Iv the Aluminium Industry

Total Page:16

File Type:pdf, Size:1020Kb

Iv the Aluminium Industry GREENHOUSE GASES FROM MAJOR INDUSTRIAL SOURCES – IV THE ALUMINIUM INDUSTRY Report Number PH3/23 April 2000 This document has been prepared for the Executive Committee of the Programme. It is not a publication of the Operating Agent, International Energy Agency or its Secretariat. Title: Greenhouse Gases From Major Industrial Sources - IV The Aluminium Industry Reference number: PH3/23 Date issued: April 2000 Other remarks: Background to the Study The IEA Greenhouse Gas R&D programme (IEA GHG) is systematically evaluating the cost and potential for reducing emissions of greenhouse gases arising from anthropogenic activities, especially the use of fossil fuels. The first phase of this Programme concentrated on emissions of carbon dioxide from power generation. In the second and third phase, attention has also been given to other greenhouse gases, notably methane, and a broader range of industrial processes. Greenhouse gases are produced from a variety of industrial activities. The main industrial sources, other than power generation, are those energy intensive industries that chemically or physically transform materials from one state to another. During these processes many greenhouse gases (carbon dioxide, methane and nitrous oxide) are released. One notable example is the aluminium industry where considerable amounts of greenhouse gases including CO2 and Perfluorocarbons (PFC's) are produced. This study is the fourth in a series to look at greenhouse gas abatement and mitigation options for the energy intensive industries. The study was undertaken by ICF Consulting of the USA. Industry overview In nature, aluminium is never found in its metallic state but is a common constituent of many minerals where it is normally combined with silicon and oxygen. Bauxite is the main ore from which aluminium can be economically retrieved. Once the ore is mined, a chemical process is then used to extract aluminium oxide, or alumina, and an electrolytic process (the Hall-Héroult process) reduces the alumina to aluminium. This overall production process is referred to as primary aluminium production. All aluminium extraction is by electrolytic means, where the electrolyte used is cryolite (Na3AlF6). The principal gases emitted are carbon dioxide and carbon monoxide as well as a number of volatile fluorides (PFC's). The electrical energy required for the process is 13,000-18,000 kWh/tonne of metal. A large part of the fluorine consumed from the cryolite in the process is recovered (in the USA, 15kg of fluoride ion is produced per tonne of aluminium). Some 4-5 tonnes of bauxite are required to produce two tonnes of alumina, which yield one tonne of aluminium. Aluminum is one of the most recyclable of all materials. Scrap metal can be recycled from both pre and post consumer sources, which in the later case normally requires some pretreatment1. The scrap 1 Recycling involves a number of stages that remove impurities, including primary pre-treatment (shredding and cleaning), remelting (which degasses the aluminium and removes magnesium as well as other impurities in the skimmed dross) and alloying in which the levels of other agents (zinc, copper, manganese) are adjusted to meet the specific product requirements. Secondary production is a common source of metal for castings and is often mixed with primary aluminium to obtain a desired product quality. i metal can be recycled into the same, or other, products with little deterioration in quality giving the process a high degree of product flexibility. The process is referred to as secondary aluminium production. Recycling aluminum only requires about 5% of the energy required to produce primary metal and in turn leads to much lower emissions of greenhouse gases. In addition to the environmental advantages of aluminum recycling, there are economic benefits. Aluminium’s high scrap value is also a great incentive for collection. Over one-third of the aluminum used in the Western World is produced from recycled metal. More than 50% of recycled metal comes from facilities that remelt scrap from a wide range of other used aluminum products such as cookware, aircraft fuselages and automobile parts. Typically, these "secondary smelters" produce foundry alloys for use in shape castings. Greater usage of re-cycled material is expected to lead to a reduction in greenhouse gas emissions from aluminium production. Results and Discussion The following areas are described in the report · A profile of the Aluminium industry worldwide · A discussion of energy use in the Aluminium industry · The sources and emissions of greenhouse gases from the Aluminum Industry. · The opportunities identified to reduce greenhouse gas emissions · The costs of abatement of greenhouse gas emissions · Projections of future greenhouse gas emissions from the Aluminium industry Aluminium Industry Profile The global primary aluminium industry is dominated by a small number of multinational firms that control over 40 percent of the primary aluminium production capacity and about 60 percent of the alumina refining capacity. The remainder of the smelter capacity is controlled by governments, traders, smaller companies with one or two plants and investors. The price of aluminium is determined by activities on the London Metal Exchange, where aluminium is a traded commodity. In 1998, over 22 million tonnes of primary aluminium were produced in 46 producer countries, requiring approximately 44 million tonnes of alumina and 133 million tonnes of bauxite. North America was the largest primary aluminium producer with almost 30 percent of the world total, followed by Eastern Europe & the Former Soviet Union and Western Europe with 17 and 16 percent of the world total, respectively. Secondary aluminium production in 1998 totalled 7.4 million tonnes with production concentrated in countries with developed economies that have a high historic rate of aluminium consumption (e.g., United States, Japan, United Kingdom). In the largest three end-use sectors for aluminium (transportation, packaging, and construction) the potential exists for using recycled aluminium in virtually every application. Recent years have seen major developments, especially in the recycling of aluminium beverage cans in some regions. Energy Use in the Aluminium Industry Primary aluminium production is an energy- intensive process. On a unit basis, producing a tonne of primary aluminium requires approximately 120 Gigajoules (GJ)2. The primary production stage is the 2 This estimate includes the energy (fuels and electricity) required for all process stages including, bauxite mining, alumina refining and aluminium smelting. ii most energy intensive stage in the process requiring 95 GJ per tonne, whilst alumina refining uses 26 GJ/t. In contrast, secondary aluminium production requires only 6 GJ per tonne. Ele ctricity required for the reduction of alumina to aluminium is the major fuel type consumed in the primary production process, accounting for over 80 percent of total per unit energy use at the primary production stage. Energy accounts for about one-third of the cost of primary aluminium production, the majority of which is spent on electricity. Over the past 50 years, the energy required to produce one tonne of primary aluminium has decreased by 40 percent as a result of improvements in the electrolytic process. The recent trend toward increased recycling has also reduced overall industry energy intensity. Efficiency gains in the last three decades were achie ved by installing improved cell technologies that operate at higher amperages, installing computer control systems, instituting better operating practices in new and existing smelters, and increasing recycling. The Sources and Emissions of Greenhouse Gases Greenhouse Gas emissions from the aluminium production process result from three sources: · Carbon dioxide emissions generated from combustion of fossil fuels during alumina refining and for electricity generation for use at all stages of the production process; · Process-related CO2 emissions from consumption of the carbon anode in the electrolytic cell; · Process-related PFC emissions generated during operational disturbances in the electrolytic cell known as “anode effects”. Total greenhouse gas emissions from the aluminium industry were estimated to be 364 million tonnes 3 CO2-E in 1995 (16.5 tonnes CO2-E per tonne of aluminium produced). The aluminium industry, therefore, contributed 1 percent of total anthropogenic greenhouse gas emissions in 19954. The largest source of CO2 and overall greenhouse gas emissions from the aluminium industry is fossil fuel combustion, which accounted for 68 percent of total emissions in 1995. Of the fossil fuel related CO2 emissions, which are equivalent to 11.3 tonnes of CO2 per tonne of aluminium produced, electricity production is the main source. Electricity use in primary aluminium production results in some 9 tonnes of CO2 emitted per tonne of aluminum produced compared to only some 2 tonnes of CO2 emitted during fossil fuel combustion in alumina refining. The process related emissions of PFC's and CO2 from primary aluminium production accounted for only 17 and 15 percent (2.8 t CO2-E/tonne of product and 2.5 t CO2/tonne of product, respectively) of the total 1995 emissions, respectively. North America was the largest emitter in 1995, accounting for 27 percent of the industry’s greenhouse gas emissions. Eastern Europe & Former Soviet Union and Western Europe were the next largest, accounting for 25 and 14 percent of total
Recommended publications
  • Aluminium Production Process: Challenges and Opportunities
    metals Editorial Aluminium Production Process: Challenges and Opportunities Houshang Alamdari Aluminium Research Centre—REGAL, Université Laval, Quebec City, QC G1V 0A6, Canada; [email protected]; Tel.: +1-418-656-7666 Academic Editor: Hugo F. Lopez Received: 29 March 2017; Accepted: 6 April 2017; Published: 11 April 2017 Aluminium, with more than 50 Mt annual production in 2016, is an essential material in modern engineering designs of lightweight structures. To obtain aluminium ingots from bauxite, three main processes are involved: the Bayer process to produce alumina from bauxite; the anode manufacturing process to produce electrodes, and the smelting process using the Hall-Héroult technology. The Hall-Héroult process, involves the electrolysis of alumina, dissolved in molten cryolite to produce liquid aluminium that should be casted to produce ingots of different types of alloys. The technology is now about 130 years old and the aluminium production experienced a phenomenal growth during the past two decades—the highest growth rate for a commodity metal. The aluminium electrolysis cell is made of a steel shell, the internal surfaces of which are covered with a series of insulating linings made of refractory materials. The top lining, made of carbon, is in direct contact with the molten metal and acts as the cathode. The anode is also made of carbon, suspended in the electrolyte and consumed during electrolysis. According to the International Aluminium Institute [1] the energy required to produce one ton of aluminium varies between 12.8 and 16 MWh, depending on the technology used and the age of the smelters. Carbon consumption of the process—roughly about 400 kg of carbon for tone of aluminium—is also significant, contributing to the generation of about 1.5 tons of CO2 per ton of aluminium.
    [Show full text]
  • Special Edition Arabal 2019 Conference
    UMINIUM Journal L International A Special Edition Arabal 2019 Conference Alba to host Arabal 2019 Conference The primary aluminium in- dustry in the Gulf region System optimization for emissions reductions in feeding systems for alu- minium electrolysis cells Gautschi Engineering: Technologically up to the mark with the best market participants More efficiency in fur- nace tending operations New protections © Alba against potline freeze 19 to 21 November 2019 2019 Conference L in the Kingdom of Bahrain A B A AR SPECIAL MÖLLER® PNEUMATIC CONVEYING AND STORAGE Reduce emission with Direct Pot Feeding System KEY BENEFITS ֆ Reduced dust emission. ֆ Consistent alumina quality. ֆ No scaling, no attrition and no segregation. We help you to reduce your dust emissions up to Get in touch with us 90% from the pot feeding system to the gas treatment +49 4101 788-124 centre. At the same time your pots will be fed with qqqҶƇmgb\naҶ[igԐgi]ee]l a consistent alumina quality, thanks to the next level of MÖLLER® pneumatic conveying technology. ALUMINIUM · Special Edition 2019 3 SPECIAL AR A B al 2 0 1 9 C O N F E R ence COntent Alba the host of Arabal 2019 Conference ....................... 4 Arabal 2019 – the conference programme ..................... 5 The primary aluminium industry in the Gulf region .......... 6 Successful system optimization for emissions reductions in feeding systems for aluminium electrolysis cells .......... 10 Sohar Aluminium – ‘Smelter of the Future’ .................... 14 EGA: innovative equipment for safe 10 operation of potrooms ............................................... 16 Hertwich supplies multi-chamber melting furnace to Exlabesa ...................................... 20 Innovations in charging and skimming ........................
    [Show full text]
  • Development of Iceland's Geothermal Energy for Aluminium Production
    Development of Iceland’s geothermal energy potential for aluminium production – a critical analysis Jaap Krater1 and Miriam Rose In: Abrahamsky, K. (ed.) (2009) Sparking a World-wide Energy Revolution: Social Struggles in the Transition to a Post-Petrol World. AK Press, Edinburgh. Abstract Iceland is developing its hydro and geothermal resources in the context of an energy master plan, mainly to provide power for expansion of the aluminium industry. This paper tests perceptions of geothermal energy as low-carbon, renewable and environmentally benign, using Icelandic geothermal industry as a case study. The application of geothermal energy for aluminium smelting is discussed as well as environmental and human rights record of the aluminium industry in general. Despite application of renewable energy technologies, emission of greenhouse gases by aluminium production is set to increase. Our analysis further shows that carbon emissions of geothermal installations can approximate those of gas-powered plants. In intensely exploited reservoirs, life of boreholes is limited and reservoirs need extensive recovery time after exploitation, making geothermal exploitation at these sites not renewable in the short to medium term. Pollution and landscape impacts are extensive when geothermal technology is applied on a large scale. Background Iceland is known for its geysers, glaciers, geology and Björk, for its relatively successful fisheries management and its rather unsuccessful financial management. But this northern country also harbours the largest remaining wilderness in Europe, an endless landscape of volcanoes, glaciers, powerful rivers in grand canyons, lava fields, swamps and wetlands teeming with birds in summer, and plains of tundra covered with bright coloured mosses and dwarf willow.
    [Show full text]
  • Subsidies to the Aluminium Industry and Climate Change
    THE AUSTRALIA INSTITUTE Background Paper No. 21 Subsidies to the Aluminium Industry and Climate Change Clive Hamilton and Hal Turton Submission to Senate Environment References Committee Inquiry into Australia’s Response to Global Warming, November 1999 The Australia Institute Garden Wing, University House, ANU, ACT 0200 Tel: 02 6249 6221 Fax: 02 6249 6448 Email: [email protected] Website: www.tai.org.au Contents Executive summary 3 1. The aluminium smelting industry and the climate change debate 5 2. Structure of the aluminium smelting industry 6 3. Ownership of the industry 9 4. Electricity pricing and subsidies 13 5. Costs of pollution from the aluminium smelting industry 15 6. Implications of the subsidisation of aluminium smelting industry 17 7. Concluding comments 18 References 20 Appendix 1 Ownership of primary aluminium production in Australia 22 Appendix 2 Aluminium cash price, 1990-1997 25 The Australia Institute 2 Executive summary The aluminium smelting industry accounts for 16% of greenhouse gas emissions from the electricity sector and 6.5% of Australia’s total emissions (excluding land-use change). The aluminium industry has been a strident voice in the debate over climate change policy and has led industry resistance to effective measures to cut emissions. The industry argues that it is of great economic importance to Australia, especially for the foreign exchange its exports earn. It frequently threatens governments with the prospect of closing down its Australian smelters and moving offshore if it is forced to pay higher prices for electricity as a result of climate change policies. Since the Kyoto Protocol was agreed in December 1997, it has argued that the burden for cutting emissions should be placed on other sectors of the economy and households rather than being distributed equally across polluting sectors.
    [Show full text]
  • The Need for Effective Risk Mitigation in Aluminium Plants
    PERSPECTIVES THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVETHE NEED RISK FOR MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOREFFECTIVE EFFECTIVE RISK RISK MITIGATION MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATIONIN ALUMINIUM IN ALUMINIUM PLANTS PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATIONRISK ENGINEERING IN DEPARTMENT, ALUMINIUM JUNE 2018 PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVEWWW.TRUSTRE.COM RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS The need for effective risk mitigation in Aluminium plants Aluminium, the world’s second most preferred metal after iron has a unique combination of qualities. It is lightweight; (approximately one-third the weight of steel for the same volume), has excellent corrosion resistance, and it is non- magnetic with high thermal and electrical conductivity.
    [Show full text]
  • Twenty Compressors Reduce Environmental Impact for Bechtel
    CASE STUDY CONSTRUCTION Twenty Overview compressors Client Betchel reduce Location environmental Alcoa Fjaroaal Smelter Project, Fjaroabyggo, East Iceland Application impact for Bechtel Construction phases and operation of aluminium CompAir has proved its cool credentials in Iceland smelting plant thanks to the hot performance of its industrial and portable compressors, which have helped to Products reduce environmental impact by up to 30%. Various portable and industrial compressors, including new C180TS-9 TurboScrews Twenty compressors were purchased as part of an exclusive partnership with global engineering solutions Customer Benefits provider Bechtel and Icelandic engineering specialist Environmental impact reduced/complete equipment HRV, for the construction of one of the world’s largest and service solution from single supplier aluminium smelting plants in Iceland. Complete Equipment Solution vibration for storage tank wall forming and provision of power for general machine tool operation. This included portable Tasked with providing a complete process solution for the C50s, C76s with electrical generators, C105-14 high-pressure construction of the one billion dollar plus Alcoa Fjarðaál units and two revolutionary, fuel saving C180TS-9 TurboScrew Smelter Project, owned by Alcoa, the world’s leading producer models. Bechtel also installed a stationary L30 compressor to of aluminium, Bechtel approached CompAir to provide the run the cathode rodding induction furnace, a key process compressed air solutions required for both the construction
    [Show full text]
  • An Aluminium-Led Energy & Industry Renewal for Central Queensland
    1 Clark Butler, Guest Contributor September 2020 An Aluminium-Led Energy & Industry Renewal for Central Queensland A Case Study of Gladstone and Boyne Smelters in Queensland Executive Summary “The full emergence of Australia as an energy superpower of the low-carbon world economy would encompass large-scale early-stage processing of Australian iron, aluminium and other minerals.”1 Australia has the potential to become a much more significant economic power in a decarbonised world. The country’s renewable energy resources sit at the heart of this enormous economic opportunity. Australia could lead the world in producing the components of low-carbon industrialisation: aluminium, steel, cement, silicon, lithium and rare earth minerals, with value-adding Australia could lead the processing before exports to enhance Australian world in producing the investment and employment. components of low- This report explores how the country can both carbon industrialisation. decarbonise and grow heavy industry with a focus on Gladstone, Queensland. The generation of electricity is Australia’s largest source of carbon emissions (33%). Closing the country’s four aluminium smelters would reduce Australian electricity demand by 10% with a consequential reduction in emissions associated with electricity use. However, electricity is also key to the rapid decarbonisation of other major emitting sectors such as transport, heating, industrial processing and manufacturing that account for 55% of the country’s emissions. Instead of closing the country’s loss-making and high emitting aluminium smelters, these industries could transition rapidly to renewable electricity, invest in plant upgrades to support demand response management, and profit from the long-term growth of the metals and industrial processing markets.
    [Show full text]
  • Sustainability Aspects of Bauxite and Aluminium
    Sustainability aspects of Bauxite and Aluminium Climate change, Environmental, Socio-Economic and Circular Economy considerations Georgitzikis K., Mancini L., d’Elia E., Vidal-Legaz B. July 2021 EUR 30760 EN This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. For information on the methodology and quality underlying the data used in this publication for which the source is neither Eurostat nor other Commission services, users should contact the referenced source. The designations employed and the presentation of material on the maps do not imply the expression of any opinion whatsoever on the part of the European Union concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Contact information Name: Konstantinos Georgitzikis Address: T.P. 120, Via Enrico Fermi 2749, 21027 Ispra (VA) Italy Email: [email protected] Tel.: +390332783628 EU Science Hub https://ec.europa.eu/jrc EC Raw Materials Information System (RMIS) https://rmis.jrc.ec.europa.eu JRC125390 EUR 30760 EN PDF ISBN 978-92-76-40039-4 ISSN 1831-9424 doi:10.2760/702356 Print ISBN 978-92-76-40040-0 ISSN 1018-5593 doi:10.2760/862494 Luxembourg: Publications Office of the European Union, 2021 © European Union 2021 The reuse policy of the European Commission is implemented by the Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p.
    [Show full text]
  • ABB INDIA LTD – 16.12.2016 , 2Nd Aluminium Work Shop at HINDALCO , HIRAKUD ABB India - High Power Rectifiers in Aluminum
    VIJAYAPRASAD.C/ ABB INDIA LTD – 16.12.2016 , 2nd Aluminium Work Shop at HINDALCO , HIRAKUD ABB India - High Power Rectifiers in Aluminum © ABB Group December 16, 2016 | Slide 1 ABB India in Aluminium Smelting n Introduction n Capabilities in Rectifiers n Achieving High Efficiencies in Rectifier Systems n ABB India Rectifiers in Aluminum Smelters n Aluminum Projects Executed n ABB CH some reference Projects © ABB Group - 216-Dec-16 - Power Electronics Global Organization Lead Center Product Responsible Unit Local Engg Center (Bangalore) India High Power Brazil Canada/USA Switzerland South Africa Poland Australia Bangalore Rectifiers Osasco St. Laurent Turgi Randhart Lodz Lilydale Static Excitation Italy-Sesto Brazil Canada/USA Switzerland South Africa Poland India Australia Systems S. Giovanni Osasco St. Laurent Turgi Randhart Lodz Bangalore Lilydale Advanced USA Switzerland Power Electronics New Berlin Turgi © ABB Group - 316-Dec-16 - ABB Bangalore Operations Drives, Motors, LT Machines , Low-Voltage Power Products Electronics, LT & HT Capacitors 3000 employees Bangalore Robotics, Control Petroleum, Paper, Minerals, Automotive & Platform & Chemical & Marine manufacturing Enterprise Construction industries Products Industries © ABB Group - 416-Dec-16 - Capabilities in Rectifier Systems since 1991 n Design, Engineering Thyristor and Diode Rectifier Systems. n Designing plant layout and execution. n Manufacturing Thyristor and Diode Rectifiers. n Design, Engineering , Manufacturing Harmonic Filters. n Retrofitting and Revamping Rectifier Jobs. n Installation and Commissioning. n Servicing & AMC of Rectifier System. © ABB Group - 516-Dec-16 - Constant Efficiency Improvements in ABB Rectiformers I. Operating Point for Rectifier for achieving better Efficiency: Operating the Rectifier at loads lower than the Rated capacity will deliver better efficiency, as the most of the losses in the Rectifier are proportional to the square of the current.
    [Show full text]
  • Economy of Iceland 2016
    ECONOMY OF ICELAND Contents 5 Introduction 7 1 Country and people 13 2 Structure of the economy Boxes: The individual transferable quota system 20 Sectoral limitations on foreign direct investment 21 29 3 Financial system 39 4 Public sector Box: The tax system 44 Iceland's fiscal framework 49 53 5 Monetary and financial stability policies Box: New policy instrument to temper and affect the composition of capital inflows 57 59 6 External position 67 7 Government, corporate, and household balance sheets 75 8 Capital account liberalisation Box: Stability conditions and stability contributions 81 83 Appendix Published by: The Central Bank of Iceland, Kalkofnsvegur 1, 150 Reykjavík, Iceland Tel: (+354) 569 9600, fax: (+354) 569 9605 E-mail: [email protected] Website: www.sedlabanki.is Editorial Board and staff: Rannveig Sigurdardóttir, chairman Hördur Gardarsson Elís Pétursson Gerdur Ísberg Jónas Thórdarson Ragnheidur Jónsdóttir October 2016 Printing: ODDI ehf. Economy of Iceland is also published on the Central Bank of Iceland website. ISSN 1024-6680 Material may be reproduced from Economy of Iceland, but an acknowledgement of source is kindly requested. In Economy of Iceland, monetary figures are generally presented in euros; however, in certain instances, amounts are expressed in US dollars. The amount in Icelandic krónur is included in pa- rentheses, as most figures are originally in krónur. Stocks at the end of the period are calculated using the period-end exchange rate, whereas flows are calculated using the average exchange rate for the period. Icelandic letters: ð/Ð (pronounced like th in English this) þ/Þ (pronounced like th in English think) Symbols: * Preliminary or estimated data.
    [Show full text]
  • From Mining to Making: Australia's Future in Zero-Emissions Metal
    From mining to making Australia’s future in zero- emissions metal Authors & acknowledgments Lead author Michael Lord, Energy Transition Hub, University of Melbourne Contributing authors Rebecca Burdon, Energy Transition Hub, University of Melbourne Neil Marshman, ex-Chief Advisor, Rio Tinto John Pye, Energy Change Institute, ANU Anita Talberg, Energy Transition Hub, University of Melbourne Mahesh Venkataraman, Energy Change Institute, ANU Acknowledgements Geir Ausland, Elkem Robin Batterham, Kernot Professor - Department of Chemical and Biomolecular Engineering, University of Melbourne Justin Brown, Element 25 Andrew Dickson, CWP Renewables Ross Garnaut, Chair - Energy Transition Hub, University of Melbourne Key messages • Metal production causes 9% of global greenhouse gas emissions, a figure that is set to rise as metal consumption increases. • By 2050 demand for many metals will grow substantially – driven partly by growth of renewable energy infrastructure that relies on a wide range of metals. • To meet increased demand sustainably, metal production must become zero-carbon. • Climate action by governments, investors and large companies mean there are growing risks to high-carbon metal production. • Companies and governments are paying more attention to the emissions embodied in goods and materials they buy. This is leading to a emerging market for lower-carbon metal, that has enormous potential to grow. • Australia has an opportunity to capitalise on this transition to zero-carbon metal. • Few countries match Australia’s potential to generate renewable energy. A 300% renewable energy target would require only 0.15% of the Australian landmass and provide surplus energy to power new industries. • By combining renewable energy resources with some of the world’s best mineral resources, Australia can become a world leader in zero-carbon metals production.
    [Show full text]
  • The Aluminium Smelting Industry
    The Aluminium Smelting Industry Structure, market power, subsidies and greenhouse gas emissions Hal Turton Number 44 January 2002 THE AUSTRALIA INSTITUTE The Aluminium Smelting Industry Structure, market power, subsidies and greenhouse gas emissions Hal Turton Discussion Paper Number 44 January 2002 ISSN 1322-5421 ii © The Australia Institute. This work is copyright. It may be reproduced in whole or in part for study or training purposes only with the written permission of the Australia Institute. Such use must not be for the purposes of sale or commercial exploitation. Subject to the Copyright Act 1968, reproduction, storage in a retrieval system or transmission in any form by any means of any part of the work other than for the purposes above is not permitted without written permission. Requests and inquiries should be directed to the Australia Institute. The Australia Institute iii Table of Contents List of Tables and Figures iv List of Abbreviations v Company index vi Summary vii 1. Introduction 1 2. The Australian industry 3 2.1 Industry overview: Scale, exports and economic contribution 3 2.2 Smelting: Locations, history and scale 4 2.3 Industry ownership 5 2.4 Energy use 6 2.5 Greenhouse gas emissions 8 2.6 Electricity costs and prices for the smelting industry 9 2.7 Subsidies 11 2.8 Politics and economics of smelter subsidies 22 2.9 Summary and conclusions 25 3. The world industry 27 3.1 Location and scale 27 3.2 Australian operators’ international assets 28 3.3 Other international operators 29 3.4 Energy use and greenhouse gas emissions: present and future 32 3.5 Electricity prices and market power 36 3.6 Summary and conclusions 41 4.
    [Show full text]