Opioid Epidemic: Uses, Abuses, and Innovation: a New Method for Approaching An

Total Page:16

File Type:pdf, Size:1020Kb

Opioid Epidemic: Uses, Abuses, and Innovation: a New Method for Approaching An Opioid Epidemic: Uses, Abuses, and Innovation: a New Method for Approaching an Old Problem Matt Fondersmith and David Peana Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri, 65211 Email: [email protected]; [email protected] Fondersmith Peana Introduction General analgesics and more specifically opioids Common opioids o Point out problems with common opioids Why PZM21 brings a solution to some problems o Compare to morphine, tramadol, and fentanyl Materials and Methods Computational Discovery With modern advancements in science and the depth of complexity that has been discovered in the human body, it should be no surprise that the pharmaceutical industry would take advantage of cutting edge computing technology for the advancement of drug chemistry and the discovery of new, innovative drugs. PZM21 (Scheme 1) is the result of the compilation of massive calculations and data sets which were sorted and narrowed down. The current problem with the opioids is that they act as agonists to the primary µ- opioid receptor site. It has also been recently discovered that they often take part in β- Arrestin recruitment1 which gives rise to the serious side effects of most opioids, primary among them being respiratory depression. PZM21 was discovered by computing and trying to dock millions of molecules, both known and theoretical, to orthosteric (non- primary) binding sites of the µ-opioid receptor (the µ-opioid receptor [µOR] is the receptor in the nervous system responsible for the analgesic effects of opioids). Out of the millions of molecules docked, PZM21 was the most efficient at providing analgesic effects with little to no adverse side-effects due to its ability to bind to an orthosteric 2 Fondersmith Peana binding site of a µOR (see Table 1 in Appendix). After the theoretical analysis and discovery, PZM21 was synthesized and tested on lab mice. Due to its recent discovery, it has not been approved for human testing yet.2 Synthesis The synthesis of PZM21 is primarily prepared from amino acid amide chemistry. Starting with two primary amides, steps 1 and 2 in the reaction are meant to turn these primary amides into primary amines. Step 3 of the reaction is a Henry reaction that, when treated with the cyclohalogen reactant, yields a nitropropene derivative. This nitropropene derivative gets converted into a racemic alkylamine. Activation with a cyclic, nitrogen containing compound creates a carbamate. When this carbamate is coupled with the enantiopure primary amines, a diastereomeric mixture of ureas is achieved. Overall, there are over 8 pure stereoisomers of PZM21. Identification After synthesizing the molecule, it was put through various types of NMR imaging techniques. Both H1NMR and C13NMR confirmed that PZM21 and its various stereoisomers were synthesized. Performance PZM21 performed in lab studies with mice as was predicted theoretically. In terms of analgesic properties, PZM21 is about 4 times weaker than morphine. Its dosage is 40mg/2-4 hours which is approximately 4 times that of morphine and comparable to the dosage of Tramadol. The duration of PZM21 is also comparable to Tramadol but PZM21 peaks faster and is exhausted faster. The binding affinity of PZM21 is slightly stronger 3 Fondersmith Peana than that of morphine meaning it binds tighter and is slightly more difficult to disengage from the G-protein once engaged. The shining quality of PZM21 over other opioids is in the lack of adverse effects. Whereas fentanyl, morphine, and even tramadol to an extent have adverse side effects, principle among them being respiratory depression, PZM21 circumvents those side effects and offers analgesia without them. Overall, PZM21 was developed to be an opioid analgesic without the adverse side effects of other opioids. Theoretically, it accomplishes its task. So far, experiments have further proved the theoretical work done. Results and Discussion After all the theoretical analysis, PZM21 was discovered to be the best As the comparison data shows, PZM21 has many of the benefits of other opioids but not some of the drawbacks o This is because of its mechanism of action… Conclusion [Placeholder conclusion for the sake of formatting] Scheme 1: Structure of PZM21 Supplementary Material Available The appendix contains a more detailed description of the process and preparation of the substrates, as well as their characterization. 4 Fondersmith Peana References (1): Abbas, A.; Roth, B.L. Arresting Serotonin. Proc Natl Acad Sci U S A. 2008 22, , 831- 2. (2): Manglik, A.; Lin, H. et al. Structure–based discovery of opioid analgesics with reduced side effects. Nature. 2016, 08; 185–190. 5 Fondersmith Peana Supporting Information Opioid Epidemic: Uses, Abuses, and Innovation: a New Method for Approaching an Old Problem Matt Fondersmith and David Peana Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri, 65211 Email: [email protected] ; [email protected] S1 Fondersmith Peana Table of Contents Table of Contents .............................................................................................................. S2 Synthesis ............................................................................................................................ S3 Identification ..................................................................................................................... S1 Dosage .............................................................................................................................. S4 Duration ............................................................................................................................ S4 Binding Affinity ................................................................................................................. S5 Respiratory Depression .................................................................................................... S5 Performance ...................................................................................................................... S6 Bibliography ..................................................................................................................... S6 References ......................................................................................................................... S7 S2 Fondersmith Peana Synthesis The primary amino group in the first step was dimethylated using an excess of aqueous formaldehyde and sodium triacetoxyborohydrife in aqueous acetonitrile (Scheme 2). The carboxamides were the converted to primary amines in a 1M borane-tetrahydrofurane complex and anhydrous THF in a nitrogen atmosphere. After filtering, step 2 is complete. Step 3 started with thiopene-3-carbaldehyde in an ice cold mixture of formic acid and nitroethane. after heating to 100C and stirred for 7 hours, the resulting solution was poured into cold water and filtered. The precipitate product was washed with water and yielded a yellow solid. This is good because it means the formic acid did not rip off the sulfur in the molecule. Step 4 was completed using the previous product in a solution of THF and LiAlH4 added dropwise. the mixture was kept under a gentle reflux for a full 30 minutes before being cooled to 0C and dessicated with a sodium-sulfate salt. After being cooled, stirred, and filtered, the yellow filtrate was concentrated under reduced pressure and dissolved in diethyl ether and precipitated by 2M HCL. The precipitate was then recrystallized from acetonitrile. Step 5 was completed with the previous product charged with triethylamine in anhydrous THF. the mixture was warmed to an ambient temperature and stirred for 6 hours. the slurry was then diluted with DCM and filtered. Once washed with saturated NaHCO3 and brine, the filtrate was dried over anhydrous Na2S04. After being filtered again, the crude residue was purified by flash chromatography in 100% dichloromethane, yielding the desired product as white foam. the sixth and final step of the reaction is putting both the diamine and bicyclic systems together in a suspension of acetonitrile, and triethylmamine. The solution was sealed and S3 Fondersmith Peana heated until the mixture turned yellow. After increasing the temperature to 80C, the mixture was stirred for 2 hours, then filtered and concentrated under reduced pressure. the residue was taken and suspended in 33% ethyl acetate/isopropanol and washed with a PH 9.5 carbonate buffer. After extracting the organic layer and drying it over Na2SO4, the residue was filtered and concentrated again. The crude residue was purified by dry- column vacuum chromatography. This synthesis yields 8 different stereoisomers. The particular isomer we want to obtain is PZM21, and that can be reclaimed as a colorless oil, separating the diastereoisomers with a semi-preparative HPLC with diethyl amine in isopropanol/hexane. S4 Fondersmith Peana Scheme S1. Overview of Synthesis S1 Fondersmith Peana Identification The HNMR peaks (Figure 1) can be characterized by obvious peaks in the regions consisting of amine and aromatic hydrogens. The aromatic hydrogens have peaks between 6.5ppm and 8.5ppm, there are three peaks with one peak having n=5. This is describing the aromatic ring with the nitro group attached. The peak at about 6 is the 5- proton ring containing the sulfure atom. The double peak describing the amines on either side of the ketone in the middle of the molecule happens right at about 1.3ppm. In the CNMR spectrum (Figure 2), we have
Recommended publications
  • Example of a Scientific Poster
    Janet Robishaw, PhD Senior Associate Dean for Research Chair and Professor, Biomedical Science Florida Atlantic University Charles E. Schmidt College of Medicine Disclosures and Conflicts • I have no actual or potential conflict of interest in relation to this program/presentation. • Research support: Robishaw, MPI Robishaw, MPI R01 DA044015 R01 HL134015 Genetic Predictors of Opioid Addiction Genetic Heterogeneity of Sleep Apnea 2017-2022 2016-2021 Robishaw, PI Robishaw, MPI R01 GM114665 R01 GM111913 Novel Aspects of Golf Signaling GPCR Variants in Complex Diseases 2015-2019 2015-2019 Learning Objectives 1. Review the scope and root cause of opioid use disorder 2. Discuss the effects of opioid medications on the brain and body 3. Stress the importance of clinical judgement and discovery to address the opioid crisis 4. Highlight the clinical implications between opioid use disorder and heroin abuse Two Endemic Problems Chronic Pain Opioid Use Disorder Debilitating disorder Chronic, relapsing disorder 100 million Americans 2 million Americans Costs $630 billion dollars per year Costs $80 billion per year #1 presenting complaint to doctors # 1 cause of accidental death #1 reason for lost productivity #1 driver of heroin epidemic #1 treatment –opioid medications ? treatment Pain Relief and “Addiction” Share A Common Mechanism of Action m-Opioid Receptor Brain Regions Involved in Pleasure and Reward Increase dopamine release Brain Regions Involved in Pain Perception Brainstem Involved in Respiratory Control Spinal Cord Involved in Pain Transmission Prevent ascending transmission Turn on descending inhibitory systems These receptors are dispersed Inhibit peripheral nocioceptors throughout the body, thereby accounting for their differential Body effects on pain and reward paths.
    [Show full text]
  • Biased Versus Partial Agonism in the Search for Safer Opioid Analgesics
    molecules Review Biased versus Partial Agonism in the Search for Safer Opioid Analgesics Joaquim Azevedo Neto 1 , Anna Costanzini 2 , Roberto De Giorgio 2 , David G. Lambert 3 , Chiara Ruzza 1,4,* and Girolamo Calò 1 1 Department of Biomedical and Specialty Surgical Sciences, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; [email protected] (J.A.N.); [email protected] (G.C.) 2 Department of Morphology, Surgery, Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; [email protected] (A.C.); [email protected] (R.D.G.) 3 Department of Cardiovascular Sciences, Anesthesia, Critical Care and Pain Management, University of Leicester, Leicester LE1 7RH, UK; [email protected] 4 Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, 44122 Ferrara, Italy * Correspondence: [email protected] Academic Editor: Helmut Schmidhammer Received: 23 July 2020; Accepted: 23 August 2020; Published: 25 August 2020 Abstract: Opioids such as morphine—acting at the mu opioid receptor—are the mainstay for treatment of moderate to severe pain and have good efficacy in these indications. However, these drugs produce a plethora of unwanted adverse effects including respiratory depression, constipation, immune suppression and with prolonged treatment, tolerance, dependence and abuse liability. Studies in β-arrestin 2 gene knockout (βarr2( / )) animals indicate that morphine analgesia is potentiated − − while side effects are reduced, suggesting that drugs biased away from arrestin may manifest with a reduced-side-effect profile. However, there is controversy in this area with improvement of morphine-induced constipation and reduced respiratory effects in βarr2( / ) mice. Moreover, − − studies performed with mice genetically engineered with G-protein-biased mu receptors suggested increased sensitivity of these animals to both analgesic actions and side effects of opioid drugs.
    [Show full text]
  • Pain Therapy E Are There New Options on the Horizon?
    Best Practice & Research Clinical Rheumatology 33 (2019) 101420 Contents lists available at ScienceDirect Best Practice & Research Clinical Rheumatology journal homepage: www.elsevierhealth.com/berh 4 Pain therapy e Are there new options on the horizon? * Christoph Stein a, , Andreas Kopf b a Department of Experimental Anesthesiology, Charite Campus Benjamin Franklin, D-12200 Berlin, Germany b Department of Anesthesiology and Intensive Care Medicine, Charite Campus Benjamin Franklin, D-12200 Berlin, Germany abstract Keywords: Opioid crisis This article reviews the role of analgesic drugs with a particular Chronic noncancer pain emphasis on opioids. Opioids are the oldest and most potent drugs Chronic nonmalignant pain for the treatment of severe pain, but they are burdened by detri- Opioid mental side effects such as respiratory depression, addiction, Opiate sedation, nausea, and constipation. Their clinical application is Inflammation undisputed in acute (e.g., perioperative) and cancer pain, but their Opioid receptor long-term use in chronic pain has met increasing scrutiny and has Misuse Abuse contributed to the current opioid crisis. We discuss epidemiolog- Bio-psycho-social ical data, pharmacological principles, clinical applications, and research strategies aiming at novel opioids with reduced side effects. © 2019 Elsevier Ltd. All rights reserved. The opioid epidemic The treatment of pain remains a huge challenge in clinical medicine and public health [1,2]. Pain is the major symptom in rheumatoid (RA) and osteoarthritis (OA) [3,4]. Both are chronic conditions that are not linked to malignant disease, and pain can occur even in the absence of inflammatory signs (see chapter “Pain without inflammation”). Unfortunately, there is a lack of fundamental knowledge about the management of chronic noncancer pain.
    [Show full text]
  • Developments in Opioid Drugs
    Spotlight on drugs Developments in opioid Advanced courses 2019 analgesics Dr Andrew Wilcock DM FRCP [email protected] 1 2 1 2 Outline of talk • background – cancer pain / strong opioids Background • pharmacology • new approaches (as we go) • summary • discussion/questions. 3 4 Opioids WHO analgesic ladder for cancer pain • central to the management of moderate–severe acute pain and cancer pain. 5 6 1 Broad-spectrum analgesia Opioids: why improve? Ultimate aim to: • improve efficacy • eliminate / reduce risk of undesirable effects, e.g.: – constipation – dependence – respiratory depression – sedation – tolerance. 7 8 Opioids: chemical classification Pharmacology 9 10 Opioid: receptors Four main types: • μ • κ • δ • opioid-receptor-like 1 (OPRL-1) – opioid-related nociceptin receptor 1 – nociceptin opioid peptide (NOP) – nociceptin/orphanin FQ (N/OFQ). 11 12 2 Opioid: receptors Opioids Generally: • μ-opioid receptor clinically most relevant for analgesia and undesirable effects • Centrally: dorsal horn, higher centres – pre-synaptic: inhibit release of neurotransmitters – post-synaptic: hyperpolarize neurone • Peripherally: nerve endings, DRG, (immune cells) – inflammation upregulates opioid receptors 13 14 15 16 New approaches for opioid analgesics 17 18 3 New approaches for opioid analgesics Include: 1. Broad-spectrum 2. Injury-targeted 1. ‘Broad-spectrum’ opioid agonists 3. Biased agonists Not exhaustive list, but main finds when searching the literature. Gunther T et al. (2018); Chan HCS et al. (2017) 19 20 ‘Broad-spectrum’ opioid agonists Differential analgesic and UE of opioid receptors Targeting multiple receptors may have synergistic analgesic effects & lower UE • μ most important analgesia / UE • selective κ and δ agonists – limited analgesia / own UE – κ (e.g.
    [Show full text]
  • Measuring Ligand Efficacy at the Mu- Opioid Receptor Using A
    RESEARCH ARTICLE Measuring ligand efficacy at the mu- opioid receptor using a conformational biosensor Kathryn E Livingston1,2, Jacob P Mahoney1,2, Aashish Manglik3, Roger K Sunahara4, John R Traynor1,2* 1Department of Pharmacology, University of Michigan Medical School, Ann Arbor, United States; 2Edward F Domino Research Center, University of Michigan, Ann Arbor, United States; 3Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, United States; 4Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, United States Abstract The intrinsic efficacy of orthosteric ligands acting at G-protein-coupled receptors (GPCRs) reflects their ability to stabilize active receptor states (R*) and is a major determinant of their physiological effects. Here, we present a direct way to quantify the efficacy of ligands by measuring the binding of a R*-specific biosensor to purified receptor employing interferometry. As an example, we use the mu-opioid receptor (m-OR), a prototypic class A GPCR, and its active state sensor, nanobody-39 (Nb39). We demonstrate that ligands vary in their ability to recruit Nb39 to m- OR and describe methadone, loperamide, and PZM21 as ligands that support unique R* conformation(s) of m-OR. We further show that positive allosteric modulators of m-OR promote formation of R* in addition to enhancing promotion by orthosteric agonists. Finally, we demonstrate that the technique can be utilized with heterotrimeric G protein. The method is cell- free, signal transduction-independent and is generally applicable to GPCRs. DOI: https://doi.org/10.7554/eLife.32499.001 *For correspondence: [email protected] Competing interests: The authors declare that no Introduction competing interests exist.
    [Show full text]
  • Better Agonist for the Opioid Receptors Syed Lal Badshah1* , Asad Ullah1, Salim S
    Badshah et al. Chemistry Central Journal (2018) 12:13 https://doi.org/10.1186/s13065-018-0383-8 COMMENTARY Open Access Better agonist for the opioid receptors Syed Lal Badshah1* , Asad Ullah1, Salim S. Al‑showiman2 and Yahia Nasser Mabkhot2* Abstract This commentary highlights the recent work published in journal Nature on the structural based discovery of novel analgesic compounds for opioid receptors with minimal efects. Manglik et al. selectively targeted the Gi based μOR pathway instead of the β-arrestin pathway of the opioids. The computational screening of millions of compounds showed a list of several competent ligands. From these ligands they synthesized the compounds with the best docking score, which were further optimized by adding side residues for better interaction with the μOR. A promis‑ ing compound, PZM21, was a selective agonist of μOR. It has better analgesic properties with minimal side efects of respiratory depression and constipation. This work is a step towards better drug designing and synthesizing in terms of efcacy, specifcity with least side efects of targeted GPCR proteins present in the human proteome. Keywords: Opioid receptors, Analgesics, Agonists, Molecular docking, Selectivity Introduction for GPCRs includes lipids, fatty acids, neurotransmitters, Morphine is the natural alkaloid present in opium and it photons, cytokines, hormones and metal ions [8, 9]. Tey is obtained from poppy plant. Opium has been used as an transduce the signal across the plasma membrane by analgesic and as a recreational drug since ancient times. binding with these ligands that causes certain conforma- Other common analgesics used include natural alkaloids tional changes into the seven trans-membrane alpha heli- like codeine, oxycodone, etc.
    [Show full text]
  • Rubiscolins Are Naturally Occurring G Protein-Biased Delta Opioid Receptor Peptides
    European Neuropsychopharmacology (2019) 29, 450–456 www.elsevier.com/locate/euroneuro SHORT COMMUNICATION Rubiscolins are naturally occurring G protein-biased delta opioid receptor peptides a , 1 a, 1 a Robert J. Cassell , Kendall L. Mores , Breanna L. Zerfas , a a, b , c a ,b , c Amr H. Mahmoud , Markus A. Lill , Darci J. Trader , a, b ,c , ∗ Richard M. van Rijn a Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA b Purdue Institute for Drug Discovery, West Lafayette, IN 47907, USA c Purdue Institute for Integrative Neuroscience, West Lafayette, IN 47907, USA Received 6 August 2018; received in revised form 19 November 2018; accepted 16 December 2018 KEYWORDS Abstract Delta opioid receptor; The impact that β-arrestin proteins have on G protein-coupled receptor trafficking, signaling Beta-arrestin; and physiological behavior has gained much appreciation over the past decade. A number of Natural products; studies have attributed the side effects associated with the use of naturally occurring and syn- Biased signaling; thetic opioids, such as respiratory depression and constipation, to excessive recruitment of Rubisco; β-arrestin. These findings have led to the development of biased opioid small molecule ago- G protein-coupled nists that do not recruit β-arrestin, activating only the canonical G protein pathway. Similar G receptor protein-biased small molecule opioids have been found to occur in nature, particularly within kratom, and opioids within salvia have served as a template for the synthesis of other G protein- biased opioids. Here, we present the first report of naturally occurring peptides that selectively activate G protein signaling pathways at δ opioid receptors, but with minimal β-arrestin recruit- ment.
    [Show full text]
  • Influence of G Protein-Biased Agonists of Μ-Opioid Receptor on Addiction-Related Behaviors
    Pharmacological Reports https://doi.org/10.1007/s43440-021-00251-1 SPECIAL ISSUE: REVIEW Infuence of G protein‑biased agonists of μ‑opioid receptor on addiction‑related behaviors Lucja Kudla1 · Ryszard Przewlocki1 Received: 31 January 2021 / Revised: 5 March 2021 / Accepted: 16 March 2021 © The Author(s) 2021 Abstract Opioid analgesics remain a gold standard for the treatment of moderate to severe pain. However, their clinical utility is seriously limited by a range of adverse efects. Among them, their high-addictive potential appears as very important, espe- cially in the context of the opioid epidemic. Therefore, the development of safer opioid analgesics with low abuse potential appears as a challenging problem for opioid research. Among the last few decades, diferent approaches to the discovery of novel opioid drugs have been assessed. One of the most promising is the development of G protein-biased opioid agonists, which can activate only selected intracellular signaling pathways. To date, discoveries of several biased agonists acting via μ-opioid receptor were reported. According to the experimental data, such ligands may be devoid of at least some of the opioid side efects, such as respiratory depression or constipation. Nevertheless, most data regarding the addictive properties of biased μ-opioid receptor agonists are inconsistent. A global problem connected with opioid abuse also requires the search for efective pharmacotherapy for opioid addiction, which is another potential application of biased compounds. This review discusses the state-of-the-art on addictive properties of G protein-biased μ-opioid receptor agonists as well as we analyze whether these compounds can diminish any symptoms of opioid addiction.
    [Show full text]
  • February 2019 Director's Report
    TABLE OF CONTENTS RESEARCH HIGHLIGHTS…………….………………………………………………………. 1 GRANTEE HONORS AND AWARDS…………………………………………………………. 36 STAFF HONORS AND AWARDS…………………………………………………………….... 37 STAFF CHANGES…………………………………………………………………………….…. 43 IN MEMORIAM………………………………………………………………………………….. 48 RESEARCH FINDINGS BASIC AND BEHAVIORAL RESEARCH Adolescent Exposure To Δ9-Tetrahydrocannabinol Alters the Transcriptional Trajectory and Dendritic Architecture of Prefrontal Pyramidal Neurons Michael L. Miller, Benjamin Chadwick, Dara L. Dickstein, Immanuel Purushothaman, Gabor Egervari, Tanni Rahman, Chloe Tessereau, Patrick R. Hof, Panos Roussos, Li Shen, Mark G. Baxter, Yasmin L. Hurd; Mol. Psychiatry 2018. Neuronal circuits within the prefrontal cortex (PFC) mediate higher cognitive functions and emotional regulation that are disrupted in psychiatric disorders. The PFC undergoes significant maturation during adolescence, a period when cannabis use in humans has been linked to subsequent vulnerability to psychiatric disorders such as addiction and schizophrenia. Here, the authors investigated in a rat model the effects of adolescent exposure to Δ9-tetrahydrocannabinol (THC), a psychoactive component of cannabis, on the morphological architecture and transcriptional profile of layer III pyramidal neurons-using cell type- and layer-specific high- resolution microscopy, laser capture microdissection and next-generation RNA-sequencing. The results confirmed known normal expansions in basal dendritic arborization and dendritic spine pruning during the transition from late
    [Show full text]
  • Replacement of Current Opioid Drugs Focusing on MOR-Related Strategies
    JPT-107519; No of Pages 17 Pharmacology & Therapeutics xxx (2020) xxx Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Replacement of current opioid drugs focusing on MOR-related strategies Jérôme Busserolles a,b, Stéphane Lolignier a,b, Nicolas Kerckhove a,b,c, Célian Bertin a,b,c, Nicolas Authier a,b,c, Alain Eschalier a,b,⁎ a Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France b Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France c Observatoire Français des Médicaments Antalgiques (OFMA), French monitoring centre for analgesic drugs, CHU, F-63000 Clermont-Ferrand, France article info abstract Available online xxxx The scarcity and limited risk/benefit ratio of painkillers available on the market, in addition to the opioid crisis, warrant reflection on new innovation strategies. The pharmacopoeia of analgesics is based on products that are often old and derived from clinical empiricism, with limited efficacy or spectrum of action, or resulting in Keywords: an unsatisfactory tolerability profile. Although they are reference analgesics for nociceptive pain, opioids are sub- Analgesia ject to the same criticism. The use of opium as an analgesic is historical. Morphine was synthesized at the begin- Mu opioid receptors (MORs) ning of the 19th century. The efficacy of opioids is limited in certain painful contexts and these drugs can induce Opioid adverse side effects potentially serious and fatal adverse effects. The current North American opioid crisis, with an ever-rising number Opioid abuse and misuse of deaths by opioid overdose, is a tragic illustration of this.
    [Show full text]
  • Director's Report to the National Advisory Council on Drug Abuse
    Director’s Report to the National Advisory Council on Drug Abuse Nora D. Volkow, M.D. Director National Institute on Drug Abuse May 11, 2021 1 NIDA BUDGET FY 2020 ($k) FY 2021 ($k) FY 2022 PB ($k) Base $1,191,362 $1,210,014 HEAL $266,321* $270,295* TBD Total $1,457,683 $1,480,309 *NIH’s total HEAL funding is split evenly between NIDA and NINDS FY 20 Funding Overview Non-HEAL Research HEAL Research* *Includes all NIDA HEAL projects regardless of funding source Adolescent Brain Cognitive Development Study 98.5 Percent Retained As of April 2021 Adolescent Brain Cognitive Development Study (ABCD): Progress up to April 2021 145 papers, half from ABCD, half from non-ABCD investigators Imaging Completion QUESTIONNAIRE AND COGNITIVE DATA Baseline 1-year 2-year 3-year ABCD Baseline 2-year FU 100 90 80 70 60 50 40 30 PERCENT OF OF PERCENT PARTICIPANTS 20 10 0 REDCAP KSADS PARENT KSADS YOUTH NIH TB hBCD Study Longitudinal study to understand normative neurodevelopment from birth to 9-10 years with an emphasis on assessing the impact of in utero exposures to drugs and harmful environments Phase 1 Accomplishments • Training for research coordinators • Purchased Sprinter van to demonstrate feasibility of scanning remotely • MRI compatible crib to image newborns and infants • Developed a multimodal protocol using EEG and • Summit of families, legal scholars, ethicists, healthcare MRI to assess brain structure, function, and providers, and relevant agencies to mitigate risk and connectivity. maximize benefit to women and children enrolled • Conducted extensive literature review of • Workshop on bioethics recruitment and retention with vulnerable • Motion correction system developed and tested populations • Protocols for remotely collecting saliva and stool • Conducted state by state assessment of legal and ethical issues related to substance use and Protocols for MRI data collection in infants with • pregnancy in research neonatal abstinence syndrome (NAS) created 6 6 Intersection Between Drug Crisis and COVID-19 .
    [Show full text]
  • Medical Research to Address the Opioid Crisis in the United States
    Medical research to address the opioid crisis in the United States Iván D. Montoya, M.D., M.P.H. Deputy Director, Division of Therapeutics and Medical Consequences NIDA Bolliger, 2019 • “Aggressive, trans-agency effort to speed scientific solutions to stem the national opioid public health crisis.” • Build on extensive, well-established NIH research including: • Basic science of neurological pathways involved in pain and OUD • Clinical studies of safer and more effective treatments for pain and OUD • Implementation science to develop and test treatment models Clinical Pre-Clinical Research in Research in Pain Pain Enhancing Pain Management Management Expand Enhance Treatments Therapeutic Improving Treatments for Affected Options for Misuse and Newborns Addiction Develop New/ Improved Optimize Prevention & Effective Treatment Treatments Strategies NIDA HEAL Projects • Expanding therapeutic options for Opioid Use Disorder and Overdose • Enhancing the NIDA Clinical Trials Network • HEALing Communities Study • Justice Community Opioid Innovation Network (JCOIN) • Preventing At-Risk Adolescents Transitioning into Adulthood from Developing Opioid Use Disorder • HEALthy Brain and Child Development Study https://www.drugabuse.gov/drugs-abuse/opioids/nidas-role-in-nih-heal-initiative FDA-Approved Medications for Opioid Addiction and Overdose • Methadone • Buprenorphine • Sublingual • Monthly injection • Six month implant • Naltrexone • Oral • Monthly • Lofexidine • Naloxone • Parenteral • Nasal Close interaction with FDA Expand therapeutic options
    [Show full text]