LECTURE Series

Total Page:16

File Type:pdf, Size:1020Kb

LECTURE Series University LECTURE Series Volume 52 Koszul Cohomology and Algebraic Geometry Marian Aprodu Jan Nagel American Mathematical Society http://dx.doi.org/10.1090/ulect/052 Koszul Cohomology and Algebraic Geometry University LECTURE Series Volume 52 Koszul Cohomology and Algebraic Geometry Marian Aprodu Jan Nagel M THE ATI A CA M L ΤΡΗΤΟΣ ΜΗ N ΕΙΣΙΤΩ S A O C C I I R E E T ΑΓΕΩΜΕ Y M A F O 8 U 88 NDED 1 American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Jerry L. Bona NigelD.Higson Eric M. Friedlander (Chair) J. T. Stafford 2000 Mathematics Subject Classification. Primary 14H51, 14C20, 14H60, 14J28, 13D02, 16E05. For additional information and updates on this book, visit www.ams.org/bookpages/ulect-52 Library of Congress Cataloging-in-Publication Data Aprodu, Marian. Koszul cohomology and algebraic geometry / Marian Aprodu, Jan Nagel. p. cm. — (University lecture series ; v. 52) Includes bibliographical references and index. ISBN 978-0-8218-4964-4 (alk. paper) 1. Koszul algebras. 2. Geometry, Algebraic. 3. Homology theory. I. Nagel, Jan. II. Title. QA564.A63 2010 512.46—dc22 2009042378 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected]. c 2010 by the authors. All rights reserved. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 151413121110 Contents Preface vii Chapter 1. Basic definitions 1 1.1. The Koszul complex 1 1.2. Definitions in the algebraic context 2 1.3. Minimal resolutions 4 1.4. Definitions in the geometric context 5 1.5. Functorial properties 7 1.6. Notes and comments 11 Chapter 2. Basic results 13 2.1. Kernel bundles 13 2.2. Projections and linear sections 15 2.3. Duality 20 2.4. Koszul cohomology versus usual cohomology 22 2.5. Sheaf regularity 24 24 2.6. Vanishing theorems 25 2.7. Notes and comments 27 Chapter 3. Syzygy schemes 29 3.1. Basic definitions 29 3.2. Koszul classes of low rank 37 3.3. The Kp,1 theorem 39 3.4. Rank-2 bundles and Koszul classes 43 3.5. The curve case 46 3.6. Notes and comments 50 Chapter 4. The conjectures of Green and Green–Lazarsfeld 53 4.1. Brill-Noether theory 53 4.2. Numerical invariants of curves 55 4.3. Statement of the conjectures 57 4.4. Generalizations of the Green conjecture 60 4.5. Notes and comments 63 Chapter 5. Koszul cohomology and the Hilbert scheme 65 5.1. Voisin’s description 65 5.2. Examples 68 5.3. Vanishing via base change 72 Chapter 6. Koszul cohomology of a K3surface 75 6.1. The Serre construction, and vector bundles on K3 surfaces 75 v vi CONTENTS 6.2. Brill-Noether theory of curves on K3 surfaces 76 6.3. Voisin’s proof of Green’s generic conjecture: even genus 79 6.4. The odd-genus case (outline) 88 6.5. Notes and comments 90 Chapter 7. Specific versions of the syzygy conjectures 91 7.1. Nodal curves on K3 surfaces 91 7.2. The specific Green conjecture 92 7.3. Stable curves with extra-syzygies 95 7.4. Curves with small Brill-Noether loci 97 7.5. Further evidence for the Green-Lazarsfeld conjecture 100 7.6. Exceptional curves 103 7.7. Notes and comments 103 Chapter 8. Applications 105 8.1. Koszul cohomology and Hodge theory 105 8.2. Koszul divisors of small slope on the moduli space. 111 8.3. Slopes of fibered surfaces 115 8.4. Notes and comments 116 Bibliography 119 Index 125 Preface The systematic use of Koszul cohomology computations in algebraic geometry can be traced back to the foundational paper [Gre84a]byM.Green.Inthis paper, Green introduced the Koszul cohomology groups Kp,q(X, L) associated to a line bundle L on a smooth projective variety X, and studied the basic properties of these groups. Green noted that a number of classical results concerning the generators and relations of the (saturated) ideal of a projective variety can be rephrased naturally in terms of vanishing theorems for Koszul cohomology, and extended these results using his newly developed techniques. In a remarkable series of papers, Green and Lazarsfeld further pursued this approach. Much of their work in the late 80’s centers around the shape of the minimal resolution of the ideal of a projective variety; see [Gre89], [La89] for an overview of the results obtained during this period. Green and Lazarsfeld also stated two conjectures that relate the Koszul coho- mology of algebraic curves to two numerical invariants of the curve, the Clifford index and the gonality. These conjectures became an important guideline for future research. They were solved in a number of special cases, but the solution of the general problem remained elusive. C. Voisin achieved a major breakthrough by proving the Green conjecture for general curves in [V02]and[V05]. This result soon led to a proof of the conjecture of Green–Lazarsfeld for general curves [AV03 ], [Ap04]. Since the appearance of Green’s paper there has been a growing interaction between Koszul cohomology and algebraic geometry. Green and Voisin applied Koszul cohomology to a number of Hodge–theoretic problems, with remarkable success. This work culminated in Nori’s proof of his connectivity theorem [No93]. In recent years, Koszul cohomology has been linked to the geometry of Hilbert schemes (via the geometric description of Koszul cohomology used by Voisin in her work on the Green conjecture) and moduli spaces of curves. Since there already exists an excellent introduction to the subject [Ei06], this book is devoted to more advanced results. Our main goal was to cover the re- cent developments in the subject (Voisin’s proof of the generic Green conjecture, and subsequent refinements) and to discuss the geometric aspects of the theory, including a number of concrete applications of Koszul cohomology to problems in algebraic geometry. The relationship between Koszul cohomology and minimal res- olutions will not be treated at length, although it is important for historical reasons and provides a way to compute Koszul cohomology by computer calculations. Outline of contents. The first two chapters contain a review of a number of basic definitions and results, which are mainly included to fix the notation and vii viii PREFACE to obtain a reasonably self–contained presentation. Chapter 3 is devoted to the theory of syzygy schemes. The aim of this theory is to study Koszul cohomology classes in the groups Kp,1(X, L) by associating a geometric object to them. This chapter contains a proof of one of the fundamental results in the subject, Green’s Kp,1–theorem. In Chapter 4 we recall a number of results from Brill–Noether theory that will be needed in the sequel, and state the conjectures of Green and Green–Lazarsfeld. Chapters 5–7 form the heart of the book. Chapter 5 is devoted to Voisin’s description of the Koszul cohomology groups Kp,q(X, L) in terms of the Hilbert scheme of zero–dimensional subschemes of X. This description yields a method to prove vanishing theorems for Koszul cohomology by base change, which is used in Voisin’s proof of the generic Green conjecture. In Chapter 6 we present Voisin’s proof for curves of even genus, and outline the main steps of the proof for curves of odd genus; the latter case is technically more complicated. Chapter 7 contains a number of refinements of Voisin’s result; in particular, we have included a proof of the conjectures of Green and Green–Lazarsfeld for the general curve in a given gonality stratum of the moduli space of curves. In the final chapter we discuss geometric applications of Koszul cohomology to Hodge theory and the geometry of the moduli space of curves. Acknowledgments. MA thanks the Fourier Institute Grenoble, the University of Bayreuth, Laboratoire Painlev´e Lille, and the Max Planck Institut f¨ur Mathematik Bonn, and JN thanks the Fourier Institute Grenoble, the University of Bayreuth, and the Simion Stoilow Institute Bucharest for hospitality during the preparation of this work. MA was partially supported by the grant PN-II-ID-PCE-2008-2, cod CNCSIS 1189. The authors are members of the L.E.A. “MathMode”. Marian Aprodu and Jan Nagel Bibliography [Ap02] Aprodu, M.: On the vanishing of higher syzygies of curves. Math. Z., 241, 1–15 (2002) [Ap04] Aprodu, M.: Green-Lazarsfeld gonality conjecture for a generic curve of odd genus. Int. Math. Res. Notices, 63, 3409–3414 (2004) [Ap05] Aprodu, M.: Remarks on syzygies of d-gonal curves. Math. Res. Lett., 12, 387–400 (2005) [AF08] Aprodu, M., Farkas, G.: Koszul cohomology and applications to moduli. arXiv : 0811.3117. To appear in Proc. Clay Math Inst. AMS [AN04] Aprodu, M., Nagel, J.: A Lefschetz type result for Koszul cohomology. Manuscr. Math., 114, 423–430 (2004) [AN07] Aprodu, M., Nagel, J.: Non-vanishing for Koszul cohomology of curves.
Recommended publications
  • The Weil Proof and the Geometry of the Adèles Class Space
    The Weil Proof and the Geometry of the Adèles Class Space Alain Connes,1 Caterina Consani,2 and Matilde Marcolli3 1 Collège de France, 3, rue d’Ulm, Paris, F-75005 France [email protected] 2 Mathematics Department, Johns Hopkins University, Baltimore, MD 21218 USA [email protected] 3 Department of Mathematics, California Institute of Technology 1200 E California Blvd, Pasadena, CA 91101, USA [email protected] Dedicated to Yuri Manin on the occasion of his 70th birthday O simili o dissimili che sieno questi mondi non con minor raggione sarebe bene a l’uno l’essere che a l’altro Giordano Bruno – De l’infinito, universo e mondi Summary. This paper explores analogies between the Weil proof of the Riemann hypothesis for function fields and the geometry of the adèles class space, which is the noncommutative space underlying Connes’ spectral realization of the zeros of the Riemann zeta function. We consider the cyclic homology of the cokernel (in the abelian category of cyclic modules) of the “restriction map” defined by the inclu- sion of the idèles class group of a global field in the noncommutative adèles class space. Weil’s explicit formula can then be formulated as a Lefschetz trace formula for the induced action of the idèles class group on this cohomology. In this formu- lation the Riemann hypothesis becomes equivalent to the positivity of the relevant trace pairing. This result suggests a possible dictionary between the steps in the Weil proof and corresponding notions involving the noncommutative geometry of the adèles class space, with good working notions of correspondences, degree, and codegree etc.
    [Show full text]
  • Academic Profiles of Conference Speakers
    Academic Profiles of Conference Speakers 1. Cavazza, Marta, Associate Professor of the History of Science in the Facoltà di Scienze della Formazione (University of Bologna) Professor Cavazza’s research interests encompass seventeenth- and eighteenth-century Italian scientific institutions, in particular those based in Bologna, with special attention to their relations with the main European cultural centers of the age, namely the Royal Society of London and the Academy of Sciences in Paris. She also focuses on the presence of women in eighteenth- century Italian scientific institutions and the Enlightenment debate on gender, culture and society. Most of Cavazza’s published works on these topics center on Laura Bassi (1711-1778), the first woman university professor at Bologna, thanks in large part to the patronage of Benedict XIV. She is currently involved in the organization of the rich program of events for the celebration of the third centenary of Bassi’s birth. Select publications include: Settecento inquieto: Alle origini dell’Istituto delle Scienze (Bologna: Il Mulino, 1990); “The Institute of science of Bologna and The Royal Society in the Eighteenth century”, Notes and Records of The Royal Society, 56 (2002), 1, pp. 3- 25; “Una donna nella repubblica degli scienziati: Laura Bassi e i suoi colleghi,” in Scienza a due voci, (Firenze: Leo Olschki, 2006); “From Tournefort to Linnaeus: The Slow Conversion of the Institute of Sciences of Bologna,” in Linnaeus in Italy: The Spread of a Revolution in Science, (Science History Publications/USA, 2007); “Innovazione e compromesso. L'Istituto delle Scienze e il sistema accademico bolognese del Settecento,” in Bologna nell'età moderna, tomo II.
    [Show full text]
  • Noncommutative Geometry Models for Particle Physics and Cosmology, Lecture I
    Noncommutative Geometry models for Particle Physics and Cosmology, Lecture I Matilde Marcolli Villa de Leyva school, July 2011 Matilde Marcolli NCG models for particles and cosmology, I Plan of lectures 1 Noncommutative geometry approach to elementary particle physics; Noncommutative Riemannian geometry; finite noncommutative geometries; moduli spaces; the finite geometry of the Standard Model 2 The product geometry; the spectral action functional and its asymptotic expansion; bosons and fermions; the Standard Model Lagrangian; renormalization group flow, geometric constraints and low energy limits 3 Parameters: relations at unification and running; running of the gravitational terms; the RGE flow with right handed neutrinos; cosmological timeline and the inflation epoch; effective gravitational and cosmological constants and models of inflation 4 The spectral action and the problem of cosmic topology; cosmic topology and the CMB; slow-roll inflation; Poisson summation formula and the nonperturbative spectral action; spherical and flat space forms Matilde Marcolli NCG models for particles and cosmology, I Geometrization of physics Kaluza-Klein theory: electromagnetism described by circle bundle over spacetime manifold, connection = EM potential; Yang{Mills gauge theories: bundle geometry over spacetime, connections = gauge potentials, sections = fermions; String theory: 6 extra dimensions (Calabi-Yau) over spacetime, strings vibrations = types of particles NCG models: extra dimensions are NC spaces, pure gravity on product space becomes gravity
    [Show full text]
  • Lectures on Factorization Homology, ∞-Categories, and Topological
    SPRINGER BRIEFS IN MATHEMATICAL PHYSICS 39 Hiro Lee Tanaka Lectures on Factorization Homology, ∞-Categories, and Topological Field Theories Contributed by Araminta Amabel · Artem Kalmykov · Lukas Müller SpringerBriefs in Mathematical Physics Volume 39 Series Editors Nathanaël Berestycki, University of Vienna, Vienna, Austria Mihalis Dafermos, Mathematics Department, Princeton University, Princeton, NJ, USA Atsuo Kuniba, Institute of Physics, The University of Tokyo, Tokyo, Japan Matilde Marcolli, Department of Mathematics, University of Toronto, Toronto, Canada Bruno Nachtergaele, Department of Mathematics, Davis, CA, USA Hirosi Ooguri, Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, USA SpringerBriefs are characterized in general by their size (50–125 pages) and fast production time (2–3 months compared to 6 months for a monograph). Briefs are available in print but are intended as a primarily electronic publication to be included in Springer’s e-book package. Typical works might include: • An extended survey of a field • A link between new research papers published in journal articles • A presentation of core concepts that doctoral students must understand in order to make independent contributions • Lecture notes making a specialist topic accessible for non-specialist readers. SpringerBriefs in Mathematical Physics showcase, in a compact format, topics of current relevance in the field of mathematical physics. Published titles will encompass all areas of theoretical and mathematical physics.
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • Mathematisches Forschungsinstitut Oberwolfach Emigration Of
    Mathematisches Forschungsinstitut Oberwolfach Report No. 51/2011 DOI: 10.4171/OWR/2011/51 Emigration of Mathematicians and Transmission of Mathematics: Historical Lessons and Consequences of the Third Reich Organised by June Barrow-Green, Milton-Keynes Della Fenster, Richmond Joachim Schwermer, Wien Reinhard Siegmund-Schultze, Kristiansand October 30th – November 5th, 2011 Abstract. This conference provided a focused venue to explore the intellec- tual migration of mathematicians and mathematics spurred by the Nazis and still influential today. The week of talks and discussions (both formal and informal) created a rich opportunity for the cross-fertilization of ideas among almost 50 mathematicians, historians of mathematics, general historians, and curators. Mathematics Subject Classification (2000): 01A60. Introduction by the Organisers The talks at this conference tended to fall into the two categories of lists of sources and historical arguments built from collections of sources. This combi- nation yielded an unexpected richness as new archival materials and new angles of investigation of those archival materials came together to forge a deeper un- derstanding of the migration of mathematicians and mathematics during the Nazi era. The idea of measurement, for example, emerged as a critical idea of the confer- ence. The conference called attention to and, in fact, relied on, the seemingly stan- dard approach to measuring emigration and immigration by counting emigrants and/or immigrants and their host or departing countries. Looking further than this numerical approach, however, the conference participants learned the value of measuring emigration/immigration via other less obvious forms of measurement. 2892 Oberwolfach Report 51/2011 Forms completed by individuals on religious beliefs and other personal attributes provided an interesting cartography of Italian society in the 1930s and early 1940s.
    [Show full text]
  • Giuseppe Tallini (1930-1995)
    Bollettino U. M. I. (8)1-B (1998), 451-474 — GIUSEPPE TALLINI (1930-1995) La vita. Personalità scientifica dinamica e prorompente, "iuseppe Tallini verrà certamente ricordato nella storia della matematica di questo secolo per aver dato un impulso decisi- vo allo sviluppo della combinatoria in Italia, continuando insieme ad Adriano Barlotti a promuovere quella scuola di geometria combinatoria, fondata da Beniamino Segre, che , oggi una delle più affermate in campo internazionale. Fondamentali sono i suoi risultati riguardanti gli archi e le calotte in spazi di Galois, la caratterizzazione grafica di varietà algebriche notevoli, le strutture combinatorie d’in- cidenza (matroidi, spazi lineari e semilineari, spazi polari), la teoria dei disegni combina- tori e dei sistemi di *teiner e quella dei codici correttori. Grande ammiratore della cultura classica greco-romana, della cui visione della vita si sentiva profondamente partecipe, ha saputo coniugare una intensissima attività scienti- fica, che lo assorbiva &#asi freneticamente, a omenti di sapiente otium, nei quali si de- dicava preferibilmente a quelle letture di storia antica che egli prediligeva sopra ogni al- tre. Di temperamento naturalmente cordiale ed aperto, era dotato di )randissimo calore umano ed amava la vita in tutte le sue manifestazioni. Nel 1993 era stato colpito da una sclerosi laterale amiotrofica, che lo aveva paralizza- to e poi, negli ultimi mesi del 1994, reso afono. La malattia, che lo condurrà alla morte il 4 aprile 1995 e della cui gravità era consapevole, non ne ha mai fiaccato lo spirito, la luci- dità della mente, la capacità di comunicare idee matematiche. Con grande serenità aveva accettato la crescente enomazione fisica, continuando il lavoro di sempre, in ciò anche sostenuto dal premuroso affetto dei figli e della moglie, che gli è stata amorevolmente %i- cina con dedizione grandissima.
    [Show full text]
  • Lectures on Arithmetic Noncommutative Geometry Matilde Marcolli
    Lectures on Arithmetic Noncommutative Geometry Matilde Marcolli And indeed there will be time To wonder \Do I dare?" and, \Do I dare?" Time to turn back and descend the stair. ... Do I dare Disturb the Universe? ... For I have known them all already, known them all; Have known the evenings, mornings, afternoons, I have measured out my life with coffee spoons. ... I should have been a pair of ragged claws Scuttling across the floors of silent seas. ... No! I am not Prince Hamlet, nor was meant to be; Am an attendant lord, one that will do To swell a progress, start a scene or two ... At times, indeed, almost ridiculous{ Almost, at times, the Fool. ... We have lingered in the chambers of the sea By sea-girls wreathed with seaweed red and brown Till human voices wake us, and we drown. (T.S. Eliot, \The Love Song of J. Alfred Prufrock") Contents Chapter 1. Ouverture 5 1. The NCG dictionary 7 2. Noncommutative spaces 8 3. Spectral triples 9 Chapter 2. Noncommutative modular curves 17 1. Modular curves 17 2. The noncommutative boundary of modular curves 24 3. Modular interpretation: noncommutative elliptic curves 24 4. Limiting modular symbols 29 5. Hecke eigenforms 40 6. Selberg zeta function 43 7. The modular complex and K-theory of C∗-algebras 44 8. Intermezzo: Chaotic Cosmology 45 Chapter 3. Quantum statistical mechanics and Galois theory 53 1. Quantum Statistical Mechanics 54 2. The Bost{Connes system 58 3. Noncommutative Geometry and Hilbert's 12th problem 63 4. The GL2 system 65 5. Quadratic fields 72 Chapter 4.
    [Show full text]
  • NARRATIVE ENCOUNTERS with MATHEMATICS Contents
    THE WOLF AND THE STREET: NARRATIVE ENCOUNTERS WITH MATHEMATICS MATILDE MARCOLLI Contents 1. Introduction 1 2. Tales for the Wolf 1 2.1. Mathematical themes 2 2.2. Wolf in the Fold 4 2.3. Night Songs 5 3. Street Science 6 3.1. Street Art and Street Signs 6 3.2. The End? 8 1. Introduction I was invited to this conference to present the results of an old experiment, a twenty year old exploration of narrative and mathematics, in the form of a collection of fairytales. I began writing the stories of Racconti per il lupo (Tales for the Wolf) in 1986, when I was a sixteen year old student of the Liceo Classico, more occupied with ancient Greek texts and philosophy than with mathematics. I finished the collection when I was about to graduate in Theoretical Physics, at the University of Milano, in 1993. Those few years spanned enormous transformations, at the personal level, going through the passage from late adolescence to adulthood, and from being a student of classical languages to a professional physicist, as well as on the larger scale of society and the world: those were the years that marked \the end of the short century", with all the upheaval, excitement and anxiety that came with it. In their minuscule cameo scale, the mathematical stories I was putting together, act as a small fragmented mirror of larger events. The stories, written in Italian, and illustrated by a series of collages I prepared in the style of Max Ernst, are now available online at the publisher Lulu.com, along with some of my more recent writings.
    [Show full text]
  • Preserving the Unity of Mathematics CONTENTS
    ICMAT Newsletter #13 Autumn 2016 CSIC - UAM - UC3M - UCM EDITORIAL After the last European Congress of Mathematics, held between July 18th and July 22nd in Berlin, Marta Sanz-Solé, professor at the University of Barcelona, speaks about the European Mathematical Society, of which she was the Chair person between 2010 a 2014. The ECM: Preserving the Unity of Mathematics Less than one year ago, in October, 2015, the European Mathe- matical Society (EMS) celebrated its 25th anniversary. The place chosen to commemorate the event was the Institut Henri Poin- caré, the home of mathematics and theoretical physics in Paris since 1928. In that same year, the London Mathematical Soci- ety, one of the oldest mathematical societies in Europe, cele- brated its 150th anniversary, while many other societies have recently commemorated their 100th anniversary or are about to Rascon Image: Fernando do so. This difference in age may give rise to certain complexes, although there is no reason why this should happen. The EMS has enjoyed great success during its short existence, thanks to the well-defined space it occupies in a world that is advancing rapidly towards globalization, and the exclusively international scenario in which it carries out its functions. The conception and creation of the EMS in 1990 is better under- stood in the political context of Europe that arose after the tragic experience of World War II. In 1958, the communitary structure that currently underpins the Europan Union (EU) was estab- CONTENTS lished, on the basis of which the identity of Europe has been con- solidated, and the project, initially focused on the economy, has evolved along all fronts that affect the lives of those belonging Editorial: Marta Sanz-Solé (University of to the member states; in particular, education, research and in- Barcelona)..............................................................1 novation.
    [Show full text]
  • Yuri Ivanovich Manin
    Yuri Ivanovich Manin Academic career 1960 PhD, Steklov Mathematical Institute, Moscow, Russia 1963 Habilitation, Steklov Mathematical Institute, Moscow, Russia 1960 - 1993 Principal Researcher, Steklov Mathematical In- stitute, Russian Academy of Sciences, Moscow, Russia 1965 - 1992 Professor (Algebra Chair), University of Mos- cow, Russia 1992 - 1993 Professor, Massachusetts Institute of Technolo- gy, Cambridge, MA, USA 1993 - 2005 Scientific Member, Max Planck Institute for Ma- thematics, Bonn 1995 - 2005 Director, Max Planck Institute for Mathematics, Bonn 2002 - 2011 Board of Trustees Professor, Northwestern Uni- versity, Evanston, IL, USA Since 2005 Professor Emeritus, Max Planck Institute for Mathematics, Bonn Since 2011 Professor Emeritus, Northwestern University, Evanston, IL, USA Honours 1963 Moscow Mathematical Society Award 1967 Highest USSR National Prize (Lenin Prize) 1987 Brouwer Gold Medal 1994 Frederic Esser Nemmers Prize 1999 Rolf Schock Prize 1999 Doctor honoris causa, University of Paris VI (Universite´ Pierre et Marie Curie), Sorbonne, France 2002 King Faisal Prize for Mathematics 2002 Georg Cantor Medal of the German Mathematical Society 2002 Abel Bicentennial Doctor Phil. honoris causa, University of Oslo, Norway 2006 Doctor honoris causa, University of Warwick, England, UK 2007 Order Pour le Merite,´ Germany 2008 Great Cross of Merit with Star, Germany 2010 Janos´ Bolyai International Mathematical Prize 2011 Honorary Member, London Mathematical Society Invited Lectures 1966 International Congress of Mathematicians, Moscow, Russia 1970 International Congress of Mathematicians, Nice, France 1978 International Congress of Mathematicians, Helsinki, Finland 1986 International Congress of Mathematicians, Berkeley, CA, USA 1990 International Congress of Mathematicians, Kyoto, Japan 2006 International Congress of Mathematicians, special activity, Madrid, Spain Research profile Currently I work on several projects, new or continuing former ones.
    [Show full text]
  • A Drifter of Dadaist Persuasion
    A DRIFTER OF DADAIST PERSUASION MATILDE MARCOLLI 1. Mathematics through Abstract Art sors immanis et inanis, rota tu volubilis 1.1. Abstractions. Both my parents were very deeply involved in the scene of Italian contemporary art, over the span of several decades. Both of them studied Architecture in the late 1950s and early 1960s at the Politecnico in Milan. My mother, who had been a student Ernesto Nathan Rogers, collaborated with some of the most visible figures in architecture and graphic design of the time: Konrad Wachsmann, Ignazio Gardella, Albe Steiner. My father became a colleague of Umberto Eco and Tom´asMaldonado at the experimental university program in the arts, the DAMS of Bologna. My parents were also painters, and their art was frequently inspired by mathematical themes (Figure 1 and Figure 2). In the 1970s, both before and after my parents divorced, our house was frequented by a circle of artists, designers, and various communist intellectuals. I grew up surrounded by contemporary art, well versed in its history and meaning. I grew up listening to atonal 20th century classical music: by the time I was in my early teens, my favorite composers were Luciano Berio, Luigi Nono, Karlheinz Stockhausen, Iannis Xenakis, Giacinto Scelsi, Pierre Boulez. Later in my teens I discovered early music: Carlo Gesualdo, Luca Marenzio, Orlando di Lasso. I never came to terms with the Romanticism, which remains incomprehensible to me to this day. My taste in the visual arts was largely influenced by the artistic movements that surrounded me in my early years: my father's Abstractism was close to the currents of Op Art and Kinetic Art and to the Ulm school of Design.
    [Show full text]