Structure-Based Discovery of Opioid Analgesics with Reduced Side Effects Aashish Manglik1*, Henry Lin2*, Dipendra K
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Example of a Scientific Poster
Janet Robishaw, PhD Senior Associate Dean for Research Chair and Professor, Biomedical Science Florida Atlantic University Charles E. Schmidt College of Medicine Disclosures and Conflicts • I have no actual or potential conflict of interest in relation to this program/presentation. • Research support: Robishaw, MPI Robishaw, MPI R01 DA044015 R01 HL134015 Genetic Predictors of Opioid Addiction Genetic Heterogeneity of Sleep Apnea 2017-2022 2016-2021 Robishaw, PI Robishaw, MPI R01 GM114665 R01 GM111913 Novel Aspects of Golf Signaling GPCR Variants in Complex Diseases 2015-2019 2015-2019 Learning Objectives 1. Review the scope and root cause of opioid use disorder 2. Discuss the effects of opioid medications on the brain and body 3. Stress the importance of clinical judgement and discovery to address the opioid crisis 4. Highlight the clinical implications between opioid use disorder and heroin abuse Two Endemic Problems Chronic Pain Opioid Use Disorder Debilitating disorder Chronic, relapsing disorder 100 million Americans 2 million Americans Costs $630 billion dollars per year Costs $80 billion per year #1 presenting complaint to doctors # 1 cause of accidental death #1 reason for lost productivity #1 driver of heroin epidemic #1 treatment –opioid medications ? treatment Pain Relief and “Addiction” Share A Common Mechanism of Action m-Opioid Receptor Brain Regions Involved in Pleasure and Reward Increase dopamine release Brain Regions Involved in Pain Perception Brainstem Involved in Respiratory Control Spinal Cord Involved in Pain Transmission Prevent ascending transmission Turn on descending inhibitory systems These receptors are dispersed Inhibit peripheral nocioceptors throughout the body, thereby accounting for their differential Body effects on pain and reward paths. -
Biased Versus Partial Agonism in the Search for Safer Opioid Analgesics
molecules Review Biased versus Partial Agonism in the Search for Safer Opioid Analgesics Joaquim Azevedo Neto 1 , Anna Costanzini 2 , Roberto De Giorgio 2 , David G. Lambert 3 , Chiara Ruzza 1,4,* and Girolamo Calò 1 1 Department of Biomedical and Specialty Surgical Sciences, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; [email protected] (J.A.N.); [email protected] (G.C.) 2 Department of Morphology, Surgery, Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; [email protected] (A.C.); [email protected] (R.D.G.) 3 Department of Cardiovascular Sciences, Anesthesia, Critical Care and Pain Management, University of Leicester, Leicester LE1 7RH, UK; [email protected] 4 Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, 44122 Ferrara, Italy * Correspondence: [email protected] Academic Editor: Helmut Schmidhammer Received: 23 July 2020; Accepted: 23 August 2020; Published: 25 August 2020 Abstract: Opioids such as morphine—acting at the mu opioid receptor—are the mainstay for treatment of moderate to severe pain and have good efficacy in these indications. However, these drugs produce a plethora of unwanted adverse effects including respiratory depression, constipation, immune suppression and with prolonged treatment, tolerance, dependence and abuse liability. Studies in β-arrestin 2 gene knockout (βarr2( / )) animals indicate that morphine analgesia is potentiated − − while side effects are reduced, suggesting that drugs biased away from arrestin may manifest with a reduced-side-effect profile. However, there is controversy in this area with improvement of morphine-induced constipation and reduced respiratory effects in βarr2( / ) mice. Moreover, − − studies performed with mice genetically engineered with G-protein-biased mu receptors suggested increased sensitivity of these animals to both analgesic actions and side effects of opioid drugs. -
Pain Therapy E Are There New Options on the Horizon?
Best Practice & Research Clinical Rheumatology 33 (2019) 101420 Contents lists available at ScienceDirect Best Practice & Research Clinical Rheumatology journal homepage: www.elsevierhealth.com/berh 4 Pain therapy e Are there new options on the horizon? * Christoph Stein a, , Andreas Kopf b a Department of Experimental Anesthesiology, Charite Campus Benjamin Franklin, D-12200 Berlin, Germany b Department of Anesthesiology and Intensive Care Medicine, Charite Campus Benjamin Franklin, D-12200 Berlin, Germany abstract Keywords: Opioid crisis This article reviews the role of analgesic drugs with a particular Chronic noncancer pain emphasis on opioids. Opioids are the oldest and most potent drugs Chronic nonmalignant pain for the treatment of severe pain, but they are burdened by detri- Opioid mental side effects such as respiratory depression, addiction, Opiate sedation, nausea, and constipation. Their clinical application is Inflammation undisputed in acute (e.g., perioperative) and cancer pain, but their Opioid receptor long-term use in chronic pain has met increasing scrutiny and has Misuse Abuse contributed to the current opioid crisis. We discuss epidemiolog- Bio-psycho-social ical data, pharmacological principles, clinical applications, and research strategies aiming at novel opioids with reduced side effects. © 2019 Elsevier Ltd. All rights reserved. The opioid epidemic The treatment of pain remains a huge challenge in clinical medicine and public health [1,2]. Pain is the major symptom in rheumatoid (RA) and osteoarthritis (OA) [3,4]. Both are chronic conditions that are not linked to malignant disease, and pain can occur even in the absence of inflammatory signs (see chapter “Pain without inflammation”). Unfortunately, there is a lack of fundamental knowledge about the management of chronic noncancer pain. -
Developments in Opioid Drugs
Spotlight on drugs Developments in opioid Advanced courses 2019 analgesics Dr Andrew Wilcock DM FRCP [email protected] 1 2 1 2 Outline of talk • background – cancer pain / strong opioids Background • pharmacology • new approaches (as we go) • summary • discussion/questions. 3 4 Opioids WHO analgesic ladder for cancer pain • central to the management of moderate–severe acute pain and cancer pain. 5 6 1 Broad-spectrum analgesia Opioids: why improve? Ultimate aim to: • improve efficacy • eliminate / reduce risk of undesirable effects, e.g.: – constipation – dependence – respiratory depression – sedation – tolerance. 7 8 Opioids: chemical classification Pharmacology 9 10 Opioid: receptors Four main types: • μ • κ • δ • opioid-receptor-like 1 (OPRL-1) – opioid-related nociceptin receptor 1 – nociceptin opioid peptide (NOP) – nociceptin/orphanin FQ (N/OFQ). 11 12 2 Opioid: receptors Opioids Generally: • μ-opioid receptor clinically most relevant for analgesia and undesirable effects • Centrally: dorsal horn, higher centres – pre-synaptic: inhibit release of neurotransmitters – post-synaptic: hyperpolarize neurone • Peripherally: nerve endings, DRG, (immune cells) – inflammation upregulates opioid receptors 13 14 15 16 New approaches for opioid analgesics 17 18 3 New approaches for opioid analgesics Include: 1. Broad-spectrum 2. Injury-targeted 1. ‘Broad-spectrum’ opioid agonists 3. Biased agonists Not exhaustive list, but main finds when searching the literature. Gunther T et al. (2018); Chan HCS et al. (2017) 19 20 ‘Broad-spectrum’ opioid agonists Differential analgesic and UE of opioid receptors Targeting multiple receptors may have synergistic analgesic effects & lower UE • μ most important analgesia / UE • selective κ and δ agonists – limited analgesia / own UE – κ (e.g. -
Measuring Ligand Efficacy at the Mu- Opioid Receptor Using A
RESEARCH ARTICLE Measuring ligand efficacy at the mu- opioid receptor using a conformational biosensor Kathryn E Livingston1,2, Jacob P Mahoney1,2, Aashish Manglik3, Roger K Sunahara4, John R Traynor1,2* 1Department of Pharmacology, University of Michigan Medical School, Ann Arbor, United States; 2Edward F Domino Research Center, University of Michigan, Ann Arbor, United States; 3Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, United States; 4Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, United States Abstract The intrinsic efficacy of orthosteric ligands acting at G-protein-coupled receptors (GPCRs) reflects their ability to stabilize active receptor states (R*) and is a major determinant of their physiological effects. Here, we present a direct way to quantify the efficacy of ligands by measuring the binding of a R*-specific biosensor to purified receptor employing interferometry. As an example, we use the mu-opioid receptor (m-OR), a prototypic class A GPCR, and its active state sensor, nanobody-39 (Nb39). We demonstrate that ligands vary in their ability to recruit Nb39 to m- OR and describe methadone, loperamide, and PZM21 as ligands that support unique R* conformation(s) of m-OR. We further show that positive allosteric modulators of m-OR promote formation of R* in addition to enhancing promotion by orthosteric agonists. Finally, we demonstrate that the technique can be utilized with heterotrimeric G protein. The method is cell- free, signal transduction-independent and is generally applicable to GPCRs. DOI: https://doi.org/10.7554/eLife.32499.001 *For correspondence: [email protected] Competing interests: The authors declare that no Introduction competing interests exist. -
Cellular and Genetic Bases of Cold Nociception and Nociceptive Sensitization in Drosophila Larvae
The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2016 Cellular and genetic bases of cold nociception and nociceptive sensitization in Drosophila larvae Heather N. Turner Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Molecular and Cellular Neuroscience Commons Recommended Citation Turner, Heather N., "Cellular and genetic bases of cold nociception and nociceptive sensitization in Drosophila larvae" (2016). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 714. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/714 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. CELLULAR AND GENETIC BASES OF COLD NOCICEPTION AND NOCICEPTIVE SENSITIZATION IN DROSOPHILA LARVAE by Heather Nicole Turner, B.S. APPROVED: _________________________ -
Better Agonist for the Opioid Receptors Syed Lal Badshah1* , Asad Ullah1, Salim S
Badshah et al. Chemistry Central Journal (2018) 12:13 https://doi.org/10.1186/s13065-018-0383-8 COMMENTARY Open Access Better agonist for the opioid receptors Syed Lal Badshah1* , Asad Ullah1, Salim S. Al‑showiman2 and Yahia Nasser Mabkhot2* Abstract This commentary highlights the recent work published in journal Nature on the structural based discovery of novel analgesic compounds for opioid receptors with minimal efects. Manglik et al. selectively targeted the Gi based μOR pathway instead of the β-arrestin pathway of the opioids. The computational screening of millions of compounds showed a list of several competent ligands. From these ligands they synthesized the compounds with the best docking score, which were further optimized by adding side residues for better interaction with the μOR. A promis‑ ing compound, PZM21, was a selective agonist of μOR. It has better analgesic properties with minimal side efects of respiratory depression and constipation. This work is a step towards better drug designing and synthesizing in terms of efcacy, specifcity with least side efects of targeted GPCR proteins present in the human proteome. Keywords: Opioid receptors, Analgesics, Agonists, Molecular docking, Selectivity Introduction for GPCRs includes lipids, fatty acids, neurotransmitters, Morphine is the natural alkaloid present in opium and it photons, cytokines, hormones and metal ions [8, 9]. Tey is obtained from poppy plant. Opium has been used as an transduce the signal across the plasma membrane by analgesic and as a recreational drug since ancient times. binding with these ligands that causes certain conforma- Other common analgesics used include natural alkaloids tional changes into the seven trans-membrane alpha heli- like codeine, oxycodone, etc. -
Operant Nociception in Nonhuman Primates ⇑ Brian D
PAINÒ 155 (2014) 1821–1828 www.elsevier.com/locate/pain Operant nociception in nonhuman primates ⇑ Brian D. Kangas , Jack Bergman Harvard Medical School, McLean Hospital, Belmont, MA, USA Sponsorships or competing interests that may be relevant to content are disclosed at the end of this article. article info abstract Article history: The effective management of pain is a longstanding public health concern. Morphine-like opioids have Received 22 April 2014 long been front-line analgesics, but produce undesirable side effects that can limit their application. Slow Received in revised form 10 June 2014 progress in the introduction of novel improved medications for pain management over the last 5 decades Accepted 16 June 2014 has prompted a call for innovative translational research, including new preclinical assays. Most current in vivo procedures (eg, tail flick, hot plate, warm water tail withdrawal) assay the effects of nociceptive stimuli on simple spinal reflexes or unconditioned behavioral reactions. However, clinical treatment Keywords: goals may include the restoration of previous behavioral activities, which can be limited by medica- Nociception assay tion-related side effects that are not measured in such procedures. The present studies describe an appa- Operant behavior Thermal pull ratus and procedure to study the disruptive effects of nociceptive stimuli on voluntary behavior in l-Opioids nonhuman primates, and the ability of drugs to restore such behavior through their analgesic actions. Opioid efficacy Squirrel monkeys were trained to pull a cylindrical thermode for access to a highly palatable food. Next, NOP agonists sessions were conducted in which the temperature of the thermode was increased stepwise until Squirrel monkey responding stopped, permitting the determination of stable nociceptive thresholds. -
Rubiscolins Are Naturally Occurring G Protein-Biased Delta Opioid Receptor Peptides
European Neuropsychopharmacology (2019) 29, 450–456 www.elsevier.com/locate/euroneuro SHORT COMMUNICATION Rubiscolins are naturally occurring G protein-biased delta opioid receptor peptides a , 1 a, 1 a Robert J. Cassell , Kendall L. Mores , Breanna L. Zerfas , a a, b , c a ,b , c Amr H. Mahmoud , Markus A. Lill , Darci J. Trader , a, b ,c , ∗ Richard M. van Rijn a Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA b Purdue Institute for Drug Discovery, West Lafayette, IN 47907, USA c Purdue Institute for Integrative Neuroscience, West Lafayette, IN 47907, USA Received 6 August 2018; received in revised form 19 November 2018; accepted 16 December 2018 KEYWORDS Abstract Delta opioid receptor; The impact that β-arrestin proteins have on G protein-coupled receptor trafficking, signaling Beta-arrestin; and physiological behavior has gained much appreciation over the past decade. A number of Natural products; studies have attributed the side effects associated with the use of naturally occurring and syn- Biased signaling; thetic opioids, such as respiratory depression and constipation, to excessive recruitment of Rubisco; β-arrestin. These findings have led to the development of biased opioid small molecule ago- G protein-coupled nists that do not recruit β-arrestin, activating only the canonical G protein pathway. Similar G receptor protein-biased small molecule opioids have been found to occur in nature, particularly within kratom, and opioids within salvia have served as a template for the synthesis of other G protein- biased opioids. Here, we present the first report of naturally occurring peptides that selectively activate G protein signaling pathways at δ opioid receptors, but with minimal β-arrestin recruit- ment. -
The Role of Substance P in Opioid Induced Reward
The Role of Substance P in Opioid Induced Reward Item Type text; Electronic Dissertation Authors Sandweiss, Alexander Jordan Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 02/10/2021 14:53:26 Link to Item http://hdl.handle.net/10150/621568 THE ROLE OF SUBSTANCE P IN OPIOID INDUCED REWARD by Alexander J. Sandweiss __________________________ Copyright © Alexander J. Sandweiss 2016 A Dissertation Submitted to the Faculty of the DEPARTMENT OF PHARMACOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2016 1 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Alexander J. Sandweiss, titled The Role of Substance P in Opioid Induced Reward and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. _______________________________________________________________ Date: June 13, 2016 Edward D. French, Ph.D. _______________________________________________________________ Date: June 13, 2016 Rajesh Khanna, Ph.D. _______________________________________________________________ Date: June 13, 2016 Victor H. Hruby, Ph.D. _______________________________________________________________ Date: June 13, 2016 Naomi Rance, M.D., Ph.D. _______________________________________________________________ Date: June 13, 2016 Todd W. Vanderah, Ph.D. Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. -
Influence of G Protein-Biased Agonists of Μ-Opioid Receptor on Addiction-Related Behaviors
Pharmacological Reports https://doi.org/10.1007/s43440-021-00251-1 SPECIAL ISSUE: REVIEW Infuence of G protein‑biased agonists of μ‑opioid receptor on addiction‑related behaviors Lucja Kudla1 · Ryszard Przewlocki1 Received: 31 January 2021 / Revised: 5 March 2021 / Accepted: 16 March 2021 © The Author(s) 2021 Abstract Opioid analgesics remain a gold standard for the treatment of moderate to severe pain. However, their clinical utility is seriously limited by a range of adverse efects. Among them, their high-addictive potential appears as very important, espe- cially in the context of the opioid epidemic. Therefore, the development of safer opioid analgesics with low abuse potential appears as a challenging problem for opioid research. Among the last few decades, diferent approaches to the discovery of novel opioid drugs have been assessed. One of the most promising is the development of G protein-biased opioid agonists, which can activate only selected intracellular signaling pathways. To date, discoveries of several biased agonists acting via μ-opioid receptor were reported. According to the experimental data, such ligands may be devoid of at least some of the opioid side efects, such as respiratory depression or constipation. Nevertheless, most data regarding the addictive properties of biased μ-opioid receptor agonists are inconsistent. A global problem connected with opioid abuse also requires the search for efective pharmacotherapy for opioid addiction, which is another potential application of biased compounds. This review discusses the state-of-the-art on addictive properties of G protein-biased μ-opioid receptor agonists as well as we analyze whether these compounds can diminish any symptoms of opioid addiction. -
Central Targeting of Trigeminal Primary Afferent Nerve Terminals Via Intracisternal Injection of Rtx and Its Effect on Pain Behavior
CENTRAL TARGETING OF TRIGEMINAL PRIMARY AFFERENT NERVE TERMINALS VIA INTRACISTERNAL INJECTION OF RTX AND ITS EFFECT ON PAIN BEHAVIOR By MELANIE M. WEXEL A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2008 1 © 2008 Melanie M. Wexel 2 To my Mom, for inspiring me to continue education 3 ACKNOWLEDGMENTS I thank my committee chair (John Neubert, DDS, PhD) and my committee members (Robert Caudle, PhD and Calegero Dolce, DDS, PhD). I would also like to thank Heather Rossi, Alan Jenkins, Jean Kaufman, and Wendi Malphurs for assisting with the laboratory experiments. Also, I would like to acknowledge the NIH grant #R21 DE16704-01A1 and the Southern Association of Orthodontics grant for financial support. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF FIGURES .........................................................................................................................6 LIST OF ABBREVIATIONS..........................................................................................................7 ABSTRACT.....................................................................................................................................8 CHAPTER 1 INTRODUCTION ....................................................................................................................9 Background...............................................................................................................................9