View Details
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Polyphasic Classification of the Gifted Natural Product Producer Streptomyces
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC © Van der Aart, L.T., Nouioui, I., Kloosterman, A., Igual, J.M., Willemse, J., Goodfellow, M., van Wezel, J.P. 2019. The definitive peer reviewed, edited version of this article is published in International Journal of Systematic and Evolutionary Microbiology, 69, 4, 2019, http://dx.doi.org/10.1099/ijsem.0.003215 Polyphasic classification of the gifted natural product producer Streptomyces roseifaciens sp. nov. Lizah T. van der Aart 1, Imen Nouioui 2, Alexander Kloosterman 1, José Mariano Ingual 3, Joost Willemse 1, Michael Goodfellow 2, *, Gilles P. van Wezel 1,4 *. 1 Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands 2 School of Natural and Environmental Sciences, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK. 3 Instituto de Recursos Naturales y Agrobiologia de Salamanca, Consejo Superior de Investigaciones Cientificas (IRNASACSIC), c/Cordel de Merinas 40-52, 37008 Salamanca, Spain 4: Department of Microbial Ecology, Netherlands, Institute of Ecology (NIOO-KNAW) Droevendaalsteeg 10, Wageningen 6708 PB, The Netherlands *Corresponding authors. Michael Goodfellow: [email protected], Tel: +44 191 2087706. Gilles van Wezel: Email: [email protected], Tel: +31 715274310. Accession for the full genome assembly: GCF_001445655.1 1 Abstract A polyphasic study was designed to establish the taxonomic status of a Streptomyces strain isolated from soil from the QinLing Mountains, Shaanxi Province, China, and found to be the source of known and new specialized metabolites. Strain MBT76 T was found to have chemotaxonomic, cultural and morphological properties consistent with its classification in the genus Streptomyces . -
Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead to Proposal of Charcoactinosporaceae Fam. Nov. and 8 No
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic and phylogenomic insights into the family Streptomycetaceae 2 lead to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera 3 with emended descriptions of Streptomyces calvus 4 Munusamy Madhaiyan1, †, * Venkatakrishnan Sivaraj Saravanan2, † Wah-Seng See-Too3, † 5 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 6 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 7 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 8 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 9 Malaysia 10 *Corresponding author: Temasek Life Sciences Laboratory, 1 Research Link, National 11 University of Singapore, Singapore 117604; E-mail: [email protected] 12 †All these authors have contributed equally to this work 13 Abstract 14 Streptomycetaceae is one of the oldest families within phylum Actinobacteria and it is large and 15 diverse in terms of number of described taxa. The members of the family are known for their 16 ability to produce medically important secondary metabolites and antibiotics. In this study, 17 strains showing low 16S rRNA gene similarity (<97.3 %) with other members of 18 Streptomycetaceae were identified and subjected to phylogenomic analysis using 33 orthologous 19 gene clusters (OGC) for accurate taxonomic reassignment resulted in identification of eight 20 distinct and deeply branching clades, further average amino acid identity (AAI) analysis showed 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. -
Isolation and Characterization of a New Streptomyces Strain LG10 from an Unexploited Algerian Saharan Atlas
ADVANCED RESEARCH IN LIFE SCIENCES 5, 2021, 36-42 www.degruyter.com/view/j/arls DOI:10.2478/arls-2021-0027 Research Article Isolation and Characterization of a New Streptomyces strain LG10 from an Unexploited Algerian Saharan Atlas Saïd Belghit1,2, Omrane Toumatia2,3, Mahfoud Bakli4 , Boubekeur Badji2 , Abdelghani Zitouni2 , Florence Mathieu5 , Laura Smuleac6 , Noureddine Bouras1,2* 1Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre, Université de Ghardaia, Ghardaïa, Algeria 2Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Alger, Algeria 3Agro Pastoralism Research Center (APRC) Djelfa, Algeria 4Département des Sciences de la Nature et de la Vie, Faculté des Sciences et Technologie, Université Belhadj Bouchaib d’Ain Temouchent, Ain Temouchent, Algeria 5Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France 6Banat’s University of Agriculture Science and Veterinary Medicine “King Michael I of Romania”, Faculty of Agriculture,119 Calea Aradului, 300645, Timisoara, Romania Received March, 2021; Revised May, 2021; Accepted June, 2021 Abstract An actinobacterial strain named LG10 was isolated from a Saharan Atlas soil (Laghouat, Algeria). The aerial hyphae were yellowish-white on all culture media with rectiflexibiles spore chains, suggested that this bacterium attached to Streptomyces. Furthermore, LG10 contained chemical characteristics that were diagnostic for the genus Streptomyces, such as the presence of LL-diaminopimelic acid isomer (LL-DAP) and glycine amino acid. The hydrolysates of whole-cell included non-characteristic sugars. Comparative analysis of the 16S rDNA sequence displayed a similarity level of 100% with Streptomyces puniceus NRRL ISP-5058T. The antimicrobial activity of the LG10 strain was better in the culture medium MB5. -
Investigating the Relationship Between Amphotericin B and Extracellular
Investigating the relationship between amphotericin B and extracellular vesicles produced by Streptomyces nodosus By Samuel John King A thesis submitted in partial fulfilment of the requirements for the degree of Master of Research School of Science and Health Western Sydney University 2017 Acknowledgements A big thank you to the following people who have helped me throughout this project: Jo, for all of your support over the last two years; Ric, Tim, Shamilla and Sue for assistance with electron microscope operation; Renee for guidance with phylogenetics; Greg, Herbert and Adam for technical support; and Mum, you're the real MVP. I acknowledge the services of AGRF for sequencing of 16S rDNA products of Streptomyces "purple". Statement of Authentication The work presented in this thesis is, to the best of my knowledge and belief, original except as acknowledged in the text. I hereby declare that I have not submitted this material, either in full or in part, for a degree at this or any other institution. ……………………………………………………..… (Signature) Contents List of Tables............................................................................................................... iv List of Figures .............................................................................................................. v Abbreviations .............................................................................................................. vi Abstract ..................................................................................................................... -
Bioinformatic Analysis of Streptomyces to Enable Improved Drug Discovery
University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Spring 2019 BIOINFORMATIC ANALYSIS OF STREPTOMYCES TO ENABLE IMPROVED DRUG DISCOVERY Kaitlyn Christina Belknap University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Belknap, Kaitlyn Christina, "BIOINFORMATIC ANALYSIS OF STREPTOMYCES TO ENABLE IMPROVED DRUG DISCOVERY" (2019). Master's Theses and Capstones. 1268. https://scholars.unh.edu/thesis/1268 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. BIOINFORMATIC ANALYSIS OF STREPTOMYCES TO ENABLE IMPROVED DRUG DISCOVERY BY KAITLYN C. BELKNAP B.S Medical Microbiology, University of New Hampshire, 2017 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Genetics May, 2019 ii BIOINFORMATIC ANALYSIS OF STREPTOMYCES TO ENABLE IMPROVED DRUG DISCOVERY BY KAITLYN BELKNAP This thesis was examined and approved in partial fulfillment of the requirements for the degree of Master of Science in Genetics by: Thesis Director, Brian Barth, Assistant Professor of Pharmacology Co-Thesis Director, Cheryl Andam, Assistant Professor of Microbial Ecology Krisztina Varga, Assistant Professor of Biochemistry Colin McGill, Associate Professor of Chemistry (University of Alaska Anchorage) On February 8th, 2019 Approval signatures are on file with the University of New Hampshire Graduate School. -
INVESTIGATING the ACTINOMYCETE DIVERSITY INSIDE the HINDGUT of an INDIGENOUS TERMITE, Microhodotermes Viator
INVESTIGATING THE ACTINOMYCETE DIVERSITY INSIDE THE HINDGUT OF AN INDIGENOUS TERMITE, Microhodotermes viator by Jeffrey Rohland Thesis presented for the degree of Doctor of Philosophy in the Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, South Africa. April 2010 ACKNOWLEDGEMENTS Firstly and most importantly, I would like to thank my supervisor, Dr Paul Meyers. I have been in his lab since my Honours year, and he has always been a constant source of guidance, help and encouragement during all my years at UCT. His serious discussion of project related matters and also his lighter side and sense of humour have made the work that I have done a growing and learning experience, but also one that has been really enjoyable. I look up to him as a role model and mentor and acknowledge his contribution to making me the best possible researcher that I can be. Thank-you to all the members of Lab 202, past and present (especially to Gareth Everest – who was with me from the start), for all their help and advice and for making the lab a home away from home and generally a great place to work. I would also like to thank Di James and Bruna Galvão for all their help with the vast quantities of sequencing done during this project, and Dr Bronwyn Kirby for her help with the statistical analyses. Also, I must acknowledge Miranda Waldron and Mohammed Jaffer of the Electron Microsope Unit at the University of Cape Town for their help with scanning electron microscopy and transmission electron microscopy related matters, respectively. -
Spore Forming Actinobacterial Diversity of Cholistan Desert Pakistan
Fatima et al. BMC Microbiology (2019) 19:49 https://doi.org/10.1186/s12866-019-1414-x RESEARCHARTICLE Open Access Spore forming Actinobacterial diversity of Cholistan Desert Pakistan: Polyphasic taxonomy, antimicrobial potential and chemical profiling Adeela Fatima1, Usman Aftab1, Khaled A. Shaaban2,3, Jon S. Thorson2,3 and Imran Sajid1* Abstract Background: Actinobacteria are famous for the production of unique secondary metabolites that help in controlling the continuously emerging drug resistance all over the globe. This study aimed at the investigation of an extreme environment the Cholistan desert, located in southern Punjab, Pakistan, for actinobacterial diversity and their activity against methicillin resistant Staphylococcus aureus (MRSA). The Cholistan desert is a sub-tropical and arid ecosystem with harsh environment, limited rainfall and low humidity. The 20 soil and sand samples were collected from different locations in the desert and the actinobacterial strains were selectively isolated. The isolated strains were identified using a polyphasic taxonomic approach including morphological, biochemical, physiological characterization, scanning electron microscopy (SEM) and by 16S rRNA gene sequencing. Results: A total of 110 desert actinobacterial strains were recovered, which were found to be belonging to 3 different families of the order Actinomycetales, including the family Streptomycetaceae,familyPseudonocardiaceae and the family Micrococcaceae. The most frequently isolated genus was Streptomyces along with the genera Pseudonocardia and Arthrobacter. The isolated strains exhibited promising antimicrobial activity against methicillin resistant Staphylococcus aureus (MRSA) with zone of inhibition in the range of 9–32 mm in antimicrobial screening assays. The chemical profiling by thin layer chromatography, HPLC-UV/Vis and LC-MS analysis depicted the presence of different structural classes of antibiotics. -
Protective Streptomyces in Beewolves
Protective Streptomyces in beewolves - Ecology, evolutionary history and specificity of symbiont-mediated defense in Philanthini wasps (Hymenoptera, Crabronidae) - Dissertation zur Erlangung des akademischen Grades „doctor rerum naturalium“ (Dr. rer. nat.) vorgelegt dem Rat der Biologisch-Pharmazeutischen Fakultät der Friedrich-Schiller-Universität Jena von Dipl.-Biol. Sabrina Koehler geboren am 07.11.1982 in Zwickau Protective Streptomyces in beewolves - Ecology, evolutionary history and specificity of symbiont-mediated defense in Philanthini wasps (Hymenoptera, Crabronidae) - Seit 1558 Dissertation zur Erlangung des akademischen Grades „doctor rerum naturalium“ (Dr. rer. nat.) vorgelegt dem Rat der Biologisch-Pharmazeutischen Fakultät der Friedrich-Schiller-Universität Jena von Dipl.-Biol. Sabrina Koehler geboren am 07.11.1982 in Zwickau Das Promotionsgesuch wurde eingereicht und bewilligt am: 14. Oktober 2013 Gutachter: 1) Dr. Martin Kaltenpoth, Max-Planck-Institut für Chemische Ökologie, Jena 2) Prof. Dr. Erika Kothe, Friedrich-Schiller-Universität, Jena 3) Prof. Dr. Cameron Currie, University of Wisconsin-Madison, USA Das Promotionskolloquium wurde abgelegt am: 03.März 2014 “There is nothing like looking, if you want to find something. You certainly usually find something, if you look, but it is not always quite the something you were after.” The Hobbit, J.R.R. Tolkien “We are symbionts on a symbiotic planet, and if we care to, we can find symbiosis everywhere.” Symbiotic Planet, Lynn Margulis CONTENTS LIST OF PUBLICATIONS ........................................................................................ -
Isolation and Identification of Streptomyces Ramulosus from Soil and Determination of Antimicrobial Property of Its Pigment
36 Original Article | Mod Med Lab. 2017; 1(1): 36 - 41 Modern Medical Laboratory Journal - ISSN 2371-770X Isolation and Identification of Streptomyces ramulosus from Soil and Determination of Antimicrobial Property of its Pigment Saba Azimi1, Majid Basei Salehi1, Nima Bahador2 1. Department of Microbiology, Kazeroon Branch, Islamic Azad University, Kezeroon, Iran 2. Department of Microbiology, Shiraz Science and Research University, Shiraz, Iran Received: 16 Apr 2017; Accepted: 02 Jun 2017; ABSTRACT Background and Objective: Pigment production by microorganisms is important due to more rapid growth, higher efficiency, easier extraction, and antimicrobial effects compared to other methods. The aim of the present study is to isolate and identify antibiotic pigment-producing actinomycetes from the soil of the Persian Gulf and to evaluate the antibiotic activity of their pigments in the second half of 2014. Given that pathogenic bacteria increasingly become more resistant to common antibiotics, there is a need for new antibiotics. Methods: A total of 80 soil samples were collected from different areas and after preparing different dilutions (10-1-10-7), each sample was cultured on nutrient agar medium, specific Starch Casein Agar (SCA), and the International Streptomyces Project 2 (ISP2) media. Then, the actinomycete colonies were selected based on pigment production; pigments were extracted using sediment extraction with ethyl acetate; and the antibacterial property of their pigments were evaluated. The structure of colored extract compounds was identified by Thin layer chromatography (TLC). Molecular identification of the microorganisms was performed by 16S rRNA PCR. Result: The highest antibiotic effect of the pigments was observed in pathogenic bacterium S. -
Isolation and Characterization of Aerobic Actinomycetes with Probiotic Properties in Nile Tilapia
Journal of Applied Pharmaceutical Science Vol. 10(09), pp 040-049, September, 2020 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2020.10905 ISSN 2231-3354 Isolation and characterization of aerobic actinomycetes with probiotic properties in Nile tilapia Jirayut Euanorasetr1,2*, Varissara Chotboonprasit1,2, Wacharaporn Ngoennamchok1,2, Sutassa Thongprathueang1,2, Archiraya Promprateep1,2, Suppakit Taweesaga1,2, Pongsan Chatsangjaroen1,2, Bungonsiri Intra3,4 1Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Khet Thung Khru, Bangkok 10140, Thailand 2Laboratory of biotechnological research for energy and bioactive compounds, Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Khet Thung Khru, Bangkok 10140, Thailand 3 Mahidol University-Osaka University: Collaborative Research Center for Bioscience and Biotechnology (MU-OU: CRC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand 4Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand ARTICLE INFO ABSTRACT Received on: 20/04/2020 This study scoped the isolation of aerobic actinomycetes with probiotic properties against bacterial pathogens in Nile Accepted on: 23/06/2020 tilapia. Eleven rhizosphere soil samples were collected from the agricultural sites in three provinces (Chanthaburi, Available online: 05/09/2020 Nan, and Chachoengsao) of Thailand. A total of 157 actinomycete-like colonies were successfully isolated. The antibacterial -
Natural Products from Actinobacteria Associated with Fungus-Growing Termites
antibiotics Article Natural Products from Actinobacteria Associated with Fungus-Growing Termites René Benndorf 1, Huijuan Guo 1, Elisabeth Sommerwerk 1, Christiane Weigel 1, Maria Garcia-Altares 1, Karin Martin 1, Haofu Hu 2, Michelle Küfner 1, Z. Wilhelm de Beer 3 , Michael Poulsen 2 and Christine Beemelmanns 1,* 1 Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany; [email protected] (R.B.); [email protected] (H.G.); [email protected] (E.S.); [email protected] (C.W.); [email protected] (M.G.-A.); [email protected] (K.M.); [email protected] (M.K.) 2 Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen East, Denmark; [email protected] (H.H.); [email protected] (M.P.) 3 Department of Microbiology and Plant Pathology, Forestry and Agriculture Biotechnology Institute, University of Pretoria, Pretoria 0001, South Africa; [email protected] * Correspondence: [email protected]; Tel.: +49-3641-532-1525 Received: 13 August 2018; Accepted: 3 September 2018; Published: 13 September 2018 Abstract: The chemical analysis of insect-associated Actinobacteria has attracted the interest of natural product chemists in the past years as bacterial-produced metabolites are sought to be crucial for sustaining and protecting the insect host. The objective of our study was to evaluate the phylogeny and bioprospecting of Actinobacteria associated with fungus-growing termites. We characterized 97 Actinobacteria from the gut, exoskeleton, and fungus garden (comb) of the fungus-growing termite Macrotermes natalensis and used two different bioassays to assess their general antimicrobial activity. -
Antibacterial and Antioxidant Activities Of
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Journal of Drug Delivery and Therapeutics (JDDT) Kekuda et al Journal of Drug Delivery & Therapeutics; 2013, 3(4), 47-53 47 Available online at http://jddtonline.info RESEARCH ARTICLE ANTIBACTERIAL AND ANTIOXIDANT ACTIVITIES OF STREPTOMYCES SPECIES SRDP-H03 ISOLATED FROM SOIL OF HOSUDI, KARNATAKA, INDIA Rakesh K.N 1, Syed Junaid 1, Dileep N 1, *Prashith Kekuda T.R 1,2 1 Department of Microbiology, S.R.N.M.N College of Applied Sciences, NES Campus, Balraj Urs Road, Shivamogga-577201, Karnataka, India 2 P.G Department of Studies and Research in Microbiology, Sahyadri Science College (Autonomous), Shivamogga-577203, Karnataka, India * Corresponding author Email: [email protected] ABSTRACT In the present study, we report antibacterial and antioxidant activity of ethyl acetate extract of Streptomyces species SRDP- H03 isolated from rhizosphere soil of Hosudi, Karnataka, India. The isolate SRDP-H03 was assigned to the genus Streptomyces based on the cultural and microscopic characteristics. The ethyl acetate extract of the isolate SRDP-H03 showed marked inhibition of Gram positive bacteria than Gram negative bacteria. The extract was found to possess dose dependent DPPH free radical scavenging and Ferric reducing activity. UV spectral data of ethyl acetate extract showed strong absorption maxima (λmax) at 267 and 340nm. The isolate can be a potential candidate for the development of novel therapeutic agents active against pathogens and free radicals. Further studies on genomic characterization of isolate and isolation and structure determination of the bioactive compounds are under progress.