Rare Reactions Might Hold Key to Variant- Proof Covid

Total Page:16

File Type:pdf, Size:1020Kb

Rare Reactions Might Hold Key to Variant- Proof Covid News in focus job of blocking pseudoviruses with B.1.351 mutations. To Moore’s surprise, the antibodies also blocked other strains, including a vari- ant called P.1, identified in Brazil, that shares several mutations with B.1.351. Sigal’s team reported similar results in February3. Moore does not know why B.1.351 infection results in a such a broad immune response, but she is working to find out. “It’s about the only thing I think about these days,” she says. It’s possible that the antibodies are recognizing features of the viral spike protein that do not differ between those variants. The results are a boost to nascent efforts to develop vaccines that can cope with variants such as B.1.351. In mid-March, updated versions of Moderna’s vaccine, based on the genetic sequence of the B.1.351 variant, were given to trial participants for the first time. Other devel- DESIGN CELLS/SPL An illustration of the spike proteins that SARS-CoV-2 uses to break into human cells. opers, including Pfizer–BioNTech, also plan to test vaccines based on B.1.351. Different coronavirus variants can trigger dif- ferent immune responses, and researchers are RARE REACTIONS MIGHT only beginning to map their full diversity. Infec- tion with a fast-spreading variant identified in HOLD KEY TO VARIANT- the United Kingdom, known as B.1.1.7, seems to provoke antibodies that do a poor job against PROOF COVID VACCINES B.1.351 and earlier variants6, according to work led by immunologist George Kassiotis at the Some people mount an immune response that can Francis Crick Institute in London and virologist Eleni Nastouli at University College London. fend off a menagerie of SARS-CoV-2 variants. Again, it’s not clear why B.1.1.7 seems to gen- erate a narrow immune response. The variant By Ewen Callaway South Africa’s first wave, earlier in the year, is handled by existing vaccines — which are and because it carried changes that blunted based on the virus that emerged in Wuhan, enny Moore was one of the first the potency of some antibodies that ordinarily China, in late 2019 — but researchers urgently scientists to show that a coronavirus disable SARS-CoV-2. need to determine whether vaccines based on variant identified in South Africa Research led by Moore and Alex Sigal at the B.1.351 can also cope with B.1.1.7, says Kassiotis. could dodge the immune system. So Africa Health Research Institute in Durban If not, future vaccines might need to immunize the virologist was expecting more stoked early worries over B.1.351 in January2,3. simultaneously against multiple variants, in a Pgrim news when she tested the responses It showed that the variant evaded virus-block- similar way to seasonal influenza jabs. of people who had been infected with that ing antibodies produced by a large number of variant, named B.1.351. people who had been infected with first-wave Vaccine resilience Instead, her team found a ray of hope: B.1.351 strains. Weeks later, clinical-trial results showed Redesigning vaccines is not necessarily the infection triggered antibodies that fended off that the variant diminished the efficacy of vac- only way to cope with emerging coronavirus variants old and new. “That was a surprise,” cines developed by Novavax4 and Johnson & variants. Researchers are identifying other says Moore, who is based at the National Insti- Johnson, and potentially wiped out much of factors that could make existing vaccines tute for Communicable Diseases and the Uni- the protection conferred by AstraZeneca’s jab5. more resilient, such as mimicking how natu- versity of the Witwatersrand in Johannesburg. ral immunity caused by infection can some- The discovery, posted on bioRxiv last month1, ‘Pseudovirus’ surprise times offer broad protection. For instance, joins a slew of recent research suggesting that Moore hoped that B.1.351 infection would Bieniasz’s team found that some people who vaccines for COVID-19 might cope with existing trigger strong immune responses, but she recover from COVID-19 make antibodies that, variants — and maybe even future ones. was open to the possibility that this variant over time, become more capable of blocking “Getting vaccines that will tackle the variants might be less visible to the immune system diverse coronavirus variants7. that are currently circulating is an eminently than are other strains. To find out, her team Antibody-producing B cells can evolve solvable problem,” says Paul Bieniasz, a virol- analysed antibodies from 89 people who had through natural selection to make antibodies ogist at the Rockefeller University in New York been hospitalized with B.1.351 infections. The that bind more tightly to their target, a process City, whose laboratory is studying variants. “It researchers used a ‘pseudovirus’ — a modified known as maturation. Bieniasz’s team isolated might be that we already have that solution.” form of HIV that infects cells using the SARS- B cells, at intervals of several months, from Researchers in South Africa identified B.1.351 CoV-2 spike protein — to measure the capacity people who had recovered from infection, in late 2020. It now accounts for the majority of the antibodies to block infection. and looked at how the potency of individual of the country’s cases and has spread around Reassuringly, people who recovered from antibodies changed as the B-cell lineages that the world. The variant attracted scientists’ B.1.351 infection made as many antibodies made them matured. attention because it was linked to outbreaks as did those infected with earlier circulat- In some instances, ‘matured’ antibodies in places that had already been hit hard by ing variants. Those antibodies did a good recognized variants, including B.1.351, that 20 | Nature | Vol 592 | 1 April 2021 ©2021 Spri nger Nature Li mited. All ri ghts reserved. ©2021 Spri nger Nature Li mited. All ri ghts reserved. earlier versions of these antibodies failed to recognize; one matured type even neutralized Q&A some other coronaviruses. It’s not obvious how to make vaccines trigger such antibodies. Maturation occurs when viral molecules called antigens, which We need a non-political are recognized by antibodies, persist in the body. “Really, the way to drive the process is to way to track viruses have the antigen be as persistent as possible,” says Bieniasz. Formulating vaccines with adju- Rick Bright put his career on the line way of suppressing and revising science- vants — foreign molecules that increase their last year, when he blew the whistle on based messages, and that got us where potency — might be one way to achieve this. how then-US president Donald Trump’s we are today with the pandemic in the Some of the existing vaccines might already administration was mishandling the United States. So, a non-governmental, be triggering variant-resilient immune coronavirus pandemic. Bright, who was non-political entity would have the ability responses. In another March preprint, a director of the US Biomedical Advanced to seal and protect those data, and to make long-running COVID-19 study in Seattle, Wash- Research and Development Authority — sure that the world has access to all the ington, reported that after receiving a single which is responsible for countermeasures same information at the same time. dose of an mRNA vaccine, participants who had against pandemics, bioterrorism and previously been infected with SARS-CoV-2 pro- other health emergencies — was abruptly Why didn’t more government researchers duced heaps of antibodies that can neutralize removed from the agency. Now, he is speak out about the Trump administration’s B.1.351, as well as an earlier circulating variant8. trying his hand at curbing outbreaks from political meddling? Leonidas Stamatatos, an immunologist at outside the government. On 8 March, the We need more protections in place for the Fred Hutchinson Cancer Research Center Rockefeller Foundation, a philanthropic government employees and scientists who (FHCRC) in Seattle who co-led the study, sus- organization based in New York City that speak out or come forward. It was a very pects that a single vaccine dose boosted the funds science, announced that Bright difficult administration to work under as levels of pre-existing antibodies that were would become the senior vice-president a scientist. My scientific colleagues in the capable of recognizing diverse variants. It’s of its pandemic-prevention activities. His government were afraid of losing their jobs, not clear how to mimic this response in people first move will be to spearhead a plan to but were also working really hard to do the who haven’t had COVID-19. One possibility is use genomic sequencing and analysis right thing and push for the best decisions that a lag of several months between infection to track the coronavirus SARS-CoV-2 in with the right data. and vaccination was responsible, and that its the United States. Nature spoke to Bright I could only take so much. When the effect could be replicated with another vaccine about this project, and protecting integrity administration clearly, in my opinion, dose, given six months or a year after the first in science. showed a disregard for the general two, says Andy McGuire, an FHCRC immunol- population in a subject area that I know a lot ogist who co-led the study. Will Rockefeller give scientists grants to about — pandemic response — and pushed By showing such a broad immune response to sequence SARS-CoV-2? an unproven drug [hydroxychloroquine] variants, the latest data make researchers cau- Sequencing is important, but it’s not our to the general public without close clinical tiously optimistic that vaccines will be able to only emphasis.
Recommended publications
  • Preventing the Next Zoonotic Pandemic Strengthening and Extending the One Health Approach to Avert Pandemics of Animal Origin in the Region © FAO/Eran RaiMan
    FAO COVID-19 Response and Recovery Programme: Europe and Central Asia Preventing the next zoonotic pandemic Strengthening and extending the One Health approach to avert pandemics of animal origin in the region © FAO/Eran Raiman The issue Budget : USD 2 million SARS-CoV-2, the virus that causes COVID-19, probably originated from an animal source, similar to 60 percent of all human infectious diseases. The Time frame: 2020–2024 pandemic has emphasized the need to prepare for, prevent, detect and respond to diseases at primary spillover level, where a new pandemic is SDGs likely to start. Pathogens are most likely to spread in locations where wildlife comes into contact with livestock production, particularly where people earn livelihoods, such as in live animal markets, areas where bushmeat is hunted, traded and consumed, or where growing pressures on natural ecosystems has forced livestock, wildlife and humans into close proximity. As a result, family farmers, especially women and children, are at high risk. Preventing spillover at source and mitigating the emergence and spread of pandemics requires a holistic and participatory One Health approach, involving experts, policymakers and communities in high-risk settings. Related FAO policy briefs The zoonotic nature of the SARS-CoV-2 virus was established long before One Health legislation. Contributing to COVID-19 had evolved into a pandemic. Investigations into potential pandemic prevention through law animal hosts for this and other coronaviruses are pivotal to improve our understanding of COVID-19’s epidemiology, as well as to identify (and Integrated agriculture water minimize) sources for human infection. COVID-19 infection in animals sharing management and health the same space as humans comes as no surprise, given the prevalence of environmental contamination in households with the causative virus.
    [Show full text]
  • IPBES Workshop on Biodiversity and Pandemics Report
    IPBES Workshop on Biodiversity and Pandemics WORKSHOP REPORT *** Strictly Confidential and Embargoed until 3 p.m. CET on 29 October 2020 *** Please note: This workshop report is provided to you on condition of strictest confidentiality. It must not be shared, cited, referenced, summarized, published or commented on, in whole or in part, until the embargo is lifted at 3 p.m. CET/2 p.m. GMT/10 a.m. EDT on Thursday, 29 October 2020 This workshop report is released in a non-laid out format. It will undergo minor editing before being released in a laid-out format. Intergovernmental Platform on Biodiversity and Ecosystem Services 1 The IPBES Bureau and Multidisciplinary Expert Panel (MEP) authorized a workshop on biodiversity and pandemics that was held virtually on 27-31 July 2020 in accordance with the provisions on “Platform workshops” in support of Plenary- approved activities, set out in section 6.1 of the procedures for the preparation of Platform deliverables (IPBES-3/3, annex I). This workshop report and any recommendations or conclusions contained therein have not been reviewed, endorsed or approved by the IPBES Plenary. The workshop report is considered supporting material available to authors in the preparation of ongoing or future IPBES assessments. While undergoing a scientific peer-review, this material has not been subjected to formal IPBES review processes. 2 Contents 4 Preamble 5 Executive Summary 12 Sections 1 to 5 14 Section 1: The relationship between people and biodiversity underpins disease emergence and provides opportunities
    [Show full text]
  • COVID-19: Make It the Last Pandemic
    COVID-19: Make it the Last Pandemic Disclaimer: The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Independent Panel for Pandemic Preparedness and Response concerning the legal status of any country, territory, city of area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Report Design: Michelle Hopgood, Toronto, Canada Icon Illustrator: Janet McLeod Wortel Maps: Taylor Blake COVID-19: Make it the Last Pandemic by The Independent Panel for Pandemic Preparedness & Response 2 of 86 Contents Preface 4 Abbreviations 6 1. Introduction 8 2. The devastating reality of the COVID-19 pandemic 10 3. The Panel’s call for immediate actions to stop the COVID-19 pandemic 12 4. What happened, what we’ve learned and what needs to change 15 4.1 Before the pandemic — the failure to take preparation seriously 15 4.2 A virus moving faster than the surveillance and alert system 21 4.2.1 The first reported cases 22 4.2.2 The declaration of a public health emergency of international concern 24 4.2.3 Two worlds at different speeds 26 4.3 Early responses lacked urgency and effectiveness 28 4.3.1 Successful countries were proactive, unsuccessful ones denied and delayed 31 4.3.2 The crisis in supplies 33 4.3.3 Lessons to be learnt from the early response 36 4.4 The failure to sustain the response in the face of the crisis 38 4.4.1 National health systems under enormous stress 38 4.4.2 Jobs at risk 38 4.4.3 Vaccine nationalism 41 5.
    [Show full text]
  • Community's Misconception About COVID-19 and Its Associated
    Mekonnen et al. Tropical Medicine and Health (2020) 48:99 Tropical Medicine https://doi.org/10.1186/s41182-020-00279-8 and Health RESEARCH Open Access Community’s misconception about COVID- 19 and its associated factors among Gondar town residents, Northwest Ethiopia Habtamu Sewunet Mekonnen1* , Abere Woretaw Azagew1, Chalachew Adugna Wubneh2, Getaneh Mulualem Belay2, Nega Tezera Assimamaw2, Chilot Desta Agegnehu3, Telake Azale4, Zelalem Nigussie Azene5, Mehari Woldemariam Merid6, Atalay Goshu Muluneh6, Demiss Mulatu Geberu7, Getahun Molla Kassa6, Melaku Kindie Yenit6, Sewbesew Yitayih Tilahun8, Kassahun Alemu Gelaye6, Animut Tagele Tamiru9, Bayew Kelkay Rade9, Eden Bishaw Taye10, Asefa Adimasu Taddese6, Zewudu Andualem11, Henok Dagne11, Kiros Terefe Gashaye12, Gebisa Guyasa Kabito11, Tesfaye Hambisa Mekonnen11, Sintayehu Daba Wami11, Jember Azanaw11, Tsegaye Adane11 and Mekuriaw Alemayehu11 Abstract Background: Despite the implementation of various strategies such as the declaration of COVID-19 emergency state, staying at home, lockdown, and massive protective equipment distribution, still COVID-19 is increasing alarmingly. Therefore, the study aimed to assess the community’s perception of COVID-19 and its associated factors in Gondar town, Northwest Ethiopia. Methods: A community-based cross-sectional study was employed among 635 Gondar administrative town residents, from April 20 to April 27, 2020. Study participants were selected using a cluster sampling technique. Data were collected using an interviewer-administered structured questionnaire. Epi-Data version 4.6 and STATA 14 were used for data entry and analysis, respectively. Logistic regressions (bivariable and multivariable) were performed to identify statistically significant variables at p <0.05. Results: Of the 635 study participants, 623 have completed the study with a 98.1% response rate.
    [Show full text]
  • Genomic Sequencing of SARS-Cov-2: a Guide to Implementation for Maximum Impact on Public Health
    Genomic sequencing of SARS-CoV-2 A guide to implementation for maximum impact on public health 8 January 2021 Genomic sequencing of SARS-CoV-2 A guide to implementation for maximum impact on public health 8 January 2021 Genomic sequencing of SARS-CoV-2: a guide to implementation for maximum impact on public health ISBN 978-92-4-001844-0 (electronic version) ISBN 978-92-4-001845-7 (print version) © World Health Organization 2021 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization (http://www.wipo.int/amc/en/mediation/rules/).
    [Show full text]
  • Covid-19 Response and Recovery
    COVID-19 RESPONSE AND RECOVERY Nature-Based Solutions for People, Planet and Prosperity Recommendations for Policymakers November 2020 Nicole Schwab Elena Berger Co-Director Executive Director 1t.org Bank Information Center Patricia Zurita M. Sanjayan CEO CEO Birdlife International Conservation International Mark Gough Kathleen Rogers CEO President Capitals Coalition Earth Day Network Andrea Crosta Carlos Manuel Rodriguez Founder and Executive Director CEO and Chairperson Earth League International Global Environment Facility Wes Sechrest Paul Polman Chief Scientist and CEO Chair Global Wildlife Conservation Imagine Azzedine Downes Karen B. Strier President and CEO President International Fund for Animal Welfare International Primatological Society II Sylvia Earle Lucy Almond President and Chair Director and Chair Mission Blue Nature4Climate Jennifer Morris Bonnie Wyper CEO President The Nature Conservancy Thinking Animals United Justin Adams Cristián Samper Executive Director President and CEO Tropical Forest Alliance Wildlife Conservation Society Peter Bakker President and CEO Andrew Steer World Business Council for President and CEO Sustainable Development World Resources Institute Jodi Hilty Marco Lambertini President and Chief Scientist Director General Yellowstone to Yukon WWF International Conservation Initiative III Executive Summary COVID-19 highlights the critical connection between the health of nature and human health. This connection must be better reflected in our priorities, policies and actions. The root causes of this pandemic are common to many root causes of the climate change and biodiversity crises. Confronting these intertwined crises requires an integrated approach and unprecedented cooperation to achieve an equitable carbon-neutral, nature-positive economic recovery and a sustainable future. Our organizations’ recommendations to policymakers for meeting this challenge are offered below.
    [Show full text]
  • COVID-19 Pandemic: Prevention and Protection Measures to Be Adopted at the Workplace
    sustainability Protocol COVID-19 Pandemic: Prevention and Protection Measures to Be Adopted at the Workplace Luigi Cirrincione 1, Fulvio Plescia 1 , Caterina Ledda 2 , Venerando Rapisarda 2, Daniela Martorana 3, Raluca Emilia Moldovan 4, Kelly Theodoridou 5 and Emanuele Cannizzaro 1,* 1 Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “Giuseppe D’Alessandro”, University of Palermo, 90127 Palermo, Italy; [email protected] (L.C.); [email protected] (F.P.) 2 Occupational Medicine, Department of Clinical and Experimental Medicine University of Catania Italy, 95131 Catania, Italy; [email protected] (C.L.); [email protected] (V.R.) 3 Department of Orthopedics, Hospital Company “Ospedali Riuniti Villa Sofia-Cervello” Palermo Italy, 90146 Palermo, Italy; [email protected] 4 Faculty of Economics within Dimitrie Cantemir University of Targu Mures, 540680 Targu Mures, Romania; [email protected] 5 Department of Microbiology A Syggros University Hospital Athens Greece, 10552 Athens, Greece; [email protected] * Correspondence: [email protected] Received: 9 April 2020; Accepted: 27 April 2020; Published: 29 April 2020 Abstract: SARS-CoV-2, identified in Wuhan, China, for the first time in December 2019, is a new viral strain, which has not been previously identified in humans; it can be transmitted both by air and via direct and indirect contact; however, the most frequent way it spreads is via droplets. Like the other viruses belonging to the same family of coronaviruses, it can cause from mild flu-like symptoms, such as cold, sore throat, cough and fever, to more severe ones such as pneumonia and breathing difficulties, and it can even lead to death.
    [Show full text]
  • Prediction and Prevention of the Next Pandemic Zoonosis
    Series Zoonoses 3 Prediction and prevention of the next pandemic zoonosis Stephen S Morse, Jonna A K Mazet, Mark Woolhouse, Colin R Parrish, Dennis Carroll, William B Karesh, Carlos Zambrana-Torrelio, W Ian Lipkin, Peter Daszak Lancet 2012; 380: 1956–65 Most pandemics—eg, HIV/AIDS, severe acute respiratory syndrome, pandemic infl uenza—originate in animals, See Comment pages 1883 are caused by viruses, and are driven to emerge by ecological, behavioural, or socioeconomic changes. Despite their and 1884 substantial eff ects on global public health and growing understanding of the process by which they emerge, no This is the third in a Series of pandemic has been predicted before infecting human beings. We review what is known about the pathogens that three papers about zoonoses emerge, the hosts that they originate in, and the factors that drive their emergence. We discuss challenges to their Mailman School of Public control and new eff orts to predict pandemics, target surveillance to the most crucial interfaces, and identify Health (Prof S S Morse PhD), and Center for Infection and prevention strategies. New mathematical modelling, diagnostic, communications, and informatics technologies can Immunity (Prof W I Lipkin MD); identify and report hitherto unknown microbes in other species, and thus new risk assessment approaches are Columbia University, needed to identify microbes most likely to cause human disease. We lay out a series of research and surveillance New York, NY, USA; One Health opportunities and goals that could help to overcome these challenges and move the global pandemic strategy from Institute, School of Veterinary Medicine, University of response to pre-emption.
    [Show full text]
  • 2017 Update to the Hhs Pandemic Influenza Plan
    Pandemic Influenza Plan 2017 UPDATE U.S. Department of Health and Human Services Contents FOREWORD .............................................................................................................. 3 EXECUTIVE SUMMARY ........................................................................................... 5 INTRODUCTION ........................................................................................................ 7 SCOPE, AUDIENCE, AND PURPOSE ................................................................... 10 INFLUENZA RESPONSE ACTIVITIES ................................................................... 11 PLANNING TOOLS FOR PREPARATION AND RESPONSE ............................... 12 THE 2017 UPDATE TO THE HHS PANDEMIC INFLUENZA PLAN ..................... 13 Domain 1 – Surveillance, Epidemiology, and Laboratory Activities .................. 14 Domain 2 – Community Mitigation Measures .................................................... 18 Domain 3 – Medical Countermeasures: Diagnostic Devices, Vaccines, Therapeutics, and Respiratory Devices ............................................................. 21 Domain 4 – Health Care System Preparedness and Response Activities ....... 27 Domain 5 – Communications and Public Outreach ........................................... 30 Domain 6 – Scientific Infrastructure and Preparedness .................................... 32 Domain 7 – Domestic and International Response Policy, Incident Management, and Global Partnerships and Capacity Building ........................
    [Show full text]
  • (PIPP Phase I) (Nsf21590) |
    Predictive Intelligence for Pandemic Prevention Phase I: Development Grants (PIPP Phase I) PROGRAM SOLICITATION NSF 21-590 National Science Foundation Directorate for Computer and Information Science and Engineering Directorate for Biological Sciences Directorate for Engineering Directorate for Social, Behavioral and Economic Sciences Full Proposal Deadline(s) (due by 5 p.m. submitter's local time): October 01, 2021 IMPORTANT INFORMATION AND REVISION NOTES Innovating and migrating proposal preparation and submission capabilities from FastLane to Research.gov is part of the ongoing NSF information technology modernization efforts, as described in Important Notice No. 147 . In support of these efforts, proposals submitted in response to this program solicitation must be prepared and submitted via Research.gov or via Grants.gov, and may not be prepared or submitted via FastLane. Any proposal submitted in response to this solicitation should be submitted in accordance with the revised NSF Proposal & Award Policies & Procedures Guide (PAPPG) (NSF 20-1), which is effective for proposals submitted, or due, on or after June 1, 2020. SUMMARY OF PROGRAM REQUIREMENTS General Information Program Title: Predictive Intelligence for Pandemic Prevention Phase I: Development Grants (PIPP Phase I) Synopsis of Program: This solicitation is for Development Grants as part of NSF’s new Predictive Intelligence for Pandemic Prevention (PIPP) initiative. This initiative focuses on fundamental research and capabilities needed to tackle grand challenges in infectious disease pandemics through prediction and prevention. NSF anticipates releasing a Phase II Center Grants solicitation around 2023. Note that submission or award of a Development Grant is not required to participate in the anticipated PIPP Phase II Center Grants competition.
    [Show full text]
  • Big Data Analytics in the Fight Against Major Public Health Incidents (Including COVID-19): a Conceptual Framework
    International Journal of Environmental Research and Public Health Review Big Data Analytics in the Fight against Major Public Health Incidents (Including COVID-19): A Conceptual Framework Qiong Jia 1 , Yue Guo 2, Guanlin Wang 1 and Stuart J. Barnes 3,* 1 Department of Management, Hohai Business School, Hohai University, Nanjing 211100, China; [email protected] (Q.J.); [email protected] (G.W.) 2 The Department of Information System and Management Engineering, Faculty of Business, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, China; [email protected] 3 CODA Research Centre, King’s Business School, King’s College London, Bush House, 30 Aldwych, London WC2B 4BG, UK * Correspondence: [email protected]; Tel.: +44-207-848-4927 Received: 21 July 2020; Accepted: 21 August 2020; Published: 25 August 2020 Abstract: Major public health incidents such as COVID-19 typically have characteristics of being sudden, uncertain, and hazardous. If a government can effectively accumulate big data from various sources and use appropriate analytical methods, it may quickly respond to achieve optimal public health decisions, thereby ameliorating negative impacts from a public health incident and more quickly restoring normality. Although there are many reports and studies examining how to use big data for epidemic prevention, there is still a lack of an effective review and framework of the application of big data in the fight against major public health incidents such as COVID-19, which would be a helpful reference for governments. This paper provides clear information on the characteristics of COVID-19, as well as key big data resources, big data for the visualization of pandemic prevention and control, close contact screening, online public opinion monitoring, virus host analysis, and pandemic forecast evaluation.
    [Show full text]
  • Escaping the 'Era of Pandemics': Experts Warn Worse Crises to Come
    Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) Media Release • Access the executive summary and the full Report here: www.ipbes.net/pandemics • Access social media assets/images here: https://bit.ly/PandemicsReportResources • For interviews: [email protected] Escaping the ‘Era of Pandemics’: Experts Warn Worse Crises to Come Options Offered to Reduce Risk Highlights: Intergovernmental Council on Pandemic Prevention; Addressing risk drivers including deforestation & wildlife trade; Tax high pandemic-risk activities 631,000 – 827,000 unknown viruses in nature could still infect people; More frequent, deadly and costly pandemics forecast; Current economic impacts are 100 times the estimated cost of prevention Future pandemics will emerge more often, spread more rapidly, do more damage to the world economy and kill more people than COVID-19 unless there is a transformative change in the global approach to dealing with infectious diseases, warns a major new report on biodiversity and pandemics by 22 leading experts from around the world. Convened by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) for an urgent virtual workshop about the links between degradation of nature and increasing pandemic risks, the experts agree that escaping the era of pandemics is possible, but that this will require a seismic shift in approach from reaction to prevention. COVID-19 is at least the sixth global health pandemic since the Great Influenza Pandemic of 1918, and although it has its origins in microbes carried by animals, like all pandemics its emergence has been entirely driven by human activities, says the report released on Thursday. It is estimated that another 1.7 million currently ‘undiscovered’ viruses exist in mammals and birds – of which up to 827,000 could have the ability to infect people.
    [Show full text]