral galaxies. Since elliptical galaxies are less numerous than spiral galaxies we have to search out to the Virgo cluster to obtain a good sample. Some results from a Westerbork map of the central region of the Virgo cluster at 1.4 GHz (Kotanyi and Ekers, in preparation) is given in the Table. Radio Emission from Galaxies in the core of the Virgo Cluster Name Hubble m Flux density NGC Type Ρ (JO"29 W m-2 Hz-1) 4374 El 10.8 6200 3C 272.1 4388 Sc 12.2 140 4402 Sd 13.6 60 4406 E3 10.9 < 4 4425 SO 13.3 < 4 4435 SO 1 1.9 < 5 4438 S pec 12.0 150 This result is typical for spiral and elliptical galaxies and illustrates the different properties quite well. -
7.5 X 11.5.Threelines.P65
Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93, -
Arxiv:Astro-Ph/0401239V1 13 Jan 2004
Paper status: Accepted to the ApJ Missing Massive Stars in Starbursts: Stellar Temperature Diagnostics and the IMF J. R. Rigby and G. H. Rieke Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 [email protected], [email protected] ABSTRACT Determining the properties of starbursts requires spectral diagnostics of their ultraviolet ra- diation fields, to test whether very massive stars are present. We test several such diagnostics, using new models of line ratio behavior combining Cloudy, Starburst99 and up-to-date spectral atlases (Pauldrach et al. 2001; Hillier & Miller 1998). For six galaxies we obtain new measure- ments of Hei 1.7 µm/Br10, a difficult to measure but physically simple (and therefore reliable) diagnostic. We obtain new measurements of Hei 2.06 µm/Brγ in five galaxies. We find that Hei 2.06 µm/Brγ and [Oiii]/Hβ are generally unreliable diagnostics in starbursts. The het- eronuclear and homonuclear mid–infrared line ratios (notably [Neiii] 15.6 µm / [Neii] 12.8 µm) consistently agree with each other and with Hei 1.7 µm/Br10; this argues that the mid–infrared line ratios are reliable diagnostics of spectral hardness. In a sample of 27 starbursts, [Neiii]/[Neii] is significantly lower than model predictions for a Salpeter IMF extending to 100 M⊙. Plausi- ble model alterations strengthen this conclusion. By contrast, the low–mass and low–metallicity galaxies II Zw 40 and NGC 5253 show relatively high neon line ratios, compatible with a Salpeter slope extending to at least ∼ 40–60 M⊙. One solution for the low neon line ratios in the high– metallicity starbursts would be that they are deficient in & 40 M⊙ stars compared to a Salpeter IMF. -
Warm Dust and Aromatic Bands As Quantitative Probes of Star-Formation Activity
A&A 419, 501–516 (2004) Astronomy DOI: 10.1051/0004-6361:20040963 & c ESO 2004 Astrophysics Warm dust and aromatic bands as quantitative probes of star-formation activity N. M. F¨orster Schreiber1, H. Roussel2,M.Sauvage3, and V. Charmandaris4,5 1 Leiden Observatory, Leiden University, Postbus 9513, RA Leiden, The Netherlands e-mail: [email protected] 2 California Institute of Technology, Pasadena, CA 91125, USA 3 CEA/DSM/DAPNIA/Service d’Astrophysique, CE Saclay, 91191 Gif-sur-Yvette Cedex, France e-mail: [email protected] 4 Cornell University, Astronomy Department, Ithaca, NY 14853, USA 5 Chercheur associ´e, Observatoire de Paris, LERMA, 75014 Paris, France e-mail: [email protected] Received 2 January 2004 / Accepted 23 February 2004 Abstract. We combine samples of spiral galaxies and starburst systems observed with ISOCAM on board ISO to investigate the reliability of mid-infrared dust emission as a quantitative tracer of star formation activity. The total sample covers very diverse galactic environments and probes a much wider dynamic range in star formation rate density than previous similar studies. We find that both the monochromatic 15 µm continuum and the 5−8.5 µm emission constitute excellent indicators of the star formation rate as quantified by the Lyman continuum luminosity LLyc , within specified validity limits which are different for the two tracers. Normalized to projected surface area, the 15 µm continuum luminosity Σ15 µm,ct is directly proportional to ΣLyc over several orders of magnitude. Two regimes are distinguished from the relative offsets in the observed relationship: the proportionality factor increases by a factor of ≈5 between quiescent disks in spiral galaxies, and moderate to extreme star- 2 −2 forming environments in circumnuclear regions of spirals and in starburst systems.