Preserving the Unity of Mathematics CONTENTS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2006 Annual Report
Contents Clay Mathematics Institute 2006 James A. Carlson Letter from the President 2 Recognizing Achievement Fields Medal Winner Terence Tao 3 Persi Diaconis Mathematics & Magic Tricks 4 Annual Meeting Clay Lectures at Cambridge University 6 Researchers, Workshops & Conferences Summary of 2006 Research Activities 8 Profile Interview with Research Fellow Ben Green 10 Davar Khoshnevisan Normal Numbers are Normal 15 Feature Article CMI—Göttingen Library Project: 16 Eugene Chislenko The Felix Klein Protocols Digitized The Klein Protokolle 18 Summer School Arithmetic Geometry at the Mathematisches Institut, Göttingen, Germany 22 Program Overview The Ross Program at Ohio State University 24 PROMYS at Boston University Institute News Awards & Honors 26 Deadlines Nominations, Proposals and Applications 32 Publications Selected Articles by Research Fellows 33 Books & Videos Activities 2007 Institute Calendar 36 2006 Another major change this year concerns the editorial board for the Clay Mathematics Institute Monograph Series, published jointly with the American Mathematical Society. Simon Donaldson and Andrew Wiles will serve as editors-in-chief, while I will serve as managing editor. Associate editors are Brian Conrad, Ingrid Daubechies, Charles Fefferman, János Kollár, Andrei Okounkov, David Morrison, Cliff Taubes, Peter Ozsváth, and Karen Smith. The Monograph Series publishes Letter from the president selected expositions of recent developments, both in emerging areas and in older subjects transformed by new insights or unifying ideas. The next volume in the series will be Ricci Flow and the Poincaré Conjecture, by John Morgan and Gang Tian. Their book will appear in the summer of 2007. In related publishing news, the Institute has had the complete record of the Göttingen seminars of Felix Klein, 1872–1912, digitized and made available on James Carlson. -
The Weil Proof and the Geometry of the Adèles Class Space
The Weil Proof and the Geometry of the Adèles Class Space Alain Connes,1 Caterina Consani,2 and Matilde Marcolli3 1 Collège de France, 3, rue d’Ulm, Paris, F-75005 France [email protected] 2 Mathematics Department, Johns Hopkins University, Baltimore, MD 21218 USA [email protected] 3 Department of Mathematics, California Institute of Technology 1200 E California Blvd, Pasadena, CA 91101, USA [email protected] Dedicated to Yuri Manin on the occasion of his 70th birthday O simili o dissimili che sieno questi mondi non con minor raggione sarebe bene a l’uno l’essere che a l’altro Giordano Bruno – De l’infinito, universo e mondi Summary. This paper explores analogies between the Weil proof of the Riemann hypothesis for function fields and the geometry of the adèles class space, which is the noncommutative space underlying Connes’ spectral realization of the zeros of the Riemann zeta function. We consider the cyclic homology of the cokernel (in the abelian category of cyclic modules) of the “restriction map” defined by the inclu- sion of the idèles class group of a global field in the noncommutative adèles class space. Weil’s explicit formula can then be formulated as a Lefschetz trace formula for the induced action of the idèles class group on this cohomology. In this formu- lation the Riemann hypothesis becomes equivalent to the positivity of the relevant trace pairing. This result suggests a possible dictionary between the steps in the Weil proof and corresponding notions involving the noncommutative geometry of the adèles class space, with good working notions of correspondences, degree, and codegree etc. -
Noncommutative Geometry Models for Particle Physics and Cosmology, Lecture I
Noncommutative Geometry models for Particle Physics and Cosmology, Lecture I Matilde Marcolli Villa de Leyva school, July 2011 Matilde Marcolli NCG models for particles and cosmology, I Plan of lectures 1 Noncommutative geometry approach to elementary particle physics; Noncommutative Riemannian geometry; finite noncommutative geometries; moduli spaces; the finite geometry of the Standard Model 2 The product geometry; the spectral action functional and its asymptotic expansion; bosons and fermions; the Standard Model Lagrangian; renormalization group flow, geometric constraints and low energy limits 3 Parameters: relations at unification and running; running of the gravitational terms; the RGE flow with right handed neutrinos; cosmological timeline and the inflation epoch; effective gravitational and cosmological constants and models of inflation 4 The spectral action and the problem of cosmic topology; cosmic topology and the CMB; slow-roll inflation; Poisson summation formula and the nonperturbative spectral action; spherical and flat space forms Matilde Marcolli NCG models for particles and cosmology, I Geometrization of physics Kaluza-Klein theory: electromagnetism described by circle bundle over spacetime manifold, connection = EM potential; Yang{Mills gauge theories: bundle geometry over spacetime, connections = gauge potentials, sections = fermions; String theory: 6 extra dimensions (Calabi-Yau) over spacetime, strings vibrations = types of particles NCG models: extra dimensions are NC spaces, pure gravity on product space becomes gravity -
Lectures on Factorization Homology, ∞-Categories, and Topological
SPRINGER BRIEFS IN MATHEMATICAL PHYSICS 39 Hiro Lee Tanaka Lectures on Factorization Homology, ∞-Categories, and Topological Field Theories Contributed by Araminta Amabel · Artem Kalmykov · Lukas Müller SpringerBriefs in Mathematical Physics Volume 39 Series Editors Nathanaël Berestycki, University of Vienna, Vienna, Austria Mihalis Dafermos, Mathematics Department, Princeton University, Princeton, NJ, USA Atsuo Kuniba, Institute of Physics, The University of Tokyo, Tokyo, Japan Matilde Marcolli, Department of Mathematics, University of Toronto, Toronto, Canada Bruno Nachtergaele, Department of Mathematics, Davis, CA, USA Hirosi Ooguri, Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, USA SpringerBriefs are characterized in general by their size (50–125 pages) and fast production time (2–3 months compared to 6 months for a monograph). Briefs are available in print but are intended as a primarily electronic publication to be included in Springer’s e-book package. Typical works might include: • An extended survey of a field • A link between new research papers published in journal articles • A presentation of core concepts that doctoral students must understand in order to make independent contributions • Lecture notes making a specialist topic accessible for non-specialist readers. SpringerBriefs in Mathematical Physics showcase, in a compact format, topics of current relevance in the field of mathematical physics. Published titles will encompass all areas of theoretical and mathematical physics. -
LECTURE Series
University LECTURE Series Volume 52 Koszul Cohomology and Algebraic Geometry Marian Aprodu Jan Nagel American Mathematical Society http://dx.doi.org/10.1090/ulect/052 Koszul Cohomology and Algebraic Geometry University LECTURE Series Volume 52 Koszul Cohomology and Algebraic Geometry Marian Aprodu Jan Nagel M THE ATI A CA M L ΤΡΗΤΟΣ ΜΗ N ΕΙΣΙΤΩ S A O C C I I R E E T ΑΓΕΩΜΕ Y M A F O 8 U 88 NDED 1 American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Jerry L. Bona NigelD.Higson Eric M. Friedlander (Chair) J. T. Stafford 2000 Mathematics Subject Classification. Primary 14H51, 14C20, 14H60, 14J28, 13D02, 16E05. For additional information and updates on this book, visit www.ams.org/bookpages/ulect-52 Library of Congress Cataloging-in-Publication Data Aprodu, Marian. Koszul cohomology and algebraic geometry / Marian Aprodu, Jan Nagel. p. cm. — (University lecture series ; v. 52) Includes bibliographical references and index. ISBN 978-0-8218-4964-4 (alk. paper) 1. Koszul algebras. 2. Geometry, Algebraic. 3. Homology theory. I. Nagel, Jan. II. Title. QA564.A63 2010 512.46—dc22 2009042378 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. -
Complex Analysis (Princeton Lectures in Analysis, Volume
COMPLEX ANALYSIS Ibookroot October 20, 2007 Princeton Lectures in Analysis I Fourier Analysis: An Introduction II Complex Analysis III Real Analysis: Measure Theory, Integration, and Hilbert Spaces Princeton Lectures in Analysis II COMPLEX ANALYSIS Elias M. Stein & Rami Shakarchi PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright © 2003 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Control Number 2005274996 ISBN 978-0-691-11385-2 British Library Cataloging-in-Publication Data is available The publisher would like to acknowledge the authors of this volume for providing the camera-ready copy from which this book was printed Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 5 7 9 10 8 6 To my grandchildren Carolyn, Alison, Jason E.M.S. To my parents Mohamed & Mireille and my brother Karim R.S. Foreword Beginning in the spring of 2000, a series of four one-semester courses were taught at Princeton University whose purpose was to present, in an integrated manner, the core areas of analysis. The objective was to make plain the organic unity that exists between the various parts of the subject, and to illustrate the wide applicability of ideas of analysis to other fields of mathematics and science. The present series of books is an elaboration of the lectures that were given. While there are a number of excellent texts dealing with individual parts of what we cover, our exposition aims at a different goal: pre- senting the various sub-areas of analysis not as separate disciplines, but rather as highly interconnected. -
Fefferman and Schoen Awarded 2017 Wolf Prize in Mathematics
COMMUNICATION Fefferman and Schoen Awarded 2017 Wolf Prize in Mathematics Biographical Sketch: Charles Fefferman Charles Fefferman was born in Washington, DC, in 1949. Showing exceptional ability in mathematics as a child, he entered the University of Maryland in 1963, at the age of fourteen, having bypassed high school. He published his first mathematics paper in a journal at the age of fifteen. In 1966, at the age of seventeen, he received his BS in mathematics and physics and was awarded a three-year NSF fellowship for research. He received his PhD from Princeton University in 1969 under the direction of Elias Stein. After spending the year 1969–1970 as a lecturer at Princeton, he accepted an assistant professorship at the University of Chicago. He was promoted to full professor in 1971—the youngest full professor ever appointed in Charles Fefferman Richard Schoen the United States. He returned to Princeton in 1973. He has been the recipient of a Sloan Foundation Fellowship Charles Fefferman of Princeton University and Richard (1970) and a NATO Postdoctoral Fellowship (1971). He Schoen of the University of California, Irvine, have been was awarded the Fields Medal in 1978. His many awards awarded the 2017 Wolf Prize in Mathematics by the Wolf and prizes include the Salem Prize (1971); the inaugural Foundation. Alan T. Waterman Award (1976); the Bergman Prize (1992); The prize citation reads: “Charles Fefferman has made and the Bôcher Memorial Prize of the AMS (2008). He was major contributions to several fields, including several elected to the American Academy of Arts and Sciences in complex variables, partial differential equations and 1972, the National Academy of Sciences in 1979, and the subelliptic problems. -
Lectures on Arithmetic Noncommutative Geometry Matilde Marcolli
Lectures on Arithmetic Noncommutative Geometry Matilde Marcolli And indeed there will be time To wonder \Do I dare?" and, \Do I dare?" Time to turn back and descend the stair. ... Do I dare Disturb the Universe? ... For I have known them all already, known them all; Have known the evenings, mornings, afternoons, I have measured out my life with coffee spoons. ... I should have been a pair of ragged claws Scuttling across the floors of silent seas. ... No! I am not Prince Hamlet, nor was meant to be; Am an attendant lord, one that will do To swell a progress, start a scene or two ... At times, indeed, almost ridiculous{ Almost, at times, the Fool. ... We have lingered in the chambers of the sea By sea-girls wreathed with seaweed red and brown Till human voices wake us, and we drown. (T.S. Eliot, \The Love Song of J. Alfred Prufrock") Contents Chapter 1. Ouverture 5 1. The NCG dictionary 7 2. Noncommutative spaces 8 3. Spectral triples 9 Chapter 2. Noncommutative modular curves 17 1. Modular curves 17 2. The noncommutative boundary of modular curves 24 3. Modular interpretation: noncommutative elliptic curves 24 4. Limiting modular symbols 29 5. Hecke eigenforms 40 6. Selberg zeta function 43 7. The modular complex and K-theory of C∗-algebras 44 8. Intermezzo: Chaotic Cosmology 45 Chapter 3. Quantum statistical mechanics and Galois theory 53 1. Quantum Statistical Mechanics 54 2. The Bost{Connes system 58 3. Noncommutative Geometry and Hilbert's 12th problem 63 4. The GL2 system 65 5. Quadratic fields 72 Chapter 4. -
NARRATIVE ENCOUNTERS with MATHEMATICS Contents
THE WOLF AND THE STREET: NARRATIVE ENCOUNTERS WITH MATHEMATICS MATILDE MARCOLLI Contents 1. Introduction 1 2. Tales for the Wolf 1 2.1. Mathematical themes 2 2.2. Wolf in the Fold 4 2.3. Night Songs 5 3. Street Science 6 3.1. Street Art and Street Signs 6 3.2. The End? 8 1. Introduction I was invited to this conference to present the results of an old experiment, a twenty year old exploration of narrative and mathematics, in the form of a collection of fairytales. I began writing the stories of Racconti per il lupo (Tales for the Wolf) in 1986, when I was a sixteen year old student of the Liceo Classico, more occupied with ancient Greek texts and philosophy than with mathematics. I finished the collection when I was about to graduate in Theoretical Physics, at the University of Milano, in 1993. Those few years spanned enormous transformations, at the personal level, going through the passage from late adolescence to adulthood, and from being a student of classical languages to a professional physicist, as well as on the larger scale of society and the world: those were the years that marked \the end of the short century", with all the upheaval, excitement and anxiety that came with it. In their minuscule cameo scale, the mathematical stories I was putting together, act as a small fragmented mirror of larger events. The stories, written in Italian, and illustrated by a series of collages I prepared in the style of Max Ernst, are now available online at the publisher Lulu.com, along with some of my more recent writings. -
The Legacy of Norbert Wiener: a Centennial Symposium
http://dx.doi.org/10.1090/pspum/060 Selected Titles in This Series 60 David Jerison, I. M. Singer, and Daniel W. Stroock, Editors, The legacy of Norbert Wiener: A centennial symposium (Massachusetts Institute of Technology, Cambridge, October 1994) 59 William Arveson, Thomas Branson, and Irving Segal, Editors, Quantization, nonlinear partial differential equations, and operator algebra (Massachusetts Institute of Technology, Cambridge, June 1994) 58 Bill Jacob and Alex Rosenberg, Editors, K-theory and algebraic geometry: Connections with quadratic forms and division algebras (University of California, Santa Barbara, July 1992) 57 Michael C. Cranston and Mark A. Pinsky, Editors, Stochastic analysis (Cornell University, Ithaca, July 1993) 56 William J. Haboush and Brian J. Parshall, Editors, Algebraic groups and their generalizations (Pennsylvania State University, University Park, July 1991) 55 Uwe Jannsen, Steven L. Kleiman, and Jean-Pierre Serre, Editors, Motives (University of Washington, Seattle, July/August 1991) 54 Robert Greene and S. T. Yau, Editors, Differential geometry (University of California, Los Angeles, July 1990) 53 James A. Carlson, C. Herbert Clemens, and David R. Morrison, Editors, Complex geometry and Lie theory (Sundance, Utah, May 1989) 52 Eric Bedford, John P. D'Angelo, Robert E. Greene, and Steven G. Krantz, Editors, Several complex variables and complex geometry (University of California, Santa Cruz, July 1989) 51 William B. Arveson and Ronald G. Douglas, Editors, Operator theory/operator algebras and applications (University of New Hampshire, July 1988) 50 James Glimm, John Impagliazzo, and Isadore Singer, Editors, The legacy of John von Neumann (Hofstra University, Hempstead, New York, May/June 1988) 49 Robert C. Gunning and Leon Ehrenpreis, Editors, Theta functions - Bowdoin 1987 (Bowdoin College, Brunswick, Maine, July 1987) 48 R. -
Annual Report for the Fiscal Year July 1, 1980
The Institute for Advanced Study .nnual Report 1980 This Annual Report has been made possible by a generous grant from the Union Carbide Corporation. ! The Institute for Advanced Study Annual Report for the Fiscal Year July 1, 1980-June 30, 1981 The Institute for Advanced Study Olden Lane Princeton, New Jersey 08540 U.S.A. Printed by Princeton University Press Designed by Bruce Campbell x4S36 /98I It is fundamental to our purpose, and our Extract from the letter addressed by the express desire, that in the appointments to Founders to the Institute's Trustees, the staff and faculty, as well as in the dated June 6, 1930, Newark, New Jersey. admission of workers and students, no account shall be taken, directly or indirectly, of race, religion or sex. We feel strongly that the spirit characteristic of America at its noblest, above all, the pursuit of higher learning, cannot admit of any conditions as to personnel other than those designed to promote the objects for which this institution is established, and particularly with no regard whatever to accidents of race, creed or sex. /r2- S39 Table of Contents Trustees and Officers Founders Caroline Bamberger Fuld Louis Bamberger Board of Trustees Daniel Bell Howard C. Kauffmann Professor of Sociology President Harvard University Exxon Corporation Charles L. Brown John R. Opel Chairman the Board of and Chief President and Chief Executive Officer Executive Officer IBM Corporation American Telephone and Telegraph Company Howard C. Petersen Philadelphia, Pennsylvania Fletcher L. Byrom Chairman of the Board Martin E. Segal Koppers Company, Inc. Partner, Wertheim & Co.; Chairman, Martin E. -
Yuri Ivanovich Manin
Yuri Ivanovich Manin Academic career 1960 PhD, Steklov Mathematical Institute, Moscow, Russia 1963 Habilitation, Steklov Mathematical Institute, Moscow, Russia 1960 - 1993 Principal Researcher, Steklov Mathematical In- stitute, Russian Academy of Sciences, Moscow, Russia 1965 - 1992 Professor (Algebra Chair), University of Mos- cow, Russia 1992 - 1993 Professor, Massachusetts Institute of Technolo- gy, Cambridge, MA, USA 1993 - 2005 Scientific Member, Max Planck Institute for Ma- thematics, Bonn 1995 - 2005 Director, Max Planck Institute for Mathematics, Bonn 2002 - 2011 Board of Trustees Professor, Northwestern Uni- versity, Evanston, IL, USA Since 2005 Professor Emeritus, Max Planck Institute for Mathematics, Bonn Since 2011 Professor Emeritus, Northwestern University, Evanston, IL, USA Honours 1963 Moscow Mathematical Society Award 1967 Highest USSR National Prize (Lenin Prize) 1987 Brouwer Gold Medal 1994 Frederic Esser Nemmers Prize 1999 Rolf Schock Prize 1999 Doctor honoris causa, University of Paris VI (Universite´ Pierre et Marie Curie), Sorbonne, France 2002 King Faisal Prize for Mathematics 2002 Georg Cantor Medal of the German Mathematical Society 2002 Abel Bicentennial Doctor Phil. honoris causa, University of Oslo, Norway 2006 Doctor honoris causa, University of Warwick, England, UK 2007 Order Pour le Merite,´ Germany 2008 Great Cross of Merit with Star, Germany 2010 Janos´ Bolyai International Mathematical Prize 2011 Honorary Member, London Mathematical Society Invited Lectures 1966 International Congress of Mathematicians, Moscow, Russia 1970 International Congress of Mathematicians, Nice, France 1978 International Congress of Mathematicians, Helsinki, Finland 1986 International Congress of Mathematicians, Berkeley, CA, USA 1990 International Congress of Mathematicians, Kyoto, Japan 2006 International Congress of Mathematicians, special activity, Madrid, Spain Research profile Currently I work on several projects, new or continuing former ones.