The Class I E3 Ubiquitin Ligase TRIM67 Modulates Brain Development and Behavior
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Screening of a Clinically and Biochemically Diagnosed SOD Patient Using Exome Sequencing: a Case Report with a Mutations/Variations Analysis Approach
The Egyptian Journal of Medical Human Genetics (2016) 17, 131–136 HOSTED BY Ain Shams University The Egyptian Journal of Medical Human Genetics www.ejmhg.eg.net www.sciencedirect.com CASE REPORT Screening of a clinically and biochemically diagnosed SOD patient using exome sequencing: A case report with a mutations/variations analysis approach Mohamad-Reza Aghanoori a,b,1, Ghazaleh Mohammadzadeh Shahriary c,2, Mahdi Safarpour d,3, Ahmad Ebrahimi d,* a Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran b Research and Development Division, RoyaBioGene Co., Tehran, Iran c Department of Genetics, Shahid Chamran University of Ahvaz, Ahvaz, Iran d Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran Received 12 May 2015; accepted 15 June 2015 Available online 22 July 2015 KEYWORDS Abstract Background: Sulfite oxidase deficiency (SOD) is a rare neurometabolic inherited disor- Sulfite oxidase deficiency; der causing severe delay in developmental stages and premature death. The disease follows an auto- Case report; somal recessive pattern of inheritance and causes deficiency in the activity of sulfite oxidase, an Exome sequencing enzyme that normally catalyzes conversion of sulfite to sulfate. Aim of the study: SOD is an underdiagnosed disorder and its diagnosis can be difficult in young infants as early clinical features and neuroimaging changes may imitate some common diseases. Since the prognosis of the disease is poor, using exome sequencing as a powerful and efficient strat- egy for identifying the genes underlying rare mendelian disorders can provide important knowledge about early diagnosis, disease mechanisms, biological pathways, and potential therapeutic targets. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Atlas of the Open Reading Frames in Human Diseases: Dark Matter of the Human Genome
MOJ Proteomics & Bioinformatics Research Article Open Access Atlas of the open reading frames in human diseases: dark matter of the human genome Abstract Volume 2 Issue 1 - 2015 Background: The human genome encodes RNA and protein coding sequences, the Ana Paula Delgado, Maria Julia Chapado, non-coding RNAs, pseudogenes and uncharacterized Open Reading Frames (ORFs). The dark matter of the human genome encompassing the uncharacterized proteins and Pamela Brandao, Sheilin Hamid, Ramaswamy the non-coding RNAs are least well studied. However, they offer novel druggable Narayanan targets and biomarkers discovery for diverse diseases. Department of Biological Sciences, Charles E. Schmidt College of Science, Florida Atlantic University, USA Methods: In this study, we have systematically dissected the dark matter of the human genome. Using diverse bioinformatics tools, an atlas of the dark matter of the genome Correspondence: Ramaswamy Narayanan, Department of was created. The ORFs were characterized for gene ontology, mRNA and protein Biological Sciences, Charles E. Schmidt College of Science, expression, protein motif and domains and genome-wide association. Florida Atlantic University, FL 33431, USA. Tel +15612972247, Fax +15612973859, Email [email protected] Results: An atlas of disease-related ORFs (n=800) was generated. A complex landscape of involvement in multiple diseases was seen for these ORFs. Motif and Received: January 08, 2015 | Published: January 30, 2015 domains analysis identified druggable targets and putative secreted biomarkers including enzymes, receptors and transporters as well as proteins with signal peptide sequence. About ten percent of the ORFs showed a correlation of gene expression at the mRNA and protein levels. Genome-Phenome association tools identified ORF’s association with autoimmune, cardiovascular, cancer, diabetes, infection, metabolic, neurodegenerative and psychiatric disorders. -
The Neuroprotective Role of the GM1 Oligosaccharide, Ii3neu5ac-Gg4, In
Molecular Neurobiology (2019) 56:6673–6702 https://doi.org/10.1007/s12035-019-1556-8 The Neuroprotective Role of the GM1 Oligosaccharide, 3 II Neu5Ac-Gg4, in Neuroblastoma Cells Elena Chiricozzi1 & Margherita Maggioni1 & Erika di Biase1 & Giulia Lunghi1 & Maria Fazzari1 & Nicoletta Loberto 1 & Maffioli Elisa2 & Francesca Grassi Scalvini2 & Gabriella Tedeschi 2,3 & Sandro Sonnino1 Received: 10 January 2019 /Accepted: 13 March 2019 /Published online: 26 March 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract 3 Recently, we demonstrated that the GM1 oligosaccharide, II Neu5Ac-Gg4 (OligoGM1), administered to cultured murine Neuro2a neuroblastoma cells interacts with the NGF receptor TrkA, leading to the activation of the ERK1/2 downstream pathway and to cell differentiation. To understand how the activation of the TrkA pathway is able to trigger key biochemical signaling, we performed a proteomic analysis on Neuro2a cells treated with 50 μM OligoGM1 for 24 h. Over 3000 proteins were identified. Among these, 324 proteins were exclusively expressed in OligoGM1-treated cells. Interestingly, several proteins expressed only in OligoGM1-treated cells are involved in biochemical mechanisms with a neuroprotective potential, reflecting the GM1 neuroprotective effect. In addition, we found that the exogenous administration of OligoGM1 reduced the cellular oxidative stress in Neuro2a cells and conferred protection against MPTP neurotoxicity. These results confirm and reinforce the idea that the molecular mechanisms underlying the GM1 neurotrophic and neuroprotective effects depend on its oligosaccharide chain, suggesting the activation of a positive signaling starting at plasma membrane level. Keywords GM1 ganglioside . GM1 oligosaccharide chain . TrkA neurotrophin receptor . Plasma membrane signaling . Neuroprotection . -
Screening of a Clinically and Biochemically Diagnosed SOD Patient Using Exome Sequencing: a Case Report with a Mutations/Variations Analysis Approach
The Egyptian Journal of Medical Human Genetics (2016) 17, 131–136 HOSTED BY Ain Shams University The Egyptian Journal of Medical Human Genetics www.ejmhg.eg.net www.sciencedirect.com CASE REPORT Screening of a clinically and biochemically diagnosed SOD patient using exome sequencing: A case report with a mutations/variations analysis approach Mohamad-Reza Aghanoori a,b,1, Ghazaleh Mohammadzadeh Shahriary c,2, Mahdi Safarpour d,3, Ahmad Ebrahimi d,* a Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran b Research and Development Division, RoyaBioGene Co., Tehran, Iran c Department of Genetics, Shahid Chamran University of Ahvaz, Ahvaz, Iran d Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran Received 12 May 2015; accepted 15 June 2015 Available online 22 July 2015 KEYWORDS Abstract Background: Sulfite oxidase deficiency (SOD) is a rare neurometabolic inherited disor- Sulfite oxidase deficiency; der causing severe delay in developmental stages and premature death. The disease follows an auto- Case report; somal recessive pattern of inheritance and causes deficiency in the activity of sulfite oxidase, an Exome sequencing enzyme that normally catalyzes conversion of sulfite to sulfate. Aim of the study: SOD is an underdiagnosed disorder and its diagnosis can be difficult in young infants as early clinical features and neuroimaging changes may imitate some common diseases. Since the prognosis of the disease is poor, using exome sequencing as a powerful and efficient strat- egy for identifying the genes underlying rare mendelian disorders can provide important knowledge about early diagnosis, disease mechanisms, biological pathways, and potential therapeutic targets. -
Agricultural University of Athens
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΩΝ ΖΩΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΖΩΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΝΙΚΗΣ ΚΑΙ ΕΙΔΙΚΗΣ ΖΩΟΤΕΧΝΙΑΣ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων ΕΙΡΗΝΗ Κ. ΤΑΡΣΑΝΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΙΟΣ ΚΟΜΙΝΑΚΗΣ ΑΘΗΝΑ 2020 ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων Genome-wide association analysis and gene network analysis for (re)production traits in commercial broilers ΕΙΡΗΝΗ Κ. ΤΑΡΣΑΝΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΙΟΣ ΚΟΜΙΝΑΚΗΣ Τριμελής Επιτροπή: Aντώνιος Κομινάκης (Αν. Καθ. ΓΠΑ) Ανδρέας Κράνης (Eρευν. B, Παν. Εδιμβούργου) Αριάδνη Χάγερ (Επ. Καθ. ΓΠΑ) Επταμελής εξεταστική επιτροπή: Aντώνιος Κομινάκης (Αν. Καθ. ΓΠΑ) Ανδρέας Κράνης (Eρευν. B, Παν. Εδιμβούργου) Αριάδνη Χάγερ (Επ. Καθ. ΓΠΑ) Πηνελόπη Μπεμπέλη (Καθ. ΓΠΑ) Δημήτριος Βλαχάκης (Επ. Καθ. ΓΠΑ) Ευάγγελος Ζωίδης (Επ.Καθ. ΓΠΑ) Γεώργιος Θεοδώρου (Επ.Καθ. ΓΠΑ) 2 Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων Περίληψη Σκοπός της παρούσας διδακτορικής διατριβής ήταν ο εντοπισμός γενετικών δεικτών και υποψηφίων γονιδίων που εμπλέκονται στο γενετικό έλεγχο δύο τυπικών πολυγονιδιακών ιδιοτήτων σε κρεοπαραγωγικά ορνίθια. Μία ιδιότητα σχετίζεται με την ανάπτυξη (σωματικό βάρος στις 35 ημέρες, ΣΒ) και η άλλη με την αναπαραγωγική -
Mechanism of Ant1-Induced Human Diseases and Stress Signaling
MECHANISM OF ANT1-INDUCED HUMAN DISEASES AND STRESS SIGNALING Item Type Dissertation Authors Liu, Yaxin Rights Attribution-NonCommercial-NoDerivatives 4.0 International Download date 09/10/2021 19:50:21 Item License http://creativecommons.org/licenses/by-nc-nd/4.0/ Link to Item http://hdl.handle.net/20.500.12648/1772 MECHANISM OF ANT1-INDUCED HUMAN DISEASES AND STRESS SIGNALING Yaxin Liu A Dissertation in Department of Biochemistry and Molecular Biology Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Graduate Studies of State University of New York, Upstate Medical University. Approved Date Abstract Mechanism of Ant1-induced Human Diseases and Stress Signaling Yaxin Liu Xin Jie Chen Adenine nucleotide translocase (Ant) is a mitochondrial inner membrane protein, the primary function of which is to mediate the ADP/ATP exchange across the inner membrane. Missense mutations in Ant1, the skeletal muscle- and heart-specific isoform, induce human disorders including autosomal dominant Progressive External Opthalmoplegia (adPEO), cardiomyopathy and myopathy. Several models were proposed to interpret the pathogenesis of mutant Ant1-induced diseases, but no consensus has been reached. Our lab has previously found that mutant Aac2, the homolog of Ant1 in yeast, causes cell death due to the mitochondrial biogenesis defect. In the present study, we provided biochemical evidence supporting the idea that the mutant Aac2 proteins are misfolded, which derails the proteostasis on the inner membrane. We found that the assembly and stability of multiple protein complexes on the inner membrane are affected, including those involved in mitochondrial respiration and protein transport. -
Autocrine IFN Signaling Inducing Profibrotic Fibroblast Responses By
Downloaded from http://www.jimmunol.org/ by guest on September 23, 2021 Inducing is online at: average * The Journal of Immunology , 11 of which you can access for free at: 2013; 191:2956-2966; Prepublished online 16 from submission to initial decision 4 weeks from acceptance to publication August 2013; doi: 10.4049/jimmunol.1300376 http://www.jimmunol.org/content/191/6/2956 A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Autocrine IFN Signaling Feng Fang, Kohtaro Ooka, Xiaoyong Sun, Ruchi Shah, Swati Bhattacharyya, Jun Wei and John Varga J Immunol cites 49 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130037 6.DC1 This article http://www.jimmunol.org/content/191/6/2956.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 23, 2021. The Journal of Immunology A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling Feng Fang,* Kohtaro Ooka,* Xiaoyong Sun,† Ruchi Shah,* Swati Bhattacharyya,* Jun Wei,* and John Varga* Activation of TLR3 by exogenous microbial ligands or endogenous injury-associated ligands leads to production of type I IFN. -
Differential Expression Gene Symbol Upregulated
Table S1. 1658 differential expressed genes with P-value < 0.05 in myeloid dendritic cells patients with all ergies compared to healthy controls. Differential Gene Symbol Expression Upregulated KIAA1217, RP11-111M22.2, RP11-21M24.2, FAM221B, TRIM9, CNKSR3, LRIT3, (N=771) RP11-26J3.1, RP11-708J19.1, RPS3AP35, AC096574.4, RBPMS, JPH3, RASGRF1, RP11-118E18.4, TPPP, KCNJ9, ARMC12, TUBB8P7, KCND3, CTD-2083E4.4, SLCO5A1, EGLN3, NOS3, RPS3AP40, OR10A4, AC007551.2, RP11-110I1.12, ZNF732, RP4-800G7.3, RNFT2, SFXN2, SEPT5, UFSP1, KRT8P26, RP11- 634H22.1, RP11-357G3.1, CTC-487M23.5, RP11-804H8.6, ROPN1L, E2F2, RP11- 983P16.4, SOX12, KRTAP16-1, FAM188B, TTC28, CTB-66B24.1, PLS1, SHF, ESR1, SOCS2, MNS1, GPR55, RP11-1020A11.2, C4orf32, BHLHE22, RP11- 63E5.6, SIGLEC15, FGFBP3, AP000692.10, CTD-2357A8.3, RP1-102E24.6, ZC4H2, AC074367.1, WDR86-AS1, YPEL1, HOXB-AS1, RP3-522P13.2, OR7E47P, AC068039.4, NUDT8, IBA57, PPP1R3G, CACNB3, KB-1460A1.1, IQCJ-SCHIP1-AS1, CRHR2, CD27-AS1, RP11-368J22.2, MANSC4, FITM2, AC002467.7, RPS5P2, SNHG17, GCAT, C10orf91, CTB-61M7.1, ATP8A2P2, RP11-50E11.2, TFAP4, CTD-2060C23.1, MED9, RP11-583F2.1, GAPDHP62, RN7SL801P, CYB5RL, ALG14, IGLV5-52, AC106801.1, RP11-403A21.3, LAD1, EARS2, NEURL3, DUSP14, RP11-116K4.1, PKNOX1, RP11-248J23.5, ZNF730, PSMF1, PINLYP, HOXA10, PTMAP8, RNLS, NANOGP7, FOXD1, AIFM2, KCNJ14, AC114730.8, RP11-804H8.5, C1orf109, PANK1, RPL32P26, RP11- 528A10.2, KL, METTL21B, CTD-2186M15.1, UBE3D, SMARCA5-AS1, SCARF2, AC000003.2, AC013470.6, PEX10, LRP11, ACTBP14, RP11-93B14.5, MIR1182, LIMCH1, IFI27L1, FSTL3, -
A Multi-Factor Tra Cking Site on the Spliceosomal Remodeling Enzyme
A multi-factor tracking site on the spliceosomal remodeling enzyme, BRR2, recruits C9ORF78 to regulate alternative splicing Alexandra Bergfort Freie Universität Berlin Marco Preussner Freie Universität Berlin Benno Kuropka Freie Universität Berlin https://orcid.org/0000-0001-5088-6346 İbrahim Ilik Max Planck Institute for Molecular Genetics Tarek Hilal https://orcid.org/0000-0002-7833-8058 Gert Weber Helmholtz-Zentrum Berlin für Materialien und Energie https://orcid.org/0000-0003-3624-1060 Christian Freund Freie Universität Berlin https://orcid.org/0000-0001-7416-8226 Tugce Aktas Max Planck Institute for Molecular Genetics https://orcid.org/0000-0003-1599-9454 Florian Heyd Freie Universitä Markus Wahl ( [email protected] ) Freie Universität Berlin https://orcid.org/0000-0002-2811-5307 Article Keywords: electron microscopy, alternative splicing, BRR2, C9ORF78 Posted Date: July 19th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-639521/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 A multi-factor trafficking site on the spliceosomal 2 remodeling enzyme, BRR2, recruits C9ORF78 to regulate 3 alternative splicing 4 5 Alexandra Bergfort1, Marco Preußner2, Benno Kuropka3,4, İbrahim Avşar Ilik5, Tarek Hilal1,4,6, 6 Gert Weber7, Christian Freund3, Tuğçe Aktaş5, Florian Heyd2, Markus C. Wahl1,7,* 7 8 1 Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural 9 Biochemistry, Takustrasse 6, D-14195 Berlin, Germany 10 2 Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA 11 Biochemistry, Takustrasse 6, D-14195 Berlin, Germany 12 3 Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Protein 13 Biochemistry, Thielallee 63, D-14195, Berlin, Germany 14 4 Freie Universität Berlin, Institute of Chemistry and Biochemistry, Core Facility BioSupraMol, 15 Thielallee 63, D-14195, Berlin, Germany 16 5 Max Planck Institute for Molecular Genetics, Ihnestr. -
Mechanism of Gene Regulation by Coding Polya Tracks Laura Lea Arthur Washington University in St
Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Winter 12-15-2017 Mechanism of Gene Regulation by Coding PolyA Tracks Laura Lea Arthur Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Biology Commons, Cell Biology Commons, and the Genetics Commons Recommended Citation Arthur, Laura Lea, "Mechanism of Gene Regulation by Coding PolyA Tracks" (2017). Arts & Sciences Electronic Theses and Dissertations. 1193. https://openscholarship.wustl.edu/art_sci_etds/1193 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology and Biomedical Sciences Molecular Genetics and Genomics Dissertation Examination Committee: Sergej Djuranovic, Chair Nicholas Davidson Tim Schedl Jim Skeath Matthew Walter Mechanism of Gene Regulation by Coding PolyA Tracks by Laura Arthur A dissertation presented to The Graduate School of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2017 St. Louis, Missouri © 2017, Laura Arthur Table of Contents List of Figures ............................................................................................................................... -
Sensitivity of Small-Cell Lung Cancer to BET Inhibition Is Mediated by Regulation of ASCL1 Gene Expression
Author Manuscript Published OnlineFirst on August 7, 2015; DOI: 10.1158/1535-7163.MCT-15-0037 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Sensitivity of SCLC to BET inhibition is mediated by regulation of ASCL1 gene expression Sensitivity of Small-Cell Lung Cancer to BET Inhibition is Mediated by Regulation of ASCL1 Gene Expression Ryan Lenhart, Stefan Kirov, Heshani Desilva, Jian Cao, Ming Lei, Kathy Johnston, Russell Peterson, Liang Schweizer, Ashok Purandare, Petra Ross-Macdonald, Craig Fairchild, Tai Wong#, Susan Wee* Bristol Myers Squibb Company, Princeton, New Jersey 08543 Running Title: ASCL1 is a target gene of the BET inhibitor JQ1 in SCLC Key words: Bromodomains, small cell lung cancer, ASCL1, transcription, enhancer Statement of financial support and conflict of interest: No conflict of interest to report. All co-authors are employees of Bristol Myers Squibb #Current address Tai Wong Peloton Therapeutics 2330 Inwood Road Dallas, Texas 75235 *To whom correspondence should be addressed at Bristol Myers Squibb Research Route 206 & Provinceline Road Princeton, NJ 08543 [email protected] 1 Downloaded from mct.aacrjournals.org on September 27, 2021. © 2015 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 7, 2015; DOI: 10.1158/1535-7163.MCT-15-0037 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Sensitivity of SCLC to BET inhibition is mediated by regulation of ASCL1 gene expression Abstract: The BET (bromondomain and extra-terminal) proteins bind acetylated histones and recruit protein complexes to promote transcription elongation.