Analysis and Prediction of Integrated Kinetic Energy in Atlantic Tropical Cyclones Michael E

Total Page:16

File Type:pdf, Size:1020Kb

Analysis and Prediction of Integrated Kinetic Energy in Atlantic Tropical Cyclones Michael E Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2015 Analysis and Prediction of Integrated Kinetic Energy in Atlantic Tropical Cyclones Michael E. Kozar Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES ANALYSIS AND PREDICTION OF INTEGRATED KINETIC ENERGY IN ATLANTIC TROPICAL CYCLONES By MICHAEL E. KOZAR A Dissertation submitted to the Department of Earth, Ocean and Atmospheric Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Spring Semester, 2015 Michael E. Kozar defended this dissertation on March 19, 2015. The members of the supervisory committee were: Vasubandhu Misra Professor Directing Dissertation Ming Ye University Representative Robert E. Hart Committee Member Philip Sura Committee Member Allan J. Clarke Committee Member Mark D. Powell Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii ACKNOWLEDGMENTS First and foremost, I would like to thank my family for their loving support. Their unwavering encouragement has enabled me to chase my dreams of becoming a meteorologist. I am also grateful for the friendships that I have made here at Florida State and in Tallahassee, back at Penn State and at home in New Jersey, and everywhere else in between. All of the fun that we’ve had through the years has made the difficult task of earning a doctorate degree extremely enjoyable. In addition, I would like to thank my major professor, Dr. Vasu Misra, for his support and guidance throughout my entire time at Florida State. I am also thankful for the helpful advice given to me by my committee members Dr. Robert Hart, Dr. Philip Sura, Dr. Allan Clarke, Dr. Ming Ye, and Dr. Mark Powell. Furthermore, I owe thanks to Dr. Mark Bourassa for his help during my dissertation defense as well as several of my friends and colleagues at COAPS who gave me significant feedback on various presentations and research projects throughout my studies. Finally, I am indebted to all of my past teachers, advisors, professors, committee members, and colleagues who have helped make me a better meteorologist throughout my young career. This work was supported by grants from the National Oceanic and Atmospheric Administration (NA12OAR4310078, NA10OAR4310215, NA11OAR4310110) and the United States Geological Survey (G13AC00408). iii TABLE OF CONTENTS List of Tables ............................................................................................................................. vi List of Figures .......................................................................................................................... viii List of Abbreviations ................................................................................................................. xiv Abstract..................................................................................................................................... xv 1. INTRODUCTION 1 2. REVIEW OF TC STRUCTURE AND ANGULAR MOMENTUM 6 2.1 Conservation of Angular Momentum ............................................................................. 7 2.2 Relationships Between Intensity, Size, and Kinetic Energy ........................................... 9 2.3 Import of Angular Momentum from Trough Interactions .............................................. 14 3. PREDICTION OF IKE: A PROOF OF CONCEPT 27 3.1 Historical Integrated Kinetic Energy Record ................................................................ 28 3.2 Linear Regression Methodology .................................................................................. 30 3.3 Potential Model Predictors .......................................................................................... 32 3.4 Physical Interpretation of Selected Predictors ............................................................. 33 3.5 Linear Model Skill Evaluation from 1990 to 2011 ......................................................... 36 3.6 Validation Tests of Linear Model During 2012 Hurricane Season ................................ 40 3.7 Estimating Linear Model Skill in an Operational Setting .............................................. 42 4. PREDICTION OF IKE WITH NEURAL NETWORKS 52 4.1 Brief Introduction to Neural Networks and their Applications ....................................... 53 4.2 Data Used to Create Neural Networks ........................................................................ 56 4.3 Network Setup and Calibration .................................................................................... 58 4.4 Deterministic Network Skill .......................................................................................... 62 4.5 Probabilistic Network Skill ........................................................................................... 66 5. NEURAL NETWORK SENSITIVITY TESTS 81 5.1 Sensitivity Experiment Setup ....................................................................................... 82 5.2 Persistence Perturbation Tests ................................................................................... 84 5.3 Intensity Perturbation Tests ........................................................................................ 86 5.4 Position Perturbation Tests ......................................................................................... 88 5.5 Upper-level Divergence and Low-level Vorticity Perturbation Tests ............................. 91 5.6 Relative Humidity Perturbation Tests .......................................................................... 93 5.7 Deep-layer Vertical Wind Shear Perturbation Tests ................................................... 96 5.8 Sea Surface Temperature Perturbation Tests ............................................................. 98 5.9 Time Perturbation Tests ............................................................................................ 100 5.10 Potential Intensity Perturbation Tests ...................................................................... 101 5.11 Other Perturbation Tests ......................................................................................... 103 6. EVALUATION OF NEURAL NETWORKS FOR REAL-TIME USE 109 6.1 Data Used to Create Mock-Operational Network ....................................................... 110 6.2 Mock-Operational Neural Network Setup and Calibration.......................................... 114 6.3 Mock Operational Network Skill Evaluation ............................................................... 116 7. APPLYING IKE FORECASTS TO PREDICT STORM SIZE 136 7.1 Symmetric Wind Model Design ................................................................................. 137 iv 7.2 Evaluation of Symmetric Wind Model in a Perfect-Prog Mode ................................... 139 7.3 Considering Wind Field Asymmetries ........................................................................ 142 7.4 Assessment of Operational Skill in Symmetric Wind Model ....................................... 145 8. SUMMARY AND CONCLUSIONS 167 References ............................................................................................................................. 174 Biographical Sketch ................................................................................................................ 179 v LIST OF TABLES Table 3.1: Variables considered for use in the SPIKE models. Many of the variables (e.g. RHLO, SHRD) originated from SHIPS and are averaged over specific areas as noted. Others were specifically created from observations for the SPIKE model. Not all of these variables are used in the final models, as many of the regression coefficients fail significance tests in the backward screening methodology. ............................................................................................ 44 Table 3.2: Regression coefficients for each predictor in the SPIKE model. The coefficients listed in a blue font are significant at the 99% level for that forecast hour. Sample size for the training interval of 1990 to 2011 is shown below. Finally, shared variance between the SPIKE regression model, and observed kinetic energy changes are listed in the bottom row. ............................... 45 Table 4.1: Three sets of example input and corresponding output for the sample neuron setup shown in Figure 4.1. The bias value is by definition equal to one, but the other input values are free to vary. The weights within the neuron, which are identical in each example, are detailed in Equations 4.1. The propagation function is a weighted sum, and the activation function is a piecewise function, as explained in Equations 4.2. ................................................................... 74 Table 4.2: Variables used in the perfect prognostic version of the SPIKE2 neural networks. Many of the variables (e.g. RHLO, SHRD) originated from SHIPS and are averaged over specific areas as noted. Others were specifically created from observations for the SPIKE model. ...................................................................................................................................... 74 Table 4.3: Terms used to describe the probability of a certain event occurring given its likelihood from a probabilistic forecast. ....................................................................................
Recommended publications
  • 2018 Hurricane Season Preview – Uncertainty Rules the Day
    SHORELINES – July 2018 As presented to the Island Review magazine 2018 Hurricane Season Preview – Uncertainty Rules the Day The 2018 hurricane season started its rite of passage on June 1st (well not really – thanks Alberto) and will conclude six months later on November 30th. This year’s forecast is quite complex and uncertain for reasons we will discuss later, but in the interim; it’s important to review the common terminology we will be exposed to. For instance, Subtropical Storm Alberto formed in the Gulf of Mexico just before the official start of the hurricane season in late May and the remnants of this cyclone caused severe flooding in the western part of the State. So what’s the difference between a tropical storm and subtropical storm? Or a hurricane and a major hurricane? The following vocabulary list should help in our understanding. Tropical cyclone - warm-core, atmospheric closed circulation rotating counter-clockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere. Tropical storm – a tropical cyclone with a maximum sustained surface wind speed ranging from 39 mph to 73 mph using the U.S. 1-minute average. Hurricane - a tropical cyclone with a maximum sustained surface wind speed reaching 74 mph or more. Saffir Simpson Scale – a scale including a 1 to 5 rating based upon wind speeds, again utilizing the U.S. 1-minute average. A category 1 hurricane has winds ranging from 74 to 95 miles per hour (mph), category 2 ranges from 96 to 100 mph, category 3 ranges from 111 to 130 mph, category 4 ranges from 131 to 155 mph, and a category 5 hurricane has sustained winds exceeding 155 mph.
    [Show full text]
  • Hurricane Igor Off Newfoundland
    Observing storm surges from space: Hurricane Igor off Newfoundland SUBJECT AREAS: Guoqi Han1, Zhimin Ma2, Dake Chen3, Brad deYoung2 & Nancy Chen1 CLIMATE SCIENCES OCEAN SCIENCES 1Biological and Physical Oceanography Section, Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John’s, NL, PHYSICAL OCEANOGRAPHY Canada, 2Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, NL, Canada, APPLIED PHYSICS 3State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Hangzhou, China. Received Coastal communities are becoming increasingly more vulnerable to storm surges under a changing climate. 10 October 2012 Tide gauges can be used to monitor alongshore variations of a storm surge, but not cross-shelf features. In this study we combine Jason-2 satellite measurements with tide-gauge data to study the storm surge caused Accepted by Hurricane Igor off Newfoundland. Satellite observations reveal a storm surge of 1 m in the early morning 30 November 2012 of September 22, 2010 (UTC) after the passage of the storm, consistent with the tide-gauge measurements. The post-storm sea level variations at St. John’s and Argentia are associated with free Published equatorward-propagating continental shelf waves (with a phase speed of ,10 m/s and a cross-shelf decaying 20 December 2012 scale of ,100 km). The study clearly shows the utility of satellite altimetry in observing and understanding storm surges, complementing tide-gauge observations for the analysis of storm surge characteristics and for the validation and improvement of storm surge models. Correspondence and requests for materials urricanes and tropical storms can cause damage to properties and loss of life in coastal communities and should be addressed to drastically change the ocean environment1–3.
    [Show full text]
  • Upgrades to the GFDL/GFDN Hurricane Model for 2014 (A JHT Funded Project) Morris A
    Upgrades to the GFDL/GFDN Hurricane Model for 2014 (A JHT Funded Project) Morris A. Bender, Matthew Morin, Timothy Marchok, Isaac Ginis, Biju Thomas, Richard Yablonsky and Robert Tuleya 68th Interdepartmenal Hurricane Conference Tuesday, March 5th GFDL 2014 Hurricane Model Upgrade • Increased horizontal resolution of inner nest from 1/12th to 1/18th degree with reduced damping of gravity waves in advection scheme • Improved specification of surface exchange coefficients (ch, cd) and surface stress computation in surface physics • Improved specification of surface roughness and wetness over land. • Modified PBL with variable Critical Richardson Number. • Advection of individual micro-physics species. (Yet to test impact of Rime Factor Advection) • Improved targeting of initial storm maximum wind and storm structure in initialization. (Reduces negative intensity bias in vortex specification) • Remove vortex specification in Atlantic for storms of 40 knots and less • Upgrade ocean model to 1/12th degree MPI POM with unified trans-Atlantic basin and 3D ocean for Eastern Pacific basin • Remove global_chgres in analysis step (direct interpolation from hybrid to sigma coordinates) New Cd and Ch formulation New Ch New Cd Current HWRF and GFDL Cd Current HWRF Ch Comparison of New cd and ch with Recent Referenced Studies Cd Ch Impact of Bogusing on Intensity Errors For Storms 40 knots or less Bogus No Bogus Bogusing Significantly Atlantic Degraded performance in Atlantic for weak systems No Bogus Bogus Bogusing Eastern Significantly Improved Pacific
    [Show full text]
  • Product Guide
    ProductsProducts && ServicesServices GuideGuide National Weather Service Corpus Christi, Texas November 2010 Products & Services Guide Page i Products & Services Guide Page ii ACKNOWLEDGMENTS This guide is intended to provide the news media and emergency services agencies with information and examples of the products issued by the National Weather Service in Corpus Christi, Texas. Armando Garza, former Meteorologist in Charge, initiated the development of this guide. Former meteorologists Bob Burton and current meteorologist Jason Runyen created most of the content for this guide. Warning Coordination Meteorologist John Metz directed the production of this guide. Recognition is also given to the entire staff of WFO Corpus Christi for valuable information and suggestions that were essential in the prepara- tion of this guide. If you have any suggestions for improving this guide, please contact the Warning Coordination Meteorologist or the Meteorologist in Charge at the National Weather Service in Corpus Christi, Texas. The 2010 version of this guide was compiled and updated by Matthew Grantham, Meteorolo- gist Intern and Alex Tardy, Science and Operations Officer. The following forecasters and program leaders updated parts of the guide: Mike Gittinger, Tim Tinsley, Jason Runyen, Roger Gass and Greg Wilk. Products & Services Guide Page iii PRECAUTIONARY NOTE The examples used in this guide are fictional and should not be taken as factual events. These examples are meant to illustrate the format and content of each product produced by your local National Weather Service office. In some cases the examples were cut short and limited to one page. However, the information provided should be adequate to understand the product.
    [Show full text]
  • RA IV Hurricane Committee Thirty-Third Session
    dr WORLD METEOROLOGICAL ORGANIZATION RA IV HURRICANE COMMITTEE THIRTY­THIRD SESSION GRAND CAYMAN, CAYMAN ISLANDS (8 to 12 March 2011) FINAL REPORT 1. ORGANIZATION OF THE SESSION At the kind invitation of the Government of the Cayman Islands, the thirty­third session of the RA IV Hurricane Committee was held in George Town, Grand Cayman from 8 to 12 March 2011. The opening ceremony commenced at 0830 hours on Tuesday, 8 March 2011. 1.1 Opening of the session 1.1.1 Mr Fred Sambula, Director General of the Cayman Islands National Weather Service, welcomed the participants to the session. He urged that in the face of the annual recurrent threats from tropical cyclones that the Committee review the technical & operational plans with an aim at further refining the Early Warning System to enhance its service delivery to the nations. 1.1.2 Mr Arthur Rolle, President of Regional Association IV (RA IV) opened his remarks by informing the Committee members of the national hazards in RA IV in 2010. He mentioned that the nation of Haiti suffered severe damage from the earthquake in January. He thanked the Governments of France, Canada and the United States for their support to the Government of Haiti in providing meteorological equipment and human resource personnel. He also thanked the Caribbean Meteorological Organization (CMO), the World Meteorological Organization (WMO) and others for their support to Haiti. The President spoke on the changes that were made to the hurricane warning systems at the 32 nd session of the Hurricane Committee in Bermuda. He mentioned that the changes may have resulted in the reduced loss of lives in countries impacted by tropical cyclones.
    [Show full text]
  • Summary of 2010 Atlantic Seasonal Tropical Cyclone Activity and Verification of Author's Forecast
    SUMMARY OF 2010 ATLANTIC TROPICAL CYCLONE ACTIVITY AND VERIFICATION OF AUTHOR’S SEASONAL AND TWO-WEEK FORECASTS The 2010 hurricane season had activity at well above-average levels. Our seasonal predictions were quite successful. The United States was very fortunate to have not experienced any landfalling hurricanes this year. By Philip J. Klotzbach1 and William M. Gray2 This forecast as well as past forecasts and verifications are available via the World Wide Web at http://hurricane.atmos.colostate.edu Emily Wilmsen, Colorado State University Media Representative, (970-491-6432) is available to answer various questions about this verification. Department of Atmospheric Science Colorado State University Fort Collins, CO 80523 Email: [email protected] As of 10 November 2010* *Climatologically, about two percent of Net Tropical Cyclone activity occurs after this date 1 Research Scientist 2 Professor Emeritus of Atmospheric Science 1 ATLANTIC BASIN SEASONAL HURRICANE FORECASTS FOR 2010 Forecast Parameter and 1950-2000 Climatology 9 Dec 2009 Update Update Update Observed (in parentheses) 7 April 2010 2 June 2010 4 Aug 2010 2010 Total Named Storms (NS) (9.6) 11-16 15 18 18 19 Named Storm Days (NSD) (49.1) 51-75 75 90 90 88.25 Hurricanes (H) (5.9) 6-8 8 10 10 12 Hurricane Days (HD) (24.5) 24-39 35 40 40 37.50 Major Hurricanes (MH) (2.3) 3-5 4 5 5 5 Major Hurricane Days (MHD) (5.0) 6-12 10 13 13 11 Accumulated Cyclone Energy (ACE) (96.2) 100-162 150 185 185 163 Net Tropical Cyclone Activity (NTC) (100%) 108-172 160 195 195 195 Note: Any storms forming after November 10 will be discussed with the December forecast for 2011 Atlantic basin seasonal hurricane activity.
    [Show full text]
  • 2015 Edition of ‘Blue Ridge Thunder’ the Biannual Newsletter of the National Weather Service (NWS) Office in Blacksburg, VA
    Welcome to the Fall 2015 edition of ‘Blue Ridge Thunder’ the biannual newsletter of the National Weather Service (NWS) office in Blacksburg, VA. In this issue you will find articles of interest on the weather and climate of our region and the people and technologies needed to bring accurate forecasts to the public. Weather Highlight: Late September Rain and Flooding Peter Corrigan, Sr. Service Hydrologist Inside this Issue: Developing drought conditions across much of the area were brought to a dramatic end in late September as persistent heavy 1: Weather Highlight: th Late September Rain and rains began around the 24 and lasted through the first few days of October. Several stations recorded over 20 inches of rain for the Flooding month of September the vast majority of it falling in a 5 to 6-day 2: Summer 2015 Climate period. The “bullseye” for rainfall was northern Patrick County, VA Summary where Woolwine COOP picked up an amazing 21.18” for the month, most of it in that last week of September. Initially the rains were 3:. Tropical Season persistent but of light to moderate intensity but during the Wrap-up overnight hours of Sep. 28-29 several bands of much heavier rain 4-5: El Niño Looms: moved across the VA Blue Ridge and into parts of the New and Winter 2015-16 Outlook upper Roanoke basins producing widespread flash flooding across several counties. 5: NWS provides IDSS Support for WV State Fair 6: Focus on COOP – Staffordsville, VA 7: Floods of 1985 – 30 year anniversary 8: Recent WFO Staff Changes 8: Hobbyist/UAV Workshop Flash flooding on Sept.
    [Show full text]
  • Tropical Cyclone Wind Field Asymmetry Development and Evaluation of A
    PUBLICATIONS Journal of Geophysical Research: Oceans RESEARCH ARTICLE Tropical cyclone wind field asymmetry—Development and 10.1002/2016JC012237 evaluation of a new parametric model Key Points: Mohammad Olfateh 1, David P. Callaghan 1, Peter Nielsen1, and Tom E. Baldock 1 A new parametric model for tropical cyclone wind fields is proposed to 1 enable the modeling of wind field School of Civil Engineering, University of Queensland, Brisbane, Queensland, Australia asymmetries The new asymmetric model improves estimations of tropical cyclone wind Abstract A new parametric model is developed to describe the wind field asymmetry commonly fields compared to the conventional observed in tropical cyclones or hurricanes in a reference frame fixed at its center. Observations from Holland (1980) symmetric model Asymmetric features of historical 21 hurricanes from the North Atlantic basin and TC Roger (1993) in the Coral Sea are analyzed to determine tropical cyclones are quantitatively the azimuthal and radial asymmetry typical in these mesoscale systems after removing the forward speed. investigated using the new model On the basis of the observations, a new asymmetric directional wind model is proposed which adjusts the parameters of asymmetry widely used Holland (1980) axisymmetric wind model to account for the action of blocking high-pressure systems, boundary layer friction, and forward speed. The model is tested against the observations and Correspondence to: M. Olfateh, demonstrated to capture the physical features of asymmetric cyclones and provides a better fit to observed [email protected] winds than the Holland model. Optimum values and distributions of the model parameters are derived for use in statistical modeling.
    [Show full text]
  • The Legacy of Hurricanes, Historic Land Cover, and Municipal Ordinances on Urban Tree Canopy in Florida (United States)
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 July 2021 doi:10.20944/preprints202107.0534.v1 The Legacy of Hurricanes, Historic Land Cover, and Municipal Ordinances on Urban Tree Canopy in Florida (United States) Allyson B. Salisbury1, Andrew K. Koeser2*, Richard J. Hauer3, Deborah R. Hilbert2, Amr H. Abd-Elrahman4, Michael G. Andreu5, Katie Britt6, Shawn M. Landry7, Mary G. Lusk8, Jason W. Miesbauer1, and Hunter Thorn2 1Center for Tree Science, The Morton Arboretum, Lisle, Illinois, United States 2Department of Environmental Horticulture, CLUE, IFAS, University of Florida – Gulf Coast Research and Education Center, Wimauma, Florida, United States 3College of Natural Resources, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin, United States 4School of Forest, Fisheries, and Geomatics Sciences, University of Florida – Gulf Coast Research and Education Center, Plant City, Florida, United States 5School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, Florida, United States 6CALS, University of Florida Gulf Coast Research and Education Center, Plant City, Florida, United States 7School of Geosciences, University of South Florida, Tampa, Florida, United States 8Department of Soil and Water Sciences, CLUE, IFAS, University of Florida – Gulf Coast Research and Education Center, Wimauma, Florida, United States * Correspondence: Corresponding Author [email protected] Keywords: governance, social-ecological system, tropical cyclone, urban forest, urban tree canopy Abstract Urban Tree Canopy (UTC) greatly enhances the livability of cities by reducing urban heat buildup, mitigating stormwater runoff, and filtering airborne particulates, among other ecological services. These benefits, combined with the relative ease of measuring tree cover from aerial imagery, have led many cities to adopt management strategies based on UTC goals.
    [Show full text]
  • Chapter 8: Atlantic Canada
    8 · Atlantic Canada CHAPTER 8: ATLANTIC CANADA LEAD AUTHORS: ERIC RAPAPORT1 SIDNEY STARKMAN2 WILL TOWNS3 CONTRIBUTING AUTHORS: NORM CATTO (MEMORIAL UNIVERSITY OF NEWFOUNDLAND), SABINE DIETZ (GOVERNMENT OF NEW BRUNSWICK), KEN FORREST (CITY OF FREDERICTON), CHRIS HALL (PORT OF SAINT JOHN), JEFF HOYT (GOVERNMENT OF NEW BRUNSWICK), DON LEMMEN (NATURAL RESOURCES CANADA), SHAWN MACDONALD (GOVERNMENT OF NOVA SCOTIA), TYLER O’ROURKE (PORT OF SAINT JOHN), BOB PETT (NOVA SCOTIA INTERNAL SERVICES), YURI YEVDOKIMOV (UNIVERSITY OF NEW BRUNSWICK) RECOMMENDED CITATION: Rapaport, E., Starkman, S., and Towns, W. (2017). Atlantic Canada. In K. Palko and D.S. Lemmen (Eds.), Climate risks and adaptation practices for the Canadian transportation sector 2016 (pp. 218-262). Ottawa, ON: Government of Canada. 1 School of Planning, Dalhousie University, Halifax, NS 2 School of Planning, Dalhousie University, Halifax, NS 3 School of Planning, University of Waterloo, Waterloo, ON and Transport Canada, Ottawa, ON Climate Risks & Adaptation Practices - For the Canadian Transportation Sector 2016 TABLE OF CONTENTS Key Findings .......................................................................................................................................................220 1.0 Introduction ...............................................................................................................................................221 1.1 Environmental characteristics ........................................................................................................221
    [Show full text]
  • Hurricane Season 2010: Halfway There!
    Flood Alley Flash VOLUME 3, ISSUE 2 SUMMER 2010 Inside This Issue: HURRICANE SEASON 2010: ALFWAY HERE Hurricane HALFWAY THERE! Season 2010 1-3 Update New Braunfels 4 June 9th Flood Staying Safe in 5-6 Flash Floods Editor: Marianne Sutton Other Contributors: Amanda Fanning, Christopher Morris, th, David Schumacher Figure 1: Satellite image taken August 30 ,2010. Counter-clockwise from the top are: Hurricane Danielle, Hurricane Earl, and the beginnings of Tropical Storm Fiona. s the 2010 hurricane season approached, it was predicted to be a very active A season. In fact, experts warned that the 2010 season could compare to the Questions? Comments? 2004 and 2005 hurricane seasons. After coming out of a strong El Niño and moving NWS Austin/San into a neutral phase NOAA predicted 2010 to be an above average season. Antonio Specifically, NOAA predicted a 70% chance of 14 to 23 named storms, where 8 to 2090 Airport Rd. New Braunfels, TX 14 of those storms would become hurricanes. Of those hurricanes, three to seven 78130 were expected to become major hurricanes. The outlook ranges are higher than the (830) 606-3617 seasonal average of 11 named storms, six hurricanes and two major hurricanes. What has this hurricane season yielded so far? As of the end of September, seven [email protected] hurricanes, six tropical storms and two tropical depressions have developed. Four of those hurricanes became major hurricanes. Continued on page 2 Page 2 Hurricane Season, continued from page 1 BY: AMANDA FANNING he first hurricane to form this season was a rare and record-breaking storm.
    [Show full text]
  • Two Tropical Cyclone Names Retired from List of Atlantic Storms 17 March 2011
    Two tropical cyclone names retired from list of Atlantic storms 17 March 2011 million U.S. dollars. • Tomas became a hurricane on October 30 shortly after striking Barbados. It strengthened to a Category 2 storm striking St. Vincent and St. Lucia, becoming the latest hurricane on record (1851-present) to strike the Windward Islands. After weakening to a tropical depression over the central Caribbean Sea, Tomas regained Category 1 strength on November 5 and moved between Jamaica and the southwest peninsula of Haiti, Hurricane Igor as it strikes Newfoundland on September through the Windward Passage. It weakened just 21. Credit: NOAA below hurricane strength before reaching the Turks and Caicos Islands. Fourteen people are confirmed as dead, or missing, on St. Lucia. Total damage there is estimated to be around $500 million U.S. Two tropical cyclone names in the Atlantic were dollars. Heavy rains associated with Tomas retired from the official name rotation by the World triggered floods and landslides in Haiti. Haiti's Meteorological Organization's hurricane committee meteorological services states that the death toll in because of the deaths and damage they caused in Haiti was 35. 2010. The committee issues the list of potential names for tropical cyclones to be used every six years for both the Atlantic and eastern North Provided by NOAA Pacific basins. The names Igor and Tomas in the Atlantic would have appeared again in 2016 but will no longer be used. In their places will be Ian and Tobias. Details of the retired 2010 named storms are shown below: • Igor was a classic Cape Verde hurricane, reaching Category 4 strength with 155 mph winds on Sept.
    [Show full text]