Annotation and Characterization of the Plasmodium Vivax Rhoptry Neck
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
MALARIA Despite All Differences in Biological Detail and Clinical Manifestations, Every Parasite's Existence Is Based on the Same Simple Basic Rule
MALARIA Despite all differences in biological detail and clinical manifestations, every parasite's existence is based on the same simple basic rule: A PARASITE CAN BE CONSIDERED TO BE THE DEVICE OF A NUCLEIC ACID WHICH ALLOWS IT TO EXPLOIT THE GENE PRODUCTS OF OTHER NUCLEIC ACIDS - THE HOST ORGANISMS John Maynard Smith Today: The history of malaria The biology of malaria Host-parasite interaction Prevention and therapy About 4700 years ago, the Chinese emperor Huang-Ti ordered the compilation of a medical textbook that contained all diseases known at the time. In this book, malaria is described in great detail - the earliest written report of this disease. Collection of the University of Hongkong ts 03/07 Hawass et al., Journal of the American Medical Association 303, 2010, 638 ts 02/10 Today, malaria is considered a typical „tropical“ disease. As little as 200 years ago, this was quite different. And today it is again difficult to predict if global warming might cause a renewed expansion of malaria into the Northern hemisphere www.ch.ic.ac.uk ts 03/08 Was it prayers or was it malaria ? A pious myth relates that in the year 452, the the ardent prayers of pope Leo I prevented the conquest of Rome by the huns of king Attila. A more biological consideration might suggest that the experienced warrior king Attila was much more impressed by the information that Rome was in the grip of a devastating epidemic of which we can assume today that it was malaria. ts 03/07 In Europe, malaria was a much feared disease throughout most of European history. -
Control of Intestinal Protozoa in Dogs and Cats
Control of Intestinal Protozoa 6 in Dogs and Cats ESCCAP Guideline 06 Second Edition – February 2018 1 ESCCAP Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire, WR14 3SZ, United Kingdom First Edition Published by ESCCAP in August 2011 Second Edition Published in February 2018 © ESCCAP 2018 All rights reserved This publication is made available subject to the condition that any redistribution or reproduction of part or all of the contents in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise is with the prior written permission of ESCCAP. This publication may only be distributed in the covers in which it is first published unless with the prior written permission of ESCCAP. A catalogue record for this publication is available from the British Library. ISBN: 978-1-907259-53-1 2 TABLE OF CONTENTS INTRODUCTION 4 1: CONSIDERATION OF PET HEALTH AND LIFESTYLE FACTORS 5 2: LIFELONG CONTROL OF MAJOR INTESTINAL PROTOZOA 6 2.1 Giardia duodenalis 6 2.2 Feline Tritrichomonas foetus (syn. T. blagburni) 8 2.3 Cystoisospora (syn. Isospora) spp. 9 2.4 Cryptosporidium spp. 11 2.5 Toxoplasma gondii 12 2.6 Neospora caninum 14 2.7 Hammondia spp. 16 2.8 Sarcocystis spp. 17 3: ENVIRONMENTAL CONTROL OF PARASITE TRANSMISSION 18 4: OWNER CONSIDERATIONS IN PREVENTING ZOONOTIC DISEASES 19 5: STAFF, PET OWNER AND COMMUNITY EDUCATION 19 APPENDIX 1 – BACKGROUND 20 APPENDIX 2 – GLOSSARY 21 FIGURES Figure 1: Toxoplasma gondii life cycle 12 Figure 2: Neospora caninum life cycle 14 TABLES Table 1: Characteristics of apicomplexan oocysts found in the faeces of dogs and cats 10 Control of Intestinal Protozoa 6 in Dogs and Cats ESCCAP Guideline 06 Second Edition – February 2018 3 INTRODUCTION A wide range of intestinal protozoa commonly infect dogs and cats throughout Europe; with a few exceptions there seem to be no limitations in geographical distribution. -
Plasmodium Falciparum Full Life Cycle and Plasmodium Ovale Liver Stages in Humanized Mice
ARTICLE Received 12 Nov 2014 | Accepted 29 May 2015 | Published 24 Jul 2015 DOI: 10.1038/ncomms8690 OPEN Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice Vale´rie Soulard1,2,3, Henriette Bosson-Vanga1,2,3,4,*, Audrey Lorthiois1,2,3,*,w, Cle´mentine Roucher1,2,3, Jean- Franc¸ois Franetich1,2,3, Gigliola Zanghi1,2,3, Mallaury Bordessoulles1,2,3, Maurel Tefit1,2,3, Marc Thellier5, Serban Morosan6, Gilles Le Naour7,Fre´de´rique Capron7, Hiroshi Suemizu8, Georges Snounou1,2,3, Alicia Moreno-Sabater1,2,3,* & Dominique Mazier1,2,3,5,* Experimental studies of Plasmodium parasites that infect humans are restricted by their host specificity. Humanized mice offer a means to overcome this and further provide the opportunity to observe the parasites in vivo. Here we improve on previous protocols to achieve efficient double engraftment of TK-NOG mice by human primary hepatocytes and red blood cells. Thus, we obtain the complete hepatic development of P. falciparum, the transition to the erythrocytic stages, their subsequent multiplication, and the appearance of mature gametocytes over an extended period of observation. Furthermore, using sporozoites derived from two P. ovale-infected patients, we show that human hepatocytes engrafted in TK-NOG mice sustain maturation of the liver stages, and the presence of late-developing schizonts indicate the eventual activation of quiescent parasites. Thus, TK-NOG mice are highly suited for in vivo observations on the Plasmodium species of humans. 1 Sorbonne Universite´s, UPMC Univ Paris 06, CR7, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Bd de l’hoˆpital, F-75013 Paris, France. -
Phosphorylation of Rhoptry Protein Rhoph3 Is Critical for Host Cell Invasion by the Malaria Parasite
RESEARCH ARTICLE Molecular Biology and Physiology crossm Downloaded from Phosphorylation of Rhoptry Protein RhopH3 Is Critical for Host Cell Invasion by the Malaria Parasite Roseleen Ekka,a Ankit Gupta,a* Sonika Bhatnagar,a Pawan Malhotra,b Pushkar Sharmaa http://mbio.asm.org/ aEukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India bInternational Center for Genetic Engineering and Biotechnology, New Delhi, India Roseleen Ekka and Ankit Gupta contributed equally to this work; the order of authors was decided on the basis of the alphabetical order of the surnames and the time spent in the laboratory. ABSTRACT Merozoites formed after asexual division of the malaria parasite invade the host red blood cells (RBCs), which is critical for initiating malaria infection. The process of invasion involves specialized organelles like micronemes and rhoptries on October 21, 2020 at NATIONAL INSTITUTE OF IMMUNOLOGY (NII) that discharge key proteins involved in interaction with host RBC receptors. RhopH complex comprises at least three proteins, which include RhopH3. RhopH3 is critical for the process of red blood cell (RBC) invasion as well as intraerythrocytic develop- ment of human malaria parasite Plasmodium falciparum. It is phosphorylated at ser- ine 804 (S804) in the parasite; however, it is unclear if phosphorylation regulates its function. To address this, a CRISPR-CAS9-based approach was used to mutate S804 to alanine (A) in P. falciparum. Using this phosphomutant (R3_S804A) of RhopH3, we demonstrate that the phosphorylation of S804 is critical for host RBC invasion by the parasite but not for its intraerythrocytic development. Importantly, the phosphoryla- tion of RhopH3 regulates its localization to the rhoptries and discharge from the parasite, which is critical for RBC invasion. -
Independent Roles of Apical Membrane Antigen 1 and Rhoptry Neck Proteins During Host Cell Invasion by Apicomplexa
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Cell Host & Microbe Article Independent Roles of Apical Membrane Antigen 1 and Rhoptry Neck Proteins during Host Cell Invasion by Apicomplexa Donatella Giovannini,1,5 Stephan Spa¨ th,1,5 Ce´ line Lacroix,1 Audrey Perazzi,2,3,4 Daniel Bargieri,1 Vanessa Lagal,2,3,4 Camille Lebugle,2,3,4 Audrey Combe,1 Sabine Thiberge,1 Patricia Baldacci,1 Isabelle Tardieux,2,3,4,6 and Robert Me´ nard1,6,* 1Institut Pasteur, Unite´ de Biologie et Ge´ ne´ tique du Paludisme, 75724 Paris, France 2INSERM, U1016, Institut Cochin, 75014 Paris, France 3CNRS, UMR8104, 75014 Paris, France 4Universite´ Paris Descartes, 75014 Paris, France 5These authors contributed equally to this work 6These authors contributed equally to this work *Correspondence: [email protected] DOI 10.1016/j.chom.2011.10.012 SUMMARY parasite motor to host cell actin (Gonzalez et al., 2009), thereby serving as an anchor through which the motile zoite glides into During invasion, apicomplexan parasites form an a parasitophorous vacuole (PV). Zoite internalization is a rapid intimate circumferential contact with the host cell, process, typically lasting a few tens of seconds. the tight junction (TJ), through which they actively The proteins that compose the TJ have long remained elusive. glide. The TJ, which links the parasite motor to the In 2005, two groups independently proposed the model of a TJ host cell cytoskeleton, is thought to be composed composed of interacting apical membrane antigen 1 (AMA1) of interacting apical membrane antigen 1 (AMA1) and rhoptry neck (RON) proteins (Alexander et al., 2005; Lebrun et al., 2005), which are unique to and conserved in apicomplex- and rhoptry neck (RON) proteins. -
Neospora Caninum Infection in Cattle
Neospora caninum infection in cattle Agnote DAI-314, First edition, May 2004 Belinda Walker, Veterinary Officer NSW Agriculture, Gunnedah Neospora caninum is a microscopic protozoan parasite. It was rare occurrence that is unlikely to contribute to the mainte- not specifically identified until 1989 as a cause of abortion nance of an infection in a herd. in cattle, although abortions due to this previously- Adult cows show no clinical signs of illness following unidentified protozoan had been recognised since the 1970s. infection, and the majority have normal pregnancies. Neospora caninum is now considered a major cause of bovine However, European studies have shown that infected cattle abortion throughout the world. are three times more likely to abort than uninfected cows. In some areas, such as the North Coast of NSW, evidence Calves of infected cows, although born clinically normal, from laboratory submissions indicates that Neospora caninum have an 80 to 90 per cent chance of being Neospora carriers. may be responsible for over 30 per cent of all abortions in The female calves then have a high probability of infecting both dairy and beef cattle. Neosporosis is diagnosed less their own calves. frequently in inland NSW, but this may be partly because Recent studies in New Zealand report a much lower rate aborted foetuses are less likely to be noticed in extensive of congenital transmission (around 9 per cent) than the areas. Beef producers need to become more aware of this European studies. This suggests that transmission quite likely important parasite. depends on a number of risk factors that can vary greatly Previously, neosporosis was difficult to diagnose between farms and regions (for example, presence of unless an aborted foetal brain was available for mi- carnivores, feeding of concentrates, stocking rates and croscopic examination, which is possibly why the proximity to bush versus urban areas). -
Characterizing Cystoisospora Canis As a Model of Apicomplexan Tissue Cyst Formation and Reactivation
Characterizing Cystoisospora canis as a Model of Apicomplexan Tissue Cyst Formation and Reactivation Alice Elizabeth Houk-Miles Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Biomedical and Veterinary Sciences David S. Lindsay Nammalwar Sriranganathan Jeannine S. Strobl Anne M. Zajac May 4, 2015 Blacksburg, VA Keywords: Cystoisospora canis, Toxoplasma gondii, characterization, tissue cyst reactivation, model Characterizing Cystoisospora canis as a Model of Apicomplexan Tissue Cyst Formation and Reactivation Alice Elizabeth Houk-Miles ABSTRACT Cystoisospora canis is an Apicomplexan parasite of the small intestine of dogs. C. canis produces monozoic tissue cysts (MZT) that are similar to the polyzoic tissue cysts (PZT) of Toxoplasma gondii, a parasite of medical and veterinary importance, which can reactivate and cause toxoplasmic encephalitis. We hypothesized that C. canis is similar biologically and genetically enough to T. gondii to be a novel model for studying tissue cyst biology. We examined the pathogenesis of C. canis in beagles and quantified the oocysts shed. We found this isolate had similar infection patterns to other C. canis isolates studied. We were able to superinfect beagles that came with natural infections of Cystoisospora ohioensis-like oocysts indicating that little protection against C. canis infection occurred in these beagles. The C. canis oocysts collected were purified and used for future studies. We demonstrated in vitro that C. canis could infect 8 mammalian cell lines and produce MZT. The MZT were able to persist in cell culture for at least 60 days. We were able to induce reactivation of MZT treated with bile-trypsin solution. -
Genome-Wide Expression Patterns of Rhoptry Kinases During the Eimeria Tenella Life-Cycle
microorganisms Article Genome-Wide Expression Patterns of Rhoptry Kinases during the Eimeria tenella Life-Cycle Adeline Ribeiro E Silva † , Alix Sausset †, Françoise I. Bussière, Fabrice Laurent, Sonia Lacroix-Lamandé and Anne Silvestre * Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Université de Tours, ISP, 37380 Nouzilly, France; [email protected] (A.R.E.S.); [email protected] (A.S.); [email protected] (F.I.B.); [email protected] (F.L.); [email protected] (S.L.-L.) * Correspondence: [email protected]; Tel.: +33-2-4742-7300 † These two first authors contributed equally to the work. Abstract: Kinome from apicomplexan parasites is composed of eukaryotic protein kinases and Api- complexa specific kinases, such as rhoptry kinases (ROPK). Ropk is a gene family that is known to play important roles in host–pathogen interaction in Toxoplasma gondii but is still poorly described in Eimeria tenella, the parasite responsible for avian coccidiosis worldwide. In the E. tenella genome, 28 ropk genes are predicted and could be classified as active (n = 7), inactive (incomplete catalytic triad, n = 12), and non-canonical kinases (active kinase with a modified catalytic triad, n = 9). We char- acterized the ropk gene expression patterns by real-time quantitative RT-PCR, normalized by parasite housekeeping genes, during the E. tenella life-cycle. Analyzed stages were: non-sporulated oocysts, sporulated oocysts, extracellular and intracellular sporozoites, immature and mature schizonts I, Citation: Ribeiro E Silva, A.; Sausset, first- and second-generation merozoites, and gametes. Transcription of all those predicted ropk was A.; Bussière, F.I.; Laurent, F.; Lacroix- Lamandé, S.; Silvestre, A. -
Comparative 3D Genome Organization in Apicomplexan Parasites
Comparative 3D genome organization in apicomplexan parasites Evelien M. Bunnika, Aarthi Venkatb,1, Jianlin Shaob,1,2, Kathryn E. McGovernc,3, Gayani Batugedarad, Danielle Worthc, Jacques Prudhommed, Stacey A. Lappe,f,g, Chiara Andolinah,i,4, Leila S. Rossj, Lauren Lawresk, Declan Bradyl, Photini Sinnism, Francois Nostenh,i, David A. Fidockj, Emma H. Wilsonc, Rita Tewaril, Mary R. Galinskie,f,g, Choukri Ben Mamounk, Ferhat Ayb,n,5,6, and Karine G. Le Rochd,5,6 aDepartment of Microbiology, Immunology & Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; bDivision of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037; cDivision of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521; dDepartment of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521; eInternational Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; fDivision of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA 30329; gMalaria Host-Pathogen Interaction Center, Emory University, Atlanta, GA 30329; hCentre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Oxford OX3 7FZ, United Kingdom; iShoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110 Tak, Thailand; jDepartment -
Serological Evidence of Exposure to Toxoplasma Gondii and Neospora
Short Communication ISSN 1984-2961 (Electronic) www.cbpv.org.br/rbpv Braz. J. Vet. Parasitol., Jaboticabal, v. 28, n. 4, p. 816-820, oct.-dec. 2019 Doi: https://doi.org/10.1590/S1984-29612019079 Serological evidence of exposure to Toxoplasma gondii and Neospora caninum in free-ranging Orinoco goose (Neochen jubata) in Brazil Evidência sorológica de exposição à Toxoplasma gondii e Neospora caninum em Ganso-do-Orinoco (Neochen jubata) de vida livre no Brasil Marcos Rogério André1* ; Mariele De Santi1,2; Mayara de Cássia Luzzi1; Juliana Paula de Oliveira2; Simone de Jesus Fernandes1; Rosangela Zacarias Machado1; Karin Werther2 1 Laboratório de Imunoparasitologia, Departamento de Patologia Veterinária, Faculdade de Ciências Agrárias e Veterinárias – FCAV, Universidade Estadual Paulista – UNESP, Jaboticabal, SP, Brasil 2 Laboratório de Patologia de Animais Selvagens, Departamento de Patologia Veterinária, Faculdade de Ciências Agrárias e Veterinárias – FCAV, Universidade Estadual Paulista – UNESP, Jaboticabal, SP, Brasil Received June 26, 2019 Accepted September 5, 2019 Abstract Toxoplasma gondii and Neospora caninum are Apicomplexan intracellular protozoan parasites that affect numerous animal species, thus leading to severe diseases and economic losses, depending on the vertebrate species involved. The role of the avian species in maintaining and transmission of these coccidia has been studied for several years as they tend to serve as a potential source of infection for mammals and humans. The present study aimed to assess the serological exposure of Orinoco goose (Neochen jubata) to T. gondii and N. caninum. Between 2010 and 2013, 41 free-ranging Orinoco geese were captured in the Araguaia River, Brazil. The presence and titration of IgY antibodies to both coccidia were assayed via indirect immunofluorescent antibody test (IFAT). -
Isolation and Molecular Characterization of Four Novel Neospora Caninum Strains
Parasitology Research (2019) 118:3535–3542 https://doi.org/10.1007/s00436-019-06474-9 GENETICS, EVOLUTION, AND PHYLOGENY - SHORT COMMUNICATION Isolation and molecular characterization of four novel Neospora caninum strains Andres Cabrera1 & Pablo Fresia2 & Luisa Berná 1 & Caroline Silveira3 & Melissa Macías-Rioseco3 & Ana Paula Arevalo4 & Martina Crispo4 & Otto Pritsch5,6 & Franklin Riet-Correa3 & Federico Giannitti3,7 & Maria E. Francia1,8,9 & Carlos Robello1,10 Received: 11 April 2019 /Accepted: 24 September 2019 /Published online: 7November 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Neospora caninum causes neosporosis, a leading cause of bovine abortion worldwide. Uruguay is a developing economy in South America that produces milk to feed seven times its population annually. Naturally, dairy production is para- mount to the country’s economy, and bovine reproductive failure impacts it profoundly. Recent studies demonstrated that the vast majority of infectious abortions in dairy cows are caused by N. caninum. To delve into the local situation and contextualize it within the international standing, we set out to characterize the Uruguayan N. caninum strains. For this, we isolated four distinct strains and determined by microsatellite typing that these represent three unique genetic lineages, distinct from those reported previously in the region or elsewhere. An unbiased analysis of the current worldwide genetic diversity of N. caninum strains known, whereby six typing clusters can be resolved, revealed that three of the four Uruguayan strains group closely with regional strains from Argentina and Brazil. The remaining strain groups in an unrelated genetic cluster, suggesting multiple origins of the local strains. Microsatellite typing of N. -
Canine Neosporosis: Clinical and Pathological ®Ndings and ®Rst Isolation of Neospora Caninum in Germany
Parasitol Res (2000) 86: 1±7 Ó Springer-Verlag 2000 ORIGINAL PAPER Martin Peters á Frank Wagner á Gereon Schares Canine neosporosis: clinical and pathological ®ndings and ®rst isolation of Neospora caninum in Germany Received: 8 August 1999 / Accepted: 30 August 1999 Abstract Neosporosis was diagnosed in an 11-week-old species. In cattle, N. caninum has been found to be as- puppy of the breed Kleiner MuÈ nsterlaÈ nder with sociated with abortions. Clinical neosporosis in dogs is progressive hindlimb paresis. Pathohistological and most commonly observed in congenitally infected pup- immunohistological examinations revealed a dissemi- pies in the ®rst 6 months of life (Ruehlmann et al. 1995). nated infection with Neospora caninum. Parasitic stages Characteristically these animals show a progressively were demonstrated in the brain, spinal cord, retina, ascending paresis, usually starting at the pelvic limbs, muscles, thymus, heart, liver, kidney, stomach, adrenal caused by severe polymyositis, polyradiculitis, and dis- gland, and skin. Immunohistochemistry investigations seminated meningoencephalomyelitis. Generalized in- were carried out using polyclonal rabbit antisera devel- fection with multiple organ involvement in puppies has oped against N. caninum tachyzoites and the recombi- been reported (Dubey et al. 1988a; Barber et al. 1996). nant bradyzoite-speci®c antigen BAG-5 of Toxoplasma Some puppies suered and eventually died of myo- gondii, which is known to cross-react with N. caninum carditis caused by the parasite (Dubey et al. 1988a; Odin bradyzoites. BAG-5 antibodies recognized tissue cysts and Dubey 1993; Barber et al. 1996; WeissenboÈ ck et al. within the CNS and some protozoan stages that were 1997). Besides multifocal CNS involvement and not surrounded by a visible cyst wall.