Variation of Leaf Carbon Isotope in Plants in Different Lithological
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Checklist of Vascular Plants Recorded for Cattana Wetlands Class Family Code Taxon Common Name
Checklist of Vascular Plants Recorded for Cattana Wetlands Class Family Code Taxon Common Name FERNS & ALLIES Aspleniaceae Asplenium nidus Birds Nest Fern Blechnaceae Stenochlaena palustris Climbing Swamp Fern Dryopteridaceae Coveniella poecilophlebia Marsileaceae Marsilea mutica Smooth Nardoo Polypodiaceae Colysis ampla Platycerium hillii Northern Elkhorn Fern Pteridaceae Acrostichum speciosum Mangrove Fern Schizaeaceae Lygodium microphyllum Climbing Maidenhair Fern Lygodium reticulatum GYMNOSPERMS Araucariaceae Agathis robusta Queensland Kauri Pine Podocarpaceae Podocarpus grayae Weeping Brown Pine FLOWERING PLANTS-DICOTYLEDONS Acanthaceae * Asystasia gangetica subsp. gangetica Chinese Violet Pseuderanthemum variabile Pastel Flower * Sanchezia parvibracteata Sanchezia Amaranthaceae * Alternanthera brasiliana Brasilian Joyweed * Gomphrena celosioides Gomphrena Weed; Soft Khaki Weed Anacardiaceae Blepharocarya involucrigera Rose Butternut * Mangifera indica Mango Tuesday, 31 August 2010 Checklist of Plants for Cattana Wetlands RLJ Page 1 of 12 Class Family Code Taxon Common Name Semecarpus australiensis Tar Tree Annonaceae Cananga odorata Woolly Pine Melodorum leichhardtii Acid Drop Vine Melodorum uhrii Miliusa brahei Raspberry Jelly Tree Polyalthia nitidissima Canary Beech Uvaria concava Calabao Xylopia maccreae Orange Jacket Apocynaceae Alstonia scholaris Milky Pine Alyxia ruscifolia Chain Fruit Hoya pottsii Native Hoya Ichnocarpus frutescens Melodinus acutiflorus Yappa Yappa Tylophora benthamii Wrightia laevis subsp. millgar Millgar -
Chemical Analysis of the Main Metabolites of Three Spontaneous Plants from the Saharan Area
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2021 doi:10.20944/preprints202102.0249.v1 Article Chemical analysis of the main metabolites of three spontaneous plants from the Saharan area (Algeria) ImeneRadjai1*, BrahimBouchareb1, Pablo Velasco2,and Gahdab Chakali1 1 Laboratoire de protection des végétaux en milieux agricoles et naturels contre les déprédateurs des cultures dans les régions d’Alger et de Blida, Ecole Nationale Supérieure Agronomique ;EL Harrach, 16200,Alger, Al- gérie ;[email protected](I.R.);[email protected](B.B);[email protected](G.C.) 2 Group of Genetics, Breeding and Biochemistry of Brassicas, MisiónBiológica de Galicia (MBG-CSIC), E-36080 Pontevedra, Spain; [email protected] (P.V.) * Correspondence: [email protected]; +213671848610 Abstract: Spontaneous plants metabolites are more widespread for their properties and biological functions. Also, natural products have reminded diverse scientists to take a delight in their medical and insecticidal applications linked to the environmental. A variety of metabolites have a defensive function for the plants. Thus, three spontaneous plants: Caroxylon imbricatum, Tetraena alba and Cotula cinerea collected from two ecotypes and analyzed by two known conventional methods:Gas Chromatography‐Mass Spectrometry GC QTOF(quadrupole time of flight )_MS and Liquid Chromatography-Mass spectrometry LCQTOF(quadrupole time of flight )_MS. The investigation conducted out on the identification and quantification of metabolites revealed the main metabolites which have biological activities as a part of an alternative Citation:Lastname, F.; Lastname, F.; to synthetic insecticides. The chemical study showed the presence of Lastname, F. Title. Plants 2021, 10, x. https://doi.org/10.3390/xxxxx N-Butylbenzensulfonamide and Sulfoxycaprylicacid in the three plants. -
Number 3, Spring 1998 Director’S Letter
Planning and planting for a better world Friends of the JC Raulston Arboretum Newsletter Number 3, Spring 1998 Director’s Letter Spring greetings from the JC Raulston Arboretum! This garden- ing season is in full swing, and the Arboretum is the place to be. Emergence is the word! Flowers and foliage are emerging every- where. We had a magnificent late winter and early spring. The Cornus mas ‘Spring Glow’ located in the paradise garden was exquisite this year. The bright yellow flowers are bright and persistent, and the Students from a Wake Tech Community College Photography Class find exfoliating bark and attractive habit plenty to photograph on a February day in the Arboretum. make it a winner. It’s no wonder that JC was so excited about this done soon. Make sure you check of themselves than is expected to seedling selection from the field out many of the special gardens in keep things moving forward. I, for nursery. We are looking to propa- the Arboretum. Our volunteer one, am thankful for each and every gate numerous plants this spring in curators are busy planting and one of them. hopes of getting it into the trade. preparing those gardens for The magnolias were looking another season. Many thanks to all Lastly, when you visit the garden I fantastic until we had three days in our volunteers who work so very would challenge you to find the a row of temperatures in the low hard in the garden. It shows! Euscaphis japonicus. We had a twenties. There was plenty of Another reminder — from April to beautiful seven-foot specimen tree damage to open flowers, but the October, on Sunday’s at 2:00 p.m. -
Report of Rapid Biodiversity Assessments at Cenwanglaoshan Nature Reserve, Northwest Guangxi, China, 1999 and 2002
Report of Rapid Biodiversity Assessments at Cenwanglaoshan Nature Reserve, Northwest Guangxi, China, 1999 and 2002 Kadoorie Farm and Botanic Garden in collaboration with Guangxi Zhuang Autonomous Region Forestry Department Guangxi Forestry Survey and Planning Institute South China Institute of Botany South China Normal University Institute of Zoology, CAS March 2003 South China Forest Biodiversity Survey Report Series: No. 27 (Online Simplified Version) Report of Rapid Biodiversity Assessments at Cenwanglaoshan Nature Reserve, Northwest Guangxi, China, 1999 and 2002 Editors John R. Fellowes, Bosco P.L. Chan, Michael W.N. Lau, Ng Sai-Chit and Gloria L.P. Siu Contributors Kadoorie Farm and Botanic Garden: Gloria L.P. Siu (GS) Bosco P.L. Chan (BC) John R. Fellowes (JRF) Michael W.N. Lau (ML) Lee Kwok Shing (LKS) Ng Sai-Chit (NSC) Graham T. Reels (GTR) Roger C. Kendrick (RCK) Guangxi Zhuang Autonomous Region Forestry Department: Xu Zhihong (XZH) Pun Fulin (PFL) Xiao Ma (XM) Zhu Jindao (ZJD) Guangxi Forestry Survey and Planning Institute (Comprehensive Tan Wei Fu (TWF) Planning Branch): Huang Ziping (HZP) Guangxi Natural History Museum: Mo Yunming (MYM) Zhou Tianfu (ZTF) South China Institute of Botany: Chen Binghui (CBH) Huang Xiangxu (HXX) Wang Ruijiang (WRJ) South China Normal University: Li Zhenchang (LZC) Chen Xianglin (CXL) Institute of Zoology CAS (Beijing): Zhang Guoqing (ZGQ) Chen Deniu (CDN) Nanjing University: Chen Jianshou (CJS) Wang Songjie (WSJ) Xinyang Teachers’ College: Li Hongjing (LHJ) Voluntary specialist: Keith D.P. Wilson (KW) Background The present report details the findings of visits to Northwest Guangxi by members of Kadoorie Farm and Botanic Garden (KFBG) in Hong Kong and their colleagues, as part of KFBG's South China Biodiversity Conservation Programme. -
A Study on the Flora and Vegetation of Cat Dua Island, Northeastern Vietnam
Pak. J. Bot., 44(4): 1229-1232, 2012. A STUDY ON THE FLORA AND VEGETATION OF CAT DUA ISLAND, NORTHEASTERN VIETNAM XIN-SHENG QIN1*, RONG-JING ZHANG2 AND FU-WU XING3 1College of Forestry, South China Agricultural University, Guangzhou, China 2College of Life Sciences, South China Agricultural University, Guangzhou, China 3South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China *Corresponding author’s e-mail: xinfw@scbg. ac.cn Abstract Cat Dua Island (namely Monkey Island) is situated in the Gulf of Tonkin, belonging to the Quang Ninh Province in Vietnam. A total vascular flora of 88 species belonging to 44 families and 76 genera was recorded from the island. The dominant families of the flora are Euphorbiaceae, Papilionaceae, Moraceae, Rutaceae and Rubiaceae etc. Most of the genera in the flora are tropical characteristic. In the island, there are few endemic species, which may be due to its young flora in geological respect. The vegetation are mainly classified as the evergreen broad-leaved forests, scrub forests and beach vegetation. It is urgent to protect biodiversity in limestone regions and how to deal with the relationship between development and protection is still a difficult task. Introduction Gulf of Tonkin. Geologically it is closely attached to the Hainan Island in South China. It can be accessed very Karst landscape is one kind of specific habitat conveniently by boat or canoe from Hai Phong or Quang distributed widely in the world. Because of the great Ninh. The Island is composed of limestone, it has an area diversity of edaphic conditions and topography, of about 12 sq. -
They Come in Teams
GBE Frankia-Enriched Metagenomes from the Earliest Diverging Symbiotic Frankia Cluster: They Come in Teams Thanh Van Nguyen1, Daniel Wibberg2, Theoden Vigil-Stenman1,FedeBerckx1, Kai Battenberg3, Kirill N. Demchenko4,5, Jochen Blom6, Maria P. Fernandez7, Takashi Yamanaka8, Alison M. Berry3, Jo¨ rn Kalinowski2, Andreas Brachmann9, and Katharina Pawlowski 1,* 1Department of Ecology, Environment and Plant Sciences, Stockholm University, Sweden 2Center for Biotechnology (CeBiTec), Bielefeld University, Germany 3Department of Plant Sciences, University of California, Davis 4Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia 5Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia 6Bioinformatics and Systems Biology, Justus Liebig University, Gießen, Germany 7Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Universite Lyon I, Villeurbanne Cedex, France 8Forest and Forestry Products Research Institute, Ibaraki, Japan 9Biocenter, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany *Corresponding author: E-mail: [email protected]. Accepted: July 10, 2019 Data deposition: This project has been deposited at EMBL/GenBank/DDBJ under the accession PRJEB19438 - PRJEB19449. Abstract Frankia strains induce the formation of nitrogen-fixing nodules on roots of actinorhizal plants. Phylogenetically, Frankia strains can be grouped in four clusters. The earliest divergent cluster, cluster-2, has a particularly wide host range. The analysis of cluster-2 strains has been hampered by the fact that with two exceptions, they could never be cultured. In this study, 12 Frankia-enriched meta- genomes of Frankia cluster-2 strains or strain assemblages were sequenced based on seven inoculum sources. Sequences obtained via DNA isolated from whole nodules were compared with those of DNA isolated from fractionated preparations enhanced in the Frankia symbiotic structures. -
Phylogenetic Relationships in the Order Cucurbitales and a New Classification of the Gourd Family (Cucurbitaceae)
Schaefer & Renner • Phylogenetic relationships in Cucurbitales TAXON 60 (1) • February 2011: 122–138 TAXONOMY Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae) Hanno Schaefer1 & Susanne S. Renner2 1 Harvard University, Department of Organismic and Evolutionary Biology, 22 Divinity Avenue, Cambridge, Massachusetts 02138, U.S.A. 2 University of Munich (LMU), Systematic Botany and Mycology, Menzinger Str. 67, 80638 Munich, Germany Author for correspondence: Hanno Schaefer, [email protected] Abstract We analysed phylogenetic relationships in the order Cucurbitales using 14 DNA regions from the three plant genomes: the mitochondrial nad1 b/c intron and matR gene, the nuclear ribosomal 18S, ITS1-5.8S-ITS2, and 28S genes, and the plastid rbcL, matK, ndhF, atpB, trnL, trnL-trnF, rpl20-rps12, trnS-trnG and trnH-psbA genes, spacers, and introns. The dataset includes 664 ingroup species, representating all but two genera and over 25% of the ca. 2600 species in the order. Maximum likelihood analyses yielded mostly congruent topologies for the datasets from the three genomes. Relationships among the eight families of Cucurbitales were: (Apodanthaceae, Anisophylleaceae, (Cucurbitaceae, ((Coriariaceae, Corynocarpaceae), (Tetramelaceae, (Datiscaceae, Begoniaceae))))). Based on these molecular data and morphological data from the literature, we recircumscribe tribes and genera within Cucurbitaceae and present a more natural classification for this family. Our new system comprises 95 genera in 15 tribes, five of them new: Actinostemmateae, Indofevilleeae, Thladiantheae, Momordiceae, and Siraitieae. Formal naming requires 44 new combinations and two new names in Cucurbitaceae. Keywords Cucurbitoideae; Fevilleoideae; nomenclature; nuclear ribosomal ITS; systematics; tribal classification Supplementary Material Figures S1–S5 are available in the free Electronic Supplement to the online version of this article (http://www.ingentaconnect.com/content/iapt/tax). -
Picrotoxane Sesquiterpene Glycosides and a Coumarin Derivative from Coriaria Nepalensis and Their Neurotrophic Activity
molecules Article Picrotoxane Sesquiterpene Glycosides and a Coumarin Derivative from Coriaria nepalensis and Their Neurotrophic Activity Yuan-Yuan Wang, Jun-Mian Tian, Cheng-Chen Zhang, Bo Luo and Jin-Ming Gao * Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, Shaanxi, China; [email protected] (Y.-Y.W.); [email protected] (J.-M.T.); [email protected] (C.-C.Z.); [email protected] (B.L.) * Correspondence: [email protected]; Tel.: +86-29-8709-2335; Fax: +86-29-8709-2226 Academic Editor: Isabel C. F. R. Ferreira Received: 10 September 2016; Accepted: 9 October 2016; Published: 12 October 2016 Abstract: Two picrotoxane sesquiterpene lactone glycosides, nepalactones A (1) and B (2), and one new coumarin, nepalarin (3), were isolated from the root barks of the poisonous plant Coriaria nepalensis. Their structures were elucidated via HRESIMS and 1D and 2D NMR spectroscopic analyses, and further verified via transformation methods. In addition, compounds 1–3 and five semisynthetic congeners (1a–e) were assayed for the activity to induce neurite outgrowth in rat pheochromocytoma (PC12) cells. As a result, nepalactone A derivative 1c and nepalarin (3) significantly enhanced nerve growth factor (NGF)-mediated neurite outgrowth in PC12 cells. Keywords: Coriaria nepalensis; Coriariaceae; natural products; picrotoxane; sesquiterpene; neurite outgrowth-potentiating activity; neurotrophic activity 1. Introduction Coriaria nepalensis Wall (Coriaria sinica Maxim) (Coriariaceae) is a Chinese medicine herb mainly distributed in the southwest of China. Traditionally, this herb is used to treat numbness, toothache, traumatic injury, and acute conjunctivitis [1]. Sesquiterpene lactones are the characteristic bioactive constituents from family Coriariaceae [2–9]. -
A Rapid Participatory Biodiversity Assessment
A Rapid Participatory Biodiversity Assessment Stora Enso Eucalypt Plantation in Southern Lao PDR Conducted by IUCN (International Union for Conservation of Nature) in Lao PDR May 19, 2008 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN. Authored by: IUCN Lao PDR Copyright: © 2007 International Union for Conservation of Nature and Natural Resources Resources: Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. IUCN International Union for Conservation of Nature and Natural Resources Lao PDR Country Office: 082/01 Fa Ngum Road Ban watt Chan P.O. Box 4340 Vientiane, Lao PDR www. iucn.org Tel: +856 -21 216401 Fax: +856 -21216127 2 Contents Executive Summary................................................................................................... i Recommendations................................................................................................... iii 5.1 Recommendations to strengthen the -
Forestry Measures for Ecologically Controlling Non-Point Source
Jianfeng Zhang Forestry Measures for Ecologically Controlling Non-point Source Pollution in Taihu Lake Watershed, China Forestry Measures for Ecologically Controlling Non-point Source Pollution in Taihu Lake Watershed, China Jianfeng Zhang Forestry Measures for Ecologically Controlling Non-point Source Pollution in Taihu Lake Watershed, China 123 Jianfeng Zhang Institute of Subtropical Forestry Chinese Academy of Forestry Hangzhou China ISBN 978-981-10-1849-7 ISBN 978-981-10-1850-3 (eBook) DOI 10.1007/978-981-10-1850-3 Library of Congress Control Number: 2016945114 © Springer Science+Business Media Singapore 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. -
Early Evolution of Coriariaceae (Cucurbitales) in Light of a New Early Campanian (Ca
TAXON 69 (1) • February 2020: 87–99 Renner & al. • Evolution of Coriariaceae SYSTEMATICS AND PHYLOGENY Early evolution of Coriariaceae (Cucurbitales) in light of a new early Campanian (ca. 82 Mya) pollen record from Antarctica Susanne S. Renner,1 Viviana D. Barreda,2 María Cristina Tellería,3 Luis Palazzesi2 & Tanja M. Schuster1 1 Systematic Botany and Mycology, Ludwig Maximilian University of Munich (LMU), Menzinger-Straße 67, 80638 Munich, Germany 2 Museo Argentino de Ciencias Naturales, Av. Ángel Gallardo 470, C1407DJR Buenos Aires, Argentina 3 Laboratorio de Sistemática y Biología Evolutiva, Museo de La Plata, La Plata, B1900FWA, Argentina Address for correspondence: Susanne S. Renner, [email protected] DOI https://doi.org/10.1002/tax.12203 Abstract Coriariaceae comprise only Coriaria, a genus of shrubs with nine species in Australasia (but excluding Australia), five in the Himalayas, Taiwan, the Philippines, and Japan, one in the Mediterranean, and one ranging from Patagonia to Mexico. The sister family, Corynocarpaceae, comprises five species of evergreen trees from New Guinea to New Zealand and Australia. This distribution has long fascinated biogeographers as potential support for Wegener’s theory of continental drift, with alternative scenarios invoking either Antarctic or Beringian range expansions. Here, we present the discovery of pollen grains from Early Campanian (ca. 82 Mya) deposits in Antarctica, which we describe as Coriaripites goodii sp. nov., and newly generated nuclear and plastid molecular data for most of the family’s species and its outgroup. This greatly expands the family’s fossil record and is the so far oldest fossil of the order Cucurbitales. We used the phylogeny, new fossil, and an Oligocene flowering branch assigned to a small subclade of Coriaria to gen- erate a chronogram and to study changes in chromosome number, deciduousness, and andromonoecy. -
24. MALLOTUS Loureiro, Fl. Cochinch. 2: 635. 1790. 野桐属 Ye Tong Shu Qiu Huaxing (丘华兴 Chiu Hua-Hsing, Kiu Hua-Shing, Kiu Hua-Xing); Michael G
Fl. China 11: 225–237. 2008. 24. MALLOTUS Loureiro, Fl. Cochinch. 2: 635. 1790. 野桐属 ye tong shu Qiu Huaxing (丘华兴 Chiu Hua-hsing, Kiu Hua-shing, Kiu Hua-xing); Michael G. Gilbert Coelodiscus Baillon; Echinus Loureiro; Rottlera Roxburgh. Trees or shrubs, rarely climbers, usually dioecious; indumentum usually of simple and stellate hairs, and whitish to reddish glandular scales. Leaves alternate or opposite with one member of pair smaller; stipules usually subulate; leaf blade undivided or lobate, sometimes peltate, abaxially often glandular-scaly, adaxially often distinctly glandular, base usually with 2 or more glands, venation palmate or pinnate. Inflorescences terminal or axillary, mostly unbranched, less often branched, usually many flowered. Male flowers usually several per bract; calyx 3–5-partite, valvate; petals and disk absent; stamens 15–250; filaments free; anthers 2-locular, connective often broad; pistillode absent [or rarely present]. Females flowers 1(or 2) per bract; calyx 3–5-lobed, sometimes spathaceous and caducous; ovary (2 or)3(or 4)-locular; styles simple, plumose or long papillose; ovules 1 per locule. Capsule (2 or)3(or 4)-locular, smooth or softly spiny. Seeds subglobose or ovoid, smooth, sometimes with aril. About 150 species: tropical and subtropical regions in Asia, a few species in Africa and Australia; 28 species (seven endemic) in China. Phylogenetic studies (Sierra et al., Blumea 51: 519–540. 2006; Kulju et al., Blumea 52: 115–136. 2007) have revealed that Mallotus and Macaranga are closely related and that the species of Cordemoya are distinct from both. These also show that Trevia is embedded within Mallotus but its inclusion has serious nomenclatural consequences and so this is not followed here until the situation is resolved.