Dry Creek Watershed Coordinated Resource Management Plan
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Ravine Sedge (Aka—Impressed- on the Same Stem; Each Spike with 5 - 11 Habitat Fragmentation, and Certain Forest Nerve Sedge) Fruits
U.S. Fish & Wildlife Service February 2019 Conserving South Carolina’s At-Risk Species: www.fws.gov/charleston www.fws.gov/southeast/endangered-species-act/at-risk-species Species facing threats to their survival Ravine sedge (aka—Impressed- on the same stem; each spike with 5 - 11 habitat fragmentation, and certain forest nerve sedge) fruits. The fruit body is about ⅛ inch long management practices. (Carex impressinervia) with a short, bent stalk and sharply bent tip, tightly enclosed in a 3-sided, heavily Management/Protection Needs veined sac. Few-fruited sedge (Carex oli- Protect hardwood slope forests and flood- gocarpa) is a similar species that also forms plain forests from clearing, logging, and dense clumps in rich forests but does not stream impoundment as the species tends have old leaf bases persisting at the base of to grow in transition zones between the the plant. Also, its leaf sheaths are purple floodplain and slope, making it particular- rather than light green. Ravine sedge, like ly vulnerable to changes in water levels. most sedges, are wind-pollinated. Little is Management primarily involves avoiding known about seed dispersal or other as- removal of the tree canopy and preventing pects of reproduction for this species. any activity that would change the hydrol- ogy of the ravines. Exotic species that Range invade forested area may need to be con- Ravine sedge is currently known from trolled on some sites. approximately 25 disjunct sites in Ala- bama, Mississippi, North Carolina, South Carolina, and possibly Georgia. In South Carolina, the plant is known only from a small tributary to Cuffeytown Creek in Greenwood County where it occurs with Dwarf palmetto (Sabal minor) and Ogle- thorpe oak (Quercus oglethorpensis). -
The Armenians
THE ARMENIANS By C.F. DIXON-JOHNSON “Whosoever does wrong to a Christian or a Jew shall find me his accuser on the day of judgment.” (EL KORAN) Printed and Published by GEO TOULMIN & SONS, LTD. Northgate, Blackburn. 1916 Preface The following pages were first read as a paper before the “Société d’Etudes Ethnographiques.” They have since been amplified and are now being published at the request of a number of friends, who believe that the public should have an opportunity of judging whether or not “the Armenian Question” has another side than that which has been recently so assiduously promulgated throughout the Western World. Though the championship of Greek, Bulgarian and other similar “Christian, civilized methods of fighting,” as contrasted with “Moslem atrocities” in the Balkans and Asia Minor, has been so strenuously undertaken by Lord Bryce and others, the more recent developments in the Near East may perhaps already have opened the eyes of a great many thinking people to the realization that, in sacrificing the traditional friendship of the Turk to all this more or less sectarian clamor, British diplomacy has really done nothing better than to exchange the solid and advantageous reality for a most elusive and unreliable, if not positively dangerous, set of shadows. It seems illogical that the same party which recalled the officials (and among them our present War Minister) appointed by Lord Beaconsfield to assist the Turkish Government in reforming their administration and collecting the revenue in Asia Minor, and which on the advent of the Young Turks refused to lend British Administrators to whom ample and plenary powers were assured, should now, in its eagerness to vilify the Turk, lose sight of their own mistakes which have led in the main to the conditions of which it complains, and should so utterly condemn its own former policy. -
How Things Fly Presentations
1A Crawford, Jasmine I Eagle 1A Elliott, Noah C Bumble Bee 1A Patel, Kishan H Hornet 1A Sutton, Ashley K Turkey 1B Ablorh, Marcellina A Birds 1B Bailey-Simpson, Tyron D Bumble Bee 1B Butler, Vidal M Hornet 1B Castor, Carnie Wasp 1B Clark, Micaylah J Butterfly 1B Fairley, Nicholas M Duck 1B Gaymer, Nicolas Falcon 1B Gomez, Luis G Eagle 1B Haines, Tynise N Geese 1B Harden, Travis E Ostrich 1B Henry, Nigel D Turkey 1B Jenkins, Myae'h J Birds 1B Johnson, Jeremy A Bumble Bee 1B Jordan, Justin A Hornet 1B Kovach, Alecia A Wasp 1B Marshall, Allison V Butterfly 1B Marshall, Alyssa M Duck 1B McLennon, Michael K Falcon 1B Milazzo, Matthew M Eagle 1B Okwuosa, Arinze A Geese 1B Smith, Chasity R Ostrich 1B Thomas, Jada L Turkey 1B Warren, Dierra L Birds 1B Weems, Destiny K Bumble Bee 2A Anderson, Jeremiah O Birds 2A Barrett, Dakota A Bumble Bee 2A Bates, Brooklyn J Hornet 2A Blue II, Neil Wasp 2A Brock, Devin A Butterfly 2A Clark, Jasmine M Duck 2A Coleman, Arrienna D Falcon 2A Fisher, M'Kayla M Eagle 2A Harris, Johnathan L Geese 2A Heintz, Michael H Ostrich 2A Hester, Jazlyn A Turkey 2A Hobbs, Kamilah D Birds 2A Jackson, Janise N Bumble Bee 2A Jenkins II, Harrison C Hornet 2A Jones, Lance K Wasp 2A Jones, Shicorreus L Butterfly 2A Logan, Tyshawn A Duck 2A Maduchem-Izundu, KachikwuluFalcon M 2A Matthews, Zackary G Eagle 2A Nguyen, Jimmy Geese 2A Norfleet, Nyhjae Q Ostrich 2A Paragon-singh, Andrew W Turkey 2A Parrish Brown, Jordan C Birds 2A Petty, Kristina A Bumble Bee 2A Pitchford, Colin C Hornet 2A Singleton, Isaiah D Wasp 2A Tucker, Cody D Butterfly -
Baldfaced Hornet & Aerial Yellowjacket
Colorado Insect of Interest Baldfaced Hornet & Aerial Yellowjacket Scientific Names: Dolichovespula maculata (L.) (baldfaced hornet), D. arenaria (Fabricius) (aerial yellowjacket) Figure 1. Baldfaced hornet collecting honeydew from oak galls. Order: Hymenoptera (Bees, Wasps, Ants, Sawflies and Relatives) Family: Vespidae Identification and Descriptive Features: Adults are prominently marked with either black and white (baldfaced hornet) or black and yellow (aerial yellowjacket) markings. The general body form is elongate with the hind end terminating in a blunt point (with stinger) and they are only sparsely hairy, unlike bees. The baldfaced hornet is the larger species, typically over 15 mm in length. Size range within a colony varies with workers being smaller, usually within the range of 10-14 mm. Adults of the aerial yellowjacket are quite similar Figure 2. Aerial yellowjacket chewing on to the western yellowjacket, Vespula pensylvanica weathered wood. (Saussure), in both size and general coloration. The pattern of markings on the abdomen can be used to separate these insects (Figures 6-9). Distribution in Colorado: Both the baldfaced hornet and aerial yellowjacket normally nests in trees or large shrubs and are native to forested areas. However, with landscaping provided around residential areas these wasps may now commonly be found in most towns and cities, with the exception of some in the eastern plain communities. The aerial yellowjacket, in particular, has also adapted to nest on buildings. Life History and Habits: The baldfaced hornet and aerial yellowjacket, the two primary representatives of the genus Dolichovespula in Colorado, make large above ground carton nests of a papery material. These nests are produced annually, initiated in spring by a single overwintered queen and abandoned at the end of the season. -
Controlling Wasps, Bees and Hornets Around Your Home Dr
Bringing information and education into the communities of the Granite State Controlling Wasps, Bees and Hornets Around Your Home Dr. Alan T. Eaton, Extension Specialist, Entomology Wasp encounters can be painful, even life-threatening, for a few highly sensitive people. Yet some New Hampshire species are not very aggressive and they also serve as valuable predators of soft-bodied insects. A hands-off policy might be better for some situations, while others might require careful, direct action. The choice you make should depend on the species and situation. Aggressive species New Hampshire is “blessed” with at least nine species of yellow- jackets, along with two other aggressive wasp species, the bald- faced hornet and giant European hornet. All these members of the wasp family Vespidae live in colonies and have similar life cycles. We also have a moderately aggressive, large solitary wasp, called the cicada killer. Most yellow jackets are about ½ inch long, with yellow and black banded bodies, and clear wings. Bald-faced hornets grow up to ¾ Yellow jacket wasp. Wasps and hornets are im- inch long, with stout, black bodies marked with gray or white bands. portant predators of soft-bodied insects, such Giant European hornets grow up to one inch long, resembling giant as caterpillars. yellow jackets, with a stout body, but colored yellow, brown and black. Only the mated females of Vespidae species survive the winter. These females overwinter individually, usually in deep leaf litter in the woods. In the spring, those that survived emerge and search for a site to start a tiny nest. Bald faced hornets prefer eaves of buildings, horizontal branches, or some similar site protected from rain. -
X. Chuckanut Creek SMA Summary: the Chuckanut Creek SMA Is 91.8 Acres in Size and Has Very Low Density Development, but Has the Potential for Significant Infill
X. Chuckanut Creek SMA Summary: The Chuckanut Creek SMA is 91.8 acres in size and has very low density development, but has the potential for significant infill. Infrastructure is limited within the SMA and a lack of sanitary sewer service to most the area currently limits growth. This SMA currently is functioning at high levels for most ecological parameters. Fecal coliform and dissolved oxygen levels have exceeded Washington State water quality parameters and their management should be a high priority for this SMA. Habitat quality is excellent throughout most this drainage and conservation is recommended. X.1 Watershed Analysis X.1.1 Landscape Setting The drainage is located at the northern toe of Chuckanut Mountain and approximately half the drainage occurs within the City limits. The Chuckanut Watershed is heavily forested and part of a large forested corridor that extends south to Blanchard Mountain. It is also of the only remaining forested corridor in Washington State that extends from the Cascade Mountains to the marine system. Chuckanut Creek flows within an incised ravine cut into continental sedimentary material and bedrock. The channel is naturally confined within the narrow ravine. The narrow nature of the ravine bottom is not conducive to channel migration to any significant extent. Squalicum-Chuckanut-Nati soils are the dominant soils types in this drainage. The soils can be generally described as moderately deep to very deep, moderately well drained, gently sloping to very steep soils, on foothills, plateaus and landslides. The side slopes of the ravine along most this SMA area range between 20% to 100%. -
Aliens: the Invasive Species Bulletin Newsletter of the IUCN/SSC Invasive Species Specialist Group
Aliens: The Invasive Species Bulletin Newsletter of the IUCN/SSC Invasive Species Specialist Group ISSN 1173-5988 Issue Number 31, 2011 Coordinator CONTENTS Piero Genovesi, ISSG Chair, ISPRA Editors Editorial pg. 1 Piero Genovesi and Riccardo Scalera News from the ISSG pg. 2 Assistant Editor ...And other news pg. 4 Anna Alonzi Monitoring and control modalities of a honeybee predator, the Yellow Front Cover Photo legged hornet Vespa velutina The yellow-legged hornet Vespa velutina nigrithorax (Hymenoptera: © Photo by Quentin Rome Vespidae) pg. 7 Improving ant eradications: details of more successes, The following people a global synthesis contributed to this issue and recommendations pg. 16 Shyama Pagad, Carola Warner Introduced reindeer on South Georgia – their impact and management pg. 24 Invasive plant species The newsletter is produced twice a year and in Asian elephant habitats pg. 30 is available in English. To be added to the AlterIAS: a LIFE+ project to curb mailing list, or to download the electronic the introduction of invasive version, visit: ornamental plants in Belgium pg. 36 www.issg.org/newsletter.html#Aliens Investigation of Invasive plant Please direct all submissions and other ed- species in the Caucasus: itorial correspondence to Riccardo Scalera current situation pg. 42 [email protected] The annual cost of invasive species to the British economy quantified pg. 47 Published by Eradication of the non-native ISPRA - Rome, Italy sea squirt Didemnum vexillum Graphics design from Holyhead Harbour, Wales, UK pg. 52 Franco Iozzoli, ISPRA Challenges, needs and future steps Coordination for managing invasive alien species Daria Mazzella, ISPRA - Publishing Section in the Western Balkan Region pg. -
Riparian Forest, Aquatic Habitat, and Vertebrate Influences on Macroinvertebrate Assemblages in Headwater Streams of Northeast Ohio Kathryn L
Riparian Forest, Aquatic Habitat, and Vertebrate Influences on Macroinvertebrate Assemblages in Headwater Streams of Northeast Ohio Kathryn L. Holmes, P. Charles Goebel, Lance R. Williams, Marie Schrecengost School of Environment and Natural Resources, Ohio Agricultural Research and Development Center, The Ohio State University Introduction Riparian Forest Species- Environment Relationships It has long been recognized that streams and rivers are integrally tied to terrestrial riparian Transects were established perpendicular to stream-flow across the stream We used canonical correspondence analysis (CCA), to examine the relationships areas (Minshall 1967). Especially in headwaters, stream biota are dependent on allochthonous valley at 33, 66, and 100 m within each reach. For each transect, circular between relative abundance of macroinvertebrate families and functional feeding inputs from surrounding riparian corridors for nutrients and habitat (Vannote et al. 1980). plots (400m2) were centered on riparian geomorphic landforms (e.g. guilds and environmental factors. CCA is comparable to multiple regression, where Headwater streams (typically defined as draining < 13 km2 watershed area) comprise up to floodplain, terrace, valley toe-slope) and all tree stems greater than 10 cm “species” are dependent variables and constrained by measured environmental 80% of a watershed’s stream network (Meyer et al. 2003). These small streams should be the DBH (diameter at breast height= 1.35 m) were identified and measured. factors, which serve as independent variables. Three separate CCAs were focus of restoration efforts because of their potential importance for diversity (Vannote et al. Using a concave spherical densiometer, riparian canopy cover was conducted for families and feeding guilds, one for each group of environmental 1980) and nutrient processing (Peterson et al. -
Asian Giant Hornet (Vespa Mandarinia)
This is a Pre-Review Version of This Factsheet - An Update Will Be Available When Reviews Are Complete The Asian Giant hornet (AGH) or Japanese giant hornet, Vespa mandarinia, recently found in Brit- ish Columbia, Canada, and in Washington State, poses a significant threat to European honey bee (EHB), Apis mellifera, colonies and is a public health issue. The AGH is the world’s largest species of hornet, native to temperate and tropical Eastern Asia low mountains and forests. The hornet is well adapted to conditions in the Pacific Northwest. If this hornet becomes established, it will have a severe and damaging impact on the honey bee pop- ulation, the beekeeping industry, the environment, public health, and the economy. It is critical that we identify, trap, and attempt to eliminate this new pest before it becomes established and wide- spread. Attempts to contain the spread and eradication of this invasive insect will be most effective Vespa mandarinia japonica from Taraba- in trapping queens during early spring before their nests become established. gani - Wikimedia commons It is critical these actions are taken before the fall reproductive and dispersal phase of the hornet. What is a hornet? Beekeepers in the field are the most crucial line of defense in locating, identifying, and trapping the A hornet is simply a large wasp. Generally, wasps hornets. Yet, everyone should be on the lookout for the hornets and report any sightings to local of the class or genus know as Vespa are consid- authorities and the Washington Department of Agriculture. ered hornets. Interestingly, there are no true hor- Here we cover how the AGH will impact the honey bee, give the reader a better understanding of nets (Vespa) native to North America. -
3.14-3.15 Watershed Resource Inventory
3.14 Watershed Drainage System the 12 streams, Tributary G which streams surrounding these ravines, is located in the central portion of exacerbating the erosion process 3.14.1 Tributary Streams and the watershed, is the longest at and threatening ravine habitat. Ravines to Lake Michigan approximately 34,679 linear feet or In 2006, Hey and Associates, Inc. about 6.6 miles. Tributaries E and was contracted by the Village of aterways such as F, the second and third longest Caledonia to conduct a study of streams and ravines streams in the watershed, are 14,550 several ravines within Caledonia are a barometer of linear feet (2.8 miles) and 11,631 including Rifle Range, Cliffside Park, the health of their linear feet (2.2 miles) respectively. Breaker’s, Dominican Creek, and watersheds. The story of waterways, The remaining 9 streams account Birch Creek Ravines. The study, Was with so many natural resources, for 36,051 linear feet or 6.8 miles. entitled Ravine Erosion and Natural has been one of exploitation Stream conditions vary greatly Resources Assessment Study, and lack of understanding. depending on their location, past looked at erosion and ecological Few waterways throughout the and currently surrounding land and bank stability in respect to these world have escaped pollution, uses, ownership, etc. ravines and made management channel modifications, and recommendations accordingly. increased flooding as a result of One important observation was mismanagement of development in made in fall of 2012 that all streams Additional recommended ravine the watershed (Apfelbaum & Haney in the watershed are intermittent. related resources can be found at: 2010). -
THE CONTRIBUTION of HEADWATER STREAMS to BIODIVERSITY in RIVER Networksl
JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION Vol. 43, No.1 AMERICAN WATER RESOURCES ASSOCIATION February 2007 THE CONTRIBUTION OF HEADWATER STREAMS TO BIODIVERSITY IN RIVER NETWORKSl Judy L. Meyer, David L. Strayer, J. Bruce Wallace, Sue L. Eggert, Gene S. Helfman, and Norman E. Leonard2 ABSTRACT: The diversity of life in headwater streams (intermittent, first and second order) contributes to the biodiversity of a river system and its riparian network. Small streams differ widely in physical, chemical, and biotic attributes, thus providing habitats for a range of unique species. Headwater species include permanent residents as well as migrants that travel to headwaters at particular seasons or life stages. Movement by migrants links headwaters with downstream and terrestrial ecosystems, as do exports such as emerging and drifting insects. We review the diversity of taxa dependent on headwaters. Exemplifying this diversity are three unmapped headwaters that support over 290 taxa. Even intermittent streams may support rich and distinctive biological communities, in part because of the predictability of dry periods. The influence of headwaters on downstream systems emerges from their attributes that meet unique habitat requirements of residents and migrants by: offering a refuge from temperature and flow extremes, competitors, predators, and introduced spe cies; serving as a source of colonists; providing spawning sites and rearing areas; being a rich source of food; and creating migration corridors throughout the landscape. Degradation and loss of headwaters and their con nectivity to ecosystems downstream threaten the biological integrity of entire river networks. (KEY TERMS: biotic integrity; intermittent; first-order streams; small streams; invertebrates; fish.) Meyer, Judy L., David L. -
Assessing Differences in Ravine Erosion in Seven Mile Creek Park and the Surrounding Area: Implications for Sediment in the Minnesota River by Laura Danczyk
Assessing Differences in Ravine Erosion in Seven Mile Creek Park and the Surrounding Area: Implications for Sediment in the Minnesota River By Laura Danczyk A thesis submitted in partial fulfillment of the requirements of the degree of Bachelor of Arts (Geology) At Gustavus Adolphus College 2018 Assessing Differences in Ravine Erosion in Seven Mile Creek Park and the Surrounding Area: Implications for Sediment in the Minnesota River By Laura Danczyk Under the supervision of Laura Triplett Abstract The Minnesota River is characterized by a high suspended sediment load, which reduces water clarity and can negatively impact the ecosystem of a river. In south-central Minnesota, ravines are locally important sources of fine-grained sediment for the Minnesota River. In the Seven Mile Creek watershed, these narrow, steep-sided valleys are underlain by unconsolidated silt, clay, and sand. Most ravines in this area are actively eroding, but some appear to be stable for intervals of time. Knowing what factors contribute to ravine erosion will help understand controls on sediment from these to the Minnesota River. One question is whether or not grain size affects the erosion of ravines. Grain size distribution was evaluated in actively eroding ravines and non-eroding ravines in the study area, using a particle size analyzer (PSA). Average grain size, average skewness, and average kurtosis were determined to compare eroding ravines versus non-eroding ravines in Seven Mile Creek Park and at a nearby private property (Fredricks’ ravines). Results indicate that grain size distributions in eroding and non-eroding ravines are not significantly different. This result suggests that there may be a similarity between similar till material from one site to another based on grain size, but a difference in grain size from the clay material from one site to another.