Genetic Conservation in Parkia Biglobosa (Fabaceae: Mimosoideae) - What Do We Know?

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Conservation in Parkia Biglobosa (Fabaceae: Mimosoideae) - What Do We Know? Lompo et al. ∙Silvae Genetica (2017) 66, 1-8 1 Genetic conservation in Parkia biglobosa (Fabaceae: Mimosoideae) - what do we know? D. Lompo1,2, B. Vinceti3, H. Gaisberger3, H. Konrad2, J. Duminil4,5,6, M. Ouedraogo1, S. Sina1, T. Geburek2* 1 Centre National de Semences Forestières, 01 BP 2682 Ouagadougou 01, Burkina Faso 2 Austrian Research Centre for Forests, Department of Forest Genetics, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria 3 Bioversity International, Via dei Tre Denari, 472/a, Fiumicino Rome, Italy 4 Bioversity International, Sub-Regional Office for Central Africa, P.O. Box 2008 Messa, Yaoundé, Cameroon 5 Service Evolution Biologique et Ecologie, CP160 ⁄ 12, Faculté des Sciences, Université Libre de Bruxelles, 50 Av. F. Roosevelt, 1050 Brussels, Belgium 6 Institut de Recherche pour le Développement, UMR-DIADE, BP 64501, 34394 Montpellier, France * Corresponding author: T. Geburek, E-mail: [email protected] Abstract Introduction The medicinal and food tree species Parkia biglobosa (Faba- Parkia biglobosa (Jacq.) G. Don is a highly valued multipurpose ceae: Mimosoideae) is widespread in the Sudanian savannahs tree species native to African savannahs with a large distributi- of sub-Saharan Africa, where it has a strong socio-cultural and on range extending from Senegal to Uganda (Hopkins, 1983; economic importance. Populations of this species are highly Hall et al., 1997). Commonly called “Néré” or “African locust threatened in large parts of its range due to overexploitation bean” it is one of the most important agroforestry tree species and environmental degradation. In the light of climatic chan- in West Africa (Eyog Matig et al., 2002; Nikiema, 2005). It is ges, safeguarding the genetic diversity of the species is crucial known as a multiple purpose tree widely used for medicinal to foster adaptation and to support its long-term survival. and food purposes (Ouedraogo, 1995; Hall et al., 1997). Seeds, Genetic insight is also relevant to guide sustainable harvesting. bark, roots and flowers of P. biglobosa are used to treat more This paper has the objective to review information on the spe- than 80 diseases and ailments in West Africa (Ouedraogo, 1995; cies’ geographic distribution, reproductive biology, genetic Nacoulma-Ouedraogo, 1996; Dedehou et al., 2016). Fermented characteristics and existing conservation practices, and to seeds, called “soumbala” or “dawadawa” are used as condiment, identify knowledge gaps to orientate future conservation and which is also well-known for its ability to decrease hypertensi- research focus. The literature review revealed that the species on (Ognatan et al., 2011). The sweet pulp of pods is a source of is mainly outcrossed and is pollinated by a diversity of vectors, energy and nutrients (rich in glucids, proteins, carotenoids, vit- including bats that allow long-pollen dispersal. When bats are amins A, B, C, and oligo-elements), and is important as nutriti- absent, pollination is mainly carried out by honey bees and onal and mineral supplement (Omojola et al., 2011; Dahou- stingless bees and in such case pollen-mediated gene flow is enon-Ahoussi et al., 2012; Ijarotimi and Keshinro, 2012). The relatively restricted. Data of a large-scale genetic study based species is melliferous and widely valued in traditional bee- on allozyme markers showing a moderate genetic differentiati- keeping (Nombré et al., 2009; Schweitzer et al., 2014). Due to on among populations were reanalyzed using an inverse dis- the high demand of its products, P. biglobosa is subject to tance weighted interpolation function. Three distinctive regi- unsustainable exploitation, lack of regeneration and ageing ons of diversity based on allelic richness and expected (Ræbild et al., 2012), with some tree populations disappearing heterozygosity were identified. Finally, we discuss future chal- or declining in density (Ouedraogo, 1995). Furthermore, impro- lenges for genetic conservation by emphasizing the need to ved tree management practices for P. biglobosa, such as direct use both neutral and adaptive markers in future research. sowing, protection of natural regeneration and planting, are currently not sufficiently promoted (Ræbild et al., 2012). The conservation and sustainable use of genetic resources are Key words: Parkia biglobosa, conservation, distribution, repro- critical to maintain tree resource availability in the long run, ductive biology, sub-Saharan Africa. especially in the face of significant environmental changes. A DOI:10.1515/sg-2017-0001 edited by the Thünen Institute of Forest Genetics 2 conservation strategy is based on complementary in situ and ex situ conservation, integrated in a way that relates to the sta- te of tree resources, the objectives of the strategy, and the financial resources available. In situ conservation is primarily focused on conserving the species in its natural environment by preserving its adaptation potential over the long term (FAO et al., 2001), while ex situ strategies are based on creating gene banks or field collections, transferring genetic resources off site, for the purpose of conservation or breeding (Dunster, 1996). Although P. biglobosa is officially protected by national legislation in Burkina Faso and in other West African countries (Eyog Matig et al., 2002) and cutting is prohibited, genetic con- servation efforts need to be strengthened. A sound conservati- on strategy for P. biglobosa and the promotion of its sustainab- le management should be based on scientific information about threats as well as ecological and genetic processes affec- Figure 1 ting this species. We felt the need to review and compile rele- Geographic distribution of Parkia biglobosa in relation to annual rainfall (adap- vant scientific findings on this species, published after the ted from Hall et al. 1997) monographic work by Hall et al. (1997). In this paper we (i) review existing knowledge on the spatial distribution of the species, its reproductive biology, its genetic characterization Floral biology and mating system and experiences in conservation of its genetic resources in Bur- kina Faso, with a particular focus on the activities implemented P. biglobosa is a monoecious species. The inflorescence, well by the national tree seed centre (the “Centre National de described by Hopkins (1983), Ouedraogo (1995) and Lassen et Semences Forestières”, hereafter CNSF) (Ouedraogo, 1995; Hall al. (2012), has bright red flowers, forming a capitulum in a large et al., 1997, Teklehaimanot, 1997; Sina, 2006, Ouedraogo, apical ball and a basal constricted receptacle. Different types of 2015). We also (ii) present a new analysis of allozyme data pub- flowers are found in the hermaphroditic capitulum. Hopkins lished by Sina (2006) and (iii) identify main research gaps. (1983) estimated that a capitulum has approximately 2,200 fer- tile female flowers in the ball-shaped part, 80 staminoid (male) flowers located close to the peduncle and 260 infertile nectar Natural range of P. biglobosa flowers in the ring producing nectar. Despite the coexistence of such a high number of fertile flowers in a single inflores- The geographic distribution of P. biglobosa has been described cence, only up to 25 pods are found on an infructescence (Oue- in a range map by Hall et al. (1997) showing geographic bound- draogo, 1995). Within the crown of a single tree, the capitula aries overlapped with climatic zones (Figure 1). The natural ran- tend to show different stages of flower development. Hopkins ge extends over 20 African countries north of the equator. The (1983) and Ouedraogo (1995) reported that flowers of the species is mainly found in African savannahs, particularly in the same capitulum will only be fertile during a single night. Prot- Sudanian vegetation zone, partially in the drier, more northern andry, i.e. early flowering of male and late flowering of female Sahelian zone and the wetter, more southern Guinean zone. reproductive organs, is found as a mechanism to reduce or The range covers different habitats usually on deep loamy and even totally avoid selfing (Ouedraogo, 1995). Controlled polli- sandy soils (Arbonnier, 2004) with annual rainfall varying bet- nation studies have shown that forced self-pollination results ween 700 mm in the North to 2,600 mm in the South and in healthy seeds, however, a certain proportion of seeds per exceptional levels up to 4,500 mm in Sierra-Leone and Guinea pod were aborted. Hence, self-fertilization is possible, probably (Hall et al., 1997). Tree population density of P. biglobosa varies through geitonogamy (Lassen et al., 2012). Based on controlled considerably. In the Central African Republic, densities of up to crossing experiments, Ouedraogo (1995) estimated a selfing 40 trees per hectare have been reported (Depommier and rate of 5 %. A very similar level of selfing was later confirmed by Fernandes, 1985), while in Burkina Faso, located in the centre of Sina (2006). In fact, he studied the mating system in two popu- species’ range, density varies between less than one tree per lations at Bissighin (W1.61°; N12.30°) and Nagare (W1.53°; hectare in the sub-Sahelian zone to up to 25 trees per hectare N12.30°) in Burkina Faso, examining 153 and 209 mature trees, in the southern part of the Sudanian zone (Ouedraogo, 1995). respectively. In both populations, in two consecutive years, flo- Due to the expansion of agriculture and pasture land, urbani- wering was well synchronized and the average multilocus esti- zation, mining, and also the vulnerability of the species to glo- mates resulted in high outcrossing rates of 0.941 and 0.981, bal environmental changes (Bouda et al., 2013), significant respectively. Biparental inbreeding inferred from the diffe- changes in the distribution range of P. biglobosa may have rence between single-locus and multilocus estimates of selfing taken place during the last 20 years, since occurrence data was 0 at Nagare and 0.026 and 0.086 at Bissighin in two conse- were assembled for the first time (Hall et al., 1997). cutive years showing that less than 9 % of matings involved close relatives.
Recommended publications
  • Birds of the Boé Region, South-East Guinea-Bissau, Including
    Birds of the Boé region, south-east Guinea-Bissau, including the first country records of Chestnut-backed Sparrow Lark Eremopterix leucotis, Lesser Striped Swallow Cecropis abyssinica and Heuglin’s Wheatear Oenanthe heuglini João L. Guilherme Aves da região do Boé, sudeste da Guiné-Bissau, incluindo registos de três novas espécies para o país. Durante os meses de janeiro e fevereiro de 2013 foi levado a cabo um levantamento da avifauna no sector do Boé, sudeste da Guiné-Bissau. Este trabalho permitiu identificar um total de 170 espécies de aves, das quais, três constituem novos registos para o país: cotovia-pardal-de-dorso-castanho Eremopterix leucotis, andorinha-estriada-pequena Cecropis abyssinica e chasco de Heuglin Oenanthe heuglini. Vinte e três das espécies registadas encontram-se restritas ao bioma de savana Sudano-Guineense, doze são restritas ao bioma de floresta Guineo-Congolense e cinco são espécies prioritárias para a conservação. Este constitui o primeiro levantamento da avifauna desta região da Guiné-Bissau. São também apresentados registos efectuados na região por P. Wit durante 2007–13. O sector do Boé é dominado por diversos habitats de savana e alberga uma elevada diversidade de fauna e flora. Um projecto para a criação de dois parques nacionais e três corredores para a fauna está a ser implementado na região. No entanto, os actuais usos dos solos e recursos naturais constituem potenciais importantes ameaças à preservação da biodiversidade e dos serviços dos ecossistemas do sector do Boé. Summary. During an ornithological survey of the Boé region, south-east Guinea-Bissau, in January and February 2013, 170 bird species were recorded.
    [Show full text]
  • Bird Checklists of the World Country Or Region: Ghana
    Avibase Page 1of 24 Col Location Date Start time Duration Distance Avibase - Bird Checklists of the World 1 Country or region: Ghana 2 Number of species: 773 3 Number of endemics: 0 4 Number of breeding endemics: 0 5 Number of globally threatened species: 26 6 Number of extinct species: 0 7 Number of introduced species: 1 8 Date last reviewed: 2019-11-10 9 10 Recommended citation: Lepage, D. 2021. Checklist of the birds of Ghana. Avibase, the world bird database. Retrieved from .https://avibase.bsc-eoc.org/checklist.jsp?lang=EN&region=gh [26/09/2021]. Make your observations count! Submit your data to ebird.
    [Show full text]
  • Birding Tour to Ghana Specializing on Upper Guinea Forest 12–26 January 2018
    Birding Tour to Ghana Specializing on Upper Guinea Forest 12–26 January 2018 Chocolate-backed Kingfisher, Ankasa Resource Reserve (Dan Casey photo) Participants: Jim Brown (Missoula, MT) Dan Casey (Billings and Somers, MT) Steve Feiner (Portland, OR) Bob & Carolyn Jones (Billings, MT) Diane Kook (Bend, OR) Judy Meredith (Bend, OR) Leaders: Paul Mensah, Jackson Owusu, & Jeff Marks Prepared by Jeff Marks Executive Director, Montana Bird Advocacy Birding Ghana, Montana Bird Advocacy, January 2018, Page 1 Tour Summary Our trip spanned latitudes from about 5° to 9.5°N and longitudes from about 3°W to the prime meridian. Weather was characterized by high cloud cover and haze, in part from Harmattan winds that blow from the northeast and carry particulates from the Sahara Desert. Temperatures were relatively pleasant as a result, and precipitation was almost nonexistent. Everyone stayed healthy, the AC on the bus functioned perfectly, the tropical fruits (i.e., bananas, mangos, papayas, and pineapples) that Paul and Jackson obtained from roadside sellers were exquisite and perfectly ripe, the meals and lodgings were passable, and the jokes from Jeff tolerable, for the most part. We detected 380 species of birds, including some that were heard but not seen. We did especially well with kingfishers, bee-eaters, greenbuls, and sunbirds. We observed 28 species of diurnal raptors, which is not a large number for this part of the world, but everyone was happy with the wonderful looks we obtained of species such as African Harrier-Hawk, African Cuckoo-Hawk, Hooded Vulture, White-headed Vulture, Bat Hawk (pair at nest!), Long-tailed Hawk, Red-chested Goshawk, Grasshopper Buzzard, African Hobby, and Lanner Falcon.
    [Show full text]
  • The Gambia: a Taste of Africa, November 2017
    Tropical Birding - Trip Report The Gambia: A Taste of Africa, November 2017 A Tropical Birding “Chilled” SET DEPARTURE tour The Gambia A Taste of Africa Just Six Hours Away From The UK November 2017 TOUR LEADERS: Alan Davies and Iain Campbell Report by Alan Davies Photos by Iain Campbell Egyptian Plover. The main target for most people on the tour www.tropicalbirding.com +1-409-515-9110 [email protected] p.1 Tropical Birding - Trip Report The Gambia: A Taste of Africa, November 2017 Red-throated Bee-eaters We arrived in the capital of The Gambia, Banjul, early evening just as the light was fading. Our flight in from the UK was delayed so no time for any real birding on this first day of our “Chilled Birding Tour”. Our local guide Tijan and our ground crew met us at the airport. We piled into Tijan’s well used minibus as Little Swifts and Yellow-billed Kites flew above us. A short drive took us to our lovely small boutique hotel complete with pool and lovely private gardens, we were going to enjoy staying here. Having settled in we all met up for a pre-dinner drink in the warmth of an African evening. The food was delicious, and we chatted excitedly about the birds that lay ahead on this nine- day trip to The Gambia, the first time in West Africa for all our guests. At first light we were exploring the gardens of the hotel and enjoying the warmth after leaving the chilly UK behind. Both Red-eyed and Laughing Doves were easy to see and a flash of colour announced the arrival of our first Beautiful Sunbird, this tiny gem certainly lived up to its name! A bird flew in landing in a fig tree and again our jaws dropped, a Yellow-crowned Gonolek what a beauty! Shocking red below, black above with a daffodil yellow crown, we were loving Gambian birds already.
    [Show full text]
  • Forests and Climate Change in the Near East Region Forests and Climate Change Working Paper 9
    Forests and Climate Change Working Paper 9 Forests and Climate Change in the Near East Region Forests and Climate Change Working Paper 9 Forests and Climate Change in the Near East Region Food and Agriculture Organization of the United Nations Rome, 2010 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO. All rights reserved. FAO encourages the reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Office of Knowledge Exchange, Research and Extension, FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy. © FAO 2010 Table of Contents Acknowledgements ................................................................................................................................iv Foreword ................................................................................................................................................v 1.
    [Show full text]
  • Moisture Dependent Mechanical and Thermal Properties of Locust Bean (Parkia Biglobosa)
    March, 2014 Agric Eng Int: CIGR Journal Open access at http://www.cigrjournal.org Vol. 16, No.1 99 Moisture dependent mechanical and thermal properties of Locust bean (Parkia biglobosa) Olajide Ayodele Sadiku1*, Isaac Bamgboye2 (1. Department of Agronomy, Faculty of Agriculture and Forestry, University of Ibadan, Ibadan, Nigeria; 2. Department of Agricultural and Environmental Engineering, Faculty of Technology, University of Ibadan, Ibadan, Nigeria) Abstract: The mechanical and thermal properties of African locust bean (Parkia biglobosa) seeds were investigated as a function of moisture content in the range of 5.9%–28.2% dry basis (d.b.). These properties are required for the engineering design of equipment for handling and processing locust bean. Universal Testing Machine was used to determine the mechanical properties at 5 mm/min load rating transversely. Normal and shear stresses were determined for 200–500 g loads at 100 g interval. Specific heat and thermal conductivity were determined using the method of mixtures and steady-state heat flow method respectively. Linear decreases in rupture force (214.42–129.86 N) and rupture energy (109.17–73.46 N mm) were recorded, while deformation of the seed samples increased (0.98-1.13 mm). Linear increase in normal stress at 200, 300, 400 and 500 g loads were 8.38–8.69, 9.39–9.70, 10.40–10.71 and 11.41–11.72 g/cm2 respectively, while shear stress ranged from 0.589 to 0.845, 0.688 to 0.998, 0.638–1.213 and 0.688–1.359 g/cm2 at 200, 300, 400 and 500 g with increasing seed moisture content.
    [Show full text]
  • ISSN: 2230-9926 International Journal of Development Research Vol
    Available online at http://www.journalijdr.com s ISSN: 2230-9926 International Journal of Development Research Vol. 10, Issue, 11, pp. 41819-41827, November, 2020 https://doi.org/10.37118/ijdr.20410.11.2020 RESEARCH ARTICLE OPEN ACCESS MELLIFEROUS PLANT DIVERSITY IN THE FOREST-SAVANNA TRANSITION ZONE IN CÔTE D’IVOIRE: CASE OF TOUMODI DEPARTMENT ASSI KAUDJHIS Chimène*1, KOUADIO Kouassi1, AKÉ ASSI Emma1,2,3, et N'GUESSAN Koffi1,2 1Université Félix Houphouët-Boigny (Côte d’Ivoire), U.F.R. Biosciences, 22 BP 582 Abidjan 22 (Côte d’Ivoire), Laboratoire des Milieux Naturels et Conservation de la Biodiversité 2Institut Botanique Aké-Assi d’Andokoi (IBAAN) 3Centre National de Floristique (CNF) de l’Université Félix Houphouët-Boigny (Côte d’Ivoire) ARTICLE INFO ABSTRACT Article History: The melliferous flora around three apiaries of 6 to 10 hives in the Department of Toumodi (Côte Received 18th August, 2020 d’Ivoire) was studied with the help of floristic inventories in the plant formations of the study Received in revised form area. Observations were made within a radius of 1 km around each apiary in 3 villages of 22nd September, 2020 Toumodi Department (Akakro-Nzikpli, Bédressou and N'Guessankro). The melliferous flora is Accepted 11th October, 2020 composed of 157 species in 127 genera and 42 families. The Fabaceae, with 38 species (24.20%) th Published online 24 November, 2020 is the best represented. Lianas with 40 species (25.48%) and Microphanerophytes (52.23%) are the most predominant melliferous plants in the study area. They contain plants that flower during Key Words: the rainy season (87 species, i.e.
    [Show full text]
  • Bats of the Tropical Lowlands of Western Ecuador
    Special Publications Museum of Texas Tech University Number 57 25 May 2010 Bats of the Tropical Lowlands of Western Ecuador Juan P. Carrera, Sergio Solari, Peter A. Larsen, Diego F. Alvarado, Adam D. Brown, Carlos Carrión B., J. Sebastián Tello, and Robert J. Baker Editorial comment. One extension of this collaborative project included the training of local students who should be able to continue with this collaboration and other projects involving Ecuadorian mammals. Ecuador- ian students who have received or are currently pursuing graduate degrees subsequent to the Sowell Expeditions include: Juan Pablo Carrera (completed M.A. degree in Museum Science at Texas Tech University (TTU) in 2007; currently pursuing a Ph.D. with Jorge Salazar-Bravo at TTU); Tamara Enríquez (completed M.A. degree in Museum Science at TTU in 2007, Robert J. Baker (RJB), major advisor); René M. Fonseca (received a post- humous M.S. degree from TTU in 2004, directed by RJB); Raquel Marchán-Rivandeneira (M.S. degree in 2008 under the supervision of RJB; currently pursuing a Ph.D. at TTU directed by Richard Strauss and RJB); Miguel Pinto (M.S. degree at TTU in 2009; currently pursuing a Ph.D. at the Department of Mammalogy and Sackler Institute for Comparative Genomics at the American Museum of Natural History, City University of New York); Juan Sebastián Tello (completed a Licenciatura at Pontificia Universidad Católica del Ecuador (PUCE) in 2005 with Santiago Burneo; currently pursuing a Ph.D. at Louisiana State University directed by Richard Stevens); Diego F. Alvarado (pursuing a Ph.D. at University of Michigan with L.
    [Show full text]
  • Combined Phylogenetic Analyses Reveal Interfamilial Relationships and Patterns of floral Evolution in the Eudicot Order Fabales
    Cladistics Cladistics 1 (2012) 1–29 10.1111/j.1096-0031.2012.00392.x Combined phylogenetic analyses reveal interfamilial relationships and patterns of floral evolution in the eudicot order Fabales M. Ange´ lica Belloa,b,c,*, Paula J. Rudallb and Julie A. Hawkinsa aSchool of Biological Sciences, Lyle Tower, the University of Reading, Reading, Berkshire RG6 6BX, UK; bJodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; cReal Jardı´n Bota´nico-CSIC, Plaza de Murillo 2, CP 28014 Madrid, Spain Accepted 5 January 2012 Abstract Relationships between the four families placed in the angiosperm order Fabales (Leguminosae, Polygalaceae, Quillajaceae, Surianaceae) were hitherto poorly resolved. We combine published molecular data for the chloroplast regions matK and rbcL with 66 morphological characters surveyed for 73 ingroup and two outgroup species, and use Parsimony and Bayesian approaches to explore matrices with different missing data. All combined analyses using Parsimony recovered the topology Polygalaceae (Leguminosae (Quillajaceae + Surianaceae)). Bayesian analyses with matched morphological and molecular sampling recover the same topology, but analyses based on other data recover a different Bayesian topology: ((Polygalaceae + Leguminosae) (Quillajaceae + Surianaceae)). We explore the evolution of floral characters in the context of the more consistent topology: Polygalaceae (Leguminosae (Quillajaceae + Surianaceae)). This reveals synapomorphies for (Leguminosae (Quillajaceae + Suri- anaceae)) as the presence of free filaments and marginal ⁄ ventral placentation, for (Quillajaceae + Surianaceae) as pentamery and apocarpy, and for Leguminosae the presence of an abaxial median sepal and unicarpellate gynoecium. An octamerous androecium is synapomorphic for Polygalaceae. The development of papilionate flowers, and the evolutionary context in which these phenotypes appeared in Leguminosae and Polygalaceae, shows that the morphologies are convergent rather than synapomorphic within Fabales.
    [Show full text]
  • Nupe Plants and Trees Their Names And
    NUPE PLANTS AND TREES THEIR NAMES AND USES [DRAFT -PREPARED FOR COMMENT ONLY] Roger Blench Mallam Dendo 8, Guest Road Cambridge CB1 2AL United Kingdom Voice/ Fax. 0044-(0)1223-560687 Mobile worldwide (00-44)-(0)7967-696804 E-mail [email protected] http://www.rogerblench.info/RBOP.htm This printout: January 10, 2008 Roger Blench Nupe plant names – Nupe-Latin Circulation version TABLE OF CONTENTS TABLE OF CONTENTS................................................................................................................................ 1 TABLES........................................................................................................................................................... 1 1. INTRODUCTION....................................................................................................................................... 1 2. THE NUPE PEOPLE AND THEIR ENVIRONMENT .......................................................................... 2 2.1 Nupe society ........................................................................................................................................... 2 2.2 The environment of Nupeland ............................................................................................................. 3 3. THE NUPE LANGUAGE .......................................................................................................................... 4 3.1 General ..................................................................................................................................................
    [Show full text]
  • Taxonomic Studies of Family (Formicidae: Hymenoptera)
    Journal of Entomology and Zoology Studies 2020; 8(1): 1384-1389 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Taxonomic studies of family (Formicidae: JEZS 2020; 8(1): 1384-1389 © 2020 JEZS Hymenoptera) six genera from district Received: 01-11-2019 Accepted: 05-12-2019 Faisalabad Punjab Pakistan Ghulam Mohyuddin Department of Entomology, University of Agriculture Ghulam Mohyuddin, Asad Bashir, Aqsa Mahmood, Tariq Sharif, Irum Faisalabad, Pakistan Waheed and Sohail Ahmed Asad Bashir Department of Entomology, Abstract University of Agriculture Ants (Hymenoptera: Formicidae) are species rich and ecologically leading of all eusocial invertebrates. Faisalabad, Pakistan Cosmopolitan distribution across the tropical, subtropical and temperate zoogeographic regions. They are excellent bio indicator, predator, scavengers, omnivores, granivores and herbivores having good Aqsa Mahmood mutualistic behaviour with flora and fauna constitute greater part of biomass 16-20%. Ants were Department of Zoology and collected from diverse vicinities of District Faisalabad, Punjab, Pakistan by using aspirator belongs to 6 Fisheries, University of genera included 8 species Bingham taxonomic keys and other reliable literature were used for Agriculture Faisalabad, Pakistan identification. All of these types are new to ant creatures of Faisalabad namely: are described for the first time from this District. Following genera were identified Pheidole westwood, 1840, Monomorium Mayr, Tariq Sharif 1855 Meranoplus Smith, 1854, Solenopsis westwood, 1840, Atopomyrmex Andr, 1889, Crematogaster Department of Entomology, University of Agriculture Lund, 1832. Taxonomic keys are also provided for better identification. Faisalabad, Pakistan Keywords: taxonomy, formicidae, genera, hymenoptera, Faisalabad, Punjab Irum Waheed Department of Zoology and Introduction Fisheries, University of Most dominant component of terrestrial ecosystem ants (Solenopsis invicta) belongs to family Agriculture Faisalabad, Pakistan Formicidae and order Hymenoptera constitute a greater part of biomass.
    [Show full text]
  • Habitat Selection of Endangered and Endemic Large Flying-Foxes in Subic
    Biological Conservation 126 (2005) 93–102 www.elsevier.com/locate/biocon Habitat selection of endangered and endemic large Xying-foxes in Subic Bay, Philippines Tammy L. Mildenstein a,¤, Sam C. Stier a, C.E. Nuevo-Diego b, L. Scott Mills c a c/o US Peace Corps, Patio Madrigal Compound, 2775 Roxas Blvd., Pasay City, Metro Manila, Philippines b 9872 Isarog St. Umali Subdivision, Los Baños, Laguna 4031, Philippines c Wildlife Biology Program, School of Forestry, University of Montana, Missoula, MT 59812-0596, USA Received 6 June 2004 Available online 5 July 2005 Abstract Large Xying-foxes in insular Southeast Asia are the most threatened of the Old World fruit bats due to high levels of deforestation and hunting and eVectively little local conservation commitment. The forest at Subic Bay, Philippines, supports a rare, large colony of vulnerable Philippine giant fruit bats (Pteropus vampyrus lanensis) and endangered and endemic golden-crowned Xying-foxes (Acerodon jubatus). These large Xying-foxes are optimal for conservation focus, because in addition to being keystone, Xagship, and umbrella species, the bats are important to Subic Bay’s economy and its indigenous cultures. Habitat selection information stream- lines management’s eVorts to protect and conserve these popular but threatened animals. We used radio telemetry to describe the bats’ nighttime use of habitat on two ecological scales: vegetation and microhabitat. The fruit bats used the entire 14,000 ha study area, including all of Subic Bay Watershed Reserve, as well as neighboring forests just outside the protected area boundaries. Their recorded foraging locations ranged between 0.4 and 12 km from the roost.
    [Show full text]