Tropical Cyclone Wind Field Asymmetry Development and Evaluation of A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 2009 Atlantic Hurricane Season in Perspective by Dr
AIRCURRENTS THE 2009 ATLANTIC EDITor’s noTE: November 30 marked the official end of the Atlantic HURRICANE SEASON hurricane season. With nine named storms, including three hurricanes, and no U.S. landfalling hurricanes, this season was the second quietest since IN PERSPECTIVE 1995, the year the present period of above-average sea surface temperatures (SSTs) began. This year’s relative inactivity stands in sharp contrast to the 2008 season, during which Hurricanes Dolly, Gustav, and Ike battered the Gulf Coast, causing well over 10 billion USD in insured losses. With no U.S. landfalling hurricanes in 2009, but a near miss in the Northeast, 2009 reminds us yet again of the dramatic short term variability in hurricane 12.2009 landfalls, regardless of whether SSTs are above or below average. By Dr. Peter S. Dailey HOW DOES ACTIVITY IN 2009 COMPARE TO Hurricanes are much more intense than tropical storms, LONG-TERM AVERAGES? producing winds of at least 74 mph. Only about half of By all standard measures, the 2009 Atlantic hurricane tropical storms reach hurricane strength in a typical year, season was below average. Figure 1 shows the evolution with an average of six hurricanes by year end. Major of a “typical” season, which reflects the long-term hurricanes, with winds of 111 mph or more, are even rarer, climatological average over many decades of activity. with only about three expected in the typical year. Note the Tropical storms, which produce winds of at least 39 mph, sharp increase in activity during the core of the season—the occur rather frequently. -
The Influences of the North Atlantic Subtropical High and the African Easterly Jet on Hurricane Tracks During Strong and Weak Seasons
Meteorology Senior Theses Undergraduate Theses and Capstone Projects 2018 The nflueI nces of the North Atlantic Subtropical High and the African Easterly Jet on Hurricane Tracks During Strong and Weak Seasons Hannah Messier Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/mteor_stheses Part of the Meteorology Commons Recommended Citation Messier, Hannah, "The nflueI nces of the North Atlantic Subtropical High and the African Easterly Jet on Hurricane Tracks During Strong and Weak Seasons" (2018). Meteorology Senior Theses. 40. https://lib.dr.iastate.edu/mteor_stheses/40 This Dissertation/Thesis is brought to you for free and open access by the Undergraduate Theses and Capstone Projects at Iowa State University Digital Repository. It has been accepted for inclusion in Meteorology Senior Theses by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The Influences of the North Atlantic Subtropical High and the African Easterly Jet on Hurricane Tracks During Strong and Weak Seasons Hannah Messier Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa Alex Gonzalez — Mentor Department of Geological and Atmospheric Sciences, Iowa State University, Ames Iowa Joshua J. Alland — Mentor Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York ABSTRACT The summertime behavior of the North Atlantic Subtropical High (NASH), African Easterly Jet (AEJ), and the Saharan Air Layer (SAL) can provide clues about key physical aspects of a particular hurricane season. More accurate tropical weather forecasts are imperative to those living in coastal areas around the United States to prevent loss of life and property. -
ABSTRACT Title of Document: the EFFECT of HURRICANE SANDY
ABSTRACT Title of Document: THE EFFECT OF HURRICANE SANDY ON NEW JERSEY ATLANTIC COASTAL MARSHES EVALUATED WITH SATELLITE IMAGERY Diana Marie Roman, Master of Science, August 2015 Directed By: Professor, Michael S. Kearney, Environmental Science and Technology Hurricane Sandy, one of several large extratropical hurricanes to impact New Jersey since 1900, produced some of the most extensive coastal destruction within the last fifty years. Though the damage to barrier islands from Sandy was well-documented, the effect of Sandy on the New Jersey coastal marshes has not. The objective of this analysis, based on twenty-three Landsat Thematic Mapper (TM) data sets collected between 1984 and 2011 and Landsat 8 Operational Land Imager (OLI) images collected between 2013 and 2014 was to determine the effect of Hurricane Sandy on the New Jersey Atlantic coastal marshes. Image processing was performed using ENVI image analysis software with the NDX model (Rogers and Kearney, 2004). Results support the conclusion that the marshes were stable between 1984 and 2006, but had decreased in vegetation density coverage since 2007. Hurricane Sandy caused the greatest damage to low-lying marshes located close to where landfall occurred. THE EFFECT OF HURRICANE SANDY ON NEW JERSEY ATLANTIC COASTAL MARSHES EVALUATED WITH SATELLITE IMAGERY by Diana Marie Roman Thesis submitted to the Faculty of the Graduate School of the University of Maryland, College Park in partial fulfillment of the requirements for the degree of Masters of Science 2015 Advisory Committee: Professor Michael Kearney, Chair Professor Andrew Baldwin Associate Professor Andrew Elmore © Copyright by Diana Marie Roman 2015 Forward Hurricane storm impacts on coastal salt marshes have increased over time. -
Florida Housing Coalition Hurricane Member Update Webinar May 1, 2020 Sponsored by Fannie Mae AGENDA
Florida Housing Coalition Hurricane Member Update Webinar May 1, 2020 Sponsored by Fannie Mae AGENDA • COVID-19 Updates • NOAA, National Hurricane Center, and National Weather Service: Preparing for Hurricane Season COVID-19 SHIP Frequently Asked Questions New Content on Topics Including: • File Documentation • Technical Revisions • Rental Assistance • Mortgage Assistance • Foreclosure Counseling • Reporting COVID SHIP Assistance FAQ File Documentation Question Upcoming COVID-19 Trainings “Implementing Effective Rental Assistance Programs with Federal and State Resources” May 13 at 10:00 am https://attendee.gotowebinar.com/register/7291419462613166863 “COVID-19 SHIP Rent Assistance Implementation" May 18 at 2:00 pm https://attendee.gotowebinar.com/register/7691296448631153675 “COVID-19 SHIP Mortgage Assistance Implementation" May 20 at 2:00 pm https://attendee.gotowebinar.com/register/620374553799087627 Recent COVID-19 Trainings Recordings: • Emergency SHIP Assistance for Renters https://vimeo.com/403418248 • Helping Homeowners with COVID-19 SHIP Emergency Assistance https://vimeo.com/407646578 • Assisting Homeless and Special Needs Populations through COVID-19 https://vimeo.com/405609513 • Virtual SHIP https://vimeo.com/410260129 NOAA, National Hurricane Center, and National Weather Service: Preparing for Hurricane Season Andrew Latto NHC Hurricane Specialist [email protected] Regarding evacuations and planning: • https://www.weather.gov/wrn/2020-hurricane- evacuation Regarding Evacuations and Planning Regarding evacuations and planning: -
Hurricane & Tropical Storm
5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard. -
Downloaded 10/05/21 07:00 AM UTC 3074 MONTHLY WEATHER REVIEW VOLUME 145
AUGUST 2017 H A Z E L T O N E T A L . 3073 Analyzing Simulated Convective Bursts in Two Atlantic Hurricanes. Part I: Burst Formation and Development a ANDREW T. HAZELTON Department of Earth, Ocean and Atmospheric Science, The Florida State University, Tallahassee, Florida ROBERT F. ROGERS NOAA/AOML/Hurricane Research Division, Miami, Florida ROBERT E. HART Department of Earth, Ocean and Atmospheric Science, The Florida State University, Tallahassee, Florida (Manuscript received 15 July 2016, in final form 21 April 2017) ABSTRACT Understanding the structure and evolution of the tropical cyclone (TC) inner core remains an elusive challenge in tropical meteorology, especially the role of transient asymmetric features such as localized strong updrafts known as convective bursts (CBs). This study investigates the formation of CBs and their role in TC structure and evolution using high-resolution simulations of two Atlantic hurricanes (Dean in 2007 and Bill in 2009) with the Weather Research and Forecasting (WRF) Model. Several different aspects of the dynamics and thermodynamics of the TC inner-core region are investigated with respect to their influence on TC convective burst development. Composites with CBs show stronger radial inflow in the lowest 2 km, and stronger radial outflow from the eye to the eyewall around z 5 2–4 km, than composites without CBs. Asymmetric vorticity associated with eyewall mesovortices appears to be a major factor in some of the radial flow anomalies that lead to CB development. The anomalous outflow from these mesovortices, along with outflow from supergradient parcels above the boundary layer, favors low-level convergence and also appears to mix high-ue air from the eye into the eyewall. -
2018 Hurricane Season Preview – Uncertainty Rules the Day
SHORELINES – July 2018 As presented to the Island Review magazine 2018 Hurricane Season Preview – Uncertainty Rules the Day The 2018 hurricane season started its rite of passage on June 1st (well not really – thanks Alberto) and will conclude six months later on November 30th. This year’s forecast is quite complex and uncertain for reasons we will discuss later, but in the interim; it’s important to review the common terminology we will be exposed to. For instance, Subtropical Storm Alberto formed in the Gulf of Mexico just before the official start of the hurricane season in late May and the remnants of this cyclone caused severe flooding in the western part of the State. So what’s the difference between a tropical storm and subtropical storm? Or a hurricane and a major hurricane? The following vocabulary list should help in our understanding. Tropical cyclone - warm-core, atmospheric closed circulation rotating counter-clockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere. Tropical storm – a tropical cyclone with a maximum sustained surface wind speed ranging from 39 mph to 73 mph using the U.S. 1-minute average. Hurricane - a tropical cyclone with a maximum sustained surface wind speed reaching 74 mph or more. Saffir Simpson Scale – a scale including a 1 to 5 rating based upon wind speeds, again utilizing the U.S. 1-minute average. A category 1 hurricane has winds ranging from 74 to 95 miles per hour (mph), category 2 ranges from 96 to 100 mph, category 3 ranges from 111 to 130 mph, category 4 ranges from 131 to 155 mph, and a category 5 hurricane has sustained winds exceeding 155 mph. -
11B-01 Polygonal Eyewall Asymmetries During the Rapid Intensification of Hurricane Michael (2018)
11B-01 POLYGONAL EYEWALL ASYMMETRIES DURING THE RAPID INTENSIFICATION OF HURRICANE MICHAEL (2018) Ting-Yu Cha1*, Michael M. Bell1, Wen-Chau Lee2, Alexander J. DesRosiers1 1Colorado State University, Fort Collins, Colorado 2National Center for Atmospheric Research, Boulder, Colorado 1. INTRODUCTION Hurricane Michael (2018) was the first axisymmetric and asymmetric tangential winds Category 5 hurricane to make landfall in the (Jou et al. 2008; Cha and Bell 2019). United States since Hurricane Andrew (1992) and Analyses of Hurricane Michael (2018) caused extensive damage in Florida and Georgia demonstrate the first observation of high-order (Beven et al. 2019). Satellite and radar imagery wave propagation using tangential wind showed evidence of an evolving polygonal asymmetries as a proxy for the PV signal. The eyewall as Michael underwent rapid results show that the propagation speeds of the intensification (RI) during its approach to Florida. waves are consistent with linear wave theory on Polygonal eyewalls are hypothesized to be the a vortex and help to provide new insight into result of asymmetric vorticity dynamics internal to physical mechanisms contributing to TC rapid the storm that can modulate TC structure and intensification. intensity through counter-propagating vortex Rossby waves (VRWs) that redistribute eyewall 2. DATA AND METHODOLOGY potential vorticity (PV) and angular momentum Hurricane Michael was within the NEXRAD and form mesovortices (Hendricks et al. 2012; KEVX ground-based radar surveillance range Kuo et al. 1999,2016; Muramatsu 1986; Schubert during its rapid intensification (RI), and its et al. 1999, Lee and Wu 2019). TC internal intensity reached category 5 (140 kt) at the time dynamics are a primary factor impacting the rate of landfall around 1730 UTC (Fig. -
Hurricane Igor Off Newfoundland
Observing storm surges from space: Hurricane Igor off Newfoundland SUBJECT AREAS: Guoqi Han1, Zhimin Ma2, Dake Chen3, Brad deYoung2 & Nancy Chen1 CLIMATE SCIENCES OCEAN SCIENCES 1Biological and Physical Oceanography Section, Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John’s, NL, PHYSICAL OCEANOGRAPHY Canada, 2Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, NL, Canada, APPLIED PHYSICS 3State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Hangzhou, China. Received Coastal communities are becoming increasingly more vulnerable to storm surges under a changing climate. 10 October 2012 Tide gauges can be used to monitor alongshore variations of a storm surge, but not cross-shelf features. In this study we combine Jason-2 satellite measurements with tide-gauge data to study the storm surge caused Accepted by Hurricane Igor off Newfoundland. Satellite observations reveal a storm surge of 1 m in the early morning 30 November 2012 of September 22, 2010 (UTC) after the passage of the storm, consistent with the tide-gauge measurements. The post-storm sea level variations at St. John’s and Argentia are associated with free Published equatorward-propagating continental shelf waves (with a phase speed of ,10 m/s and a cross-shelf decaying 20 December 2012 scale of ,100 km). The study clearly shows the utility of satellite altimetry in observing and understanding storm surges, complementing tide-gauge observations for the analysis of storm surge characteristics and for the validation and improvement of storm surge models. Correspondence and requests for materials urricanes and tropical storms can cause damage to properties and loss of life in coastal communities and should be addressed to drastically change the ocean environment1–3. -
Upgrades to the GFDL/GFDN Hurricane Model for 2014 (A JHT Funded Project) Morris A
Upgrades to the GFDL/GFDN Hurricane Model for 2014 (A JHT Funded Project) Morris A. Bender, Matthew Morin, Timothy Marchok, Isaac Ginis, Biju Thomas, Richard Yablonsky and Robert Tuleya 68th Interdepartmenal Hurricane Conference Tuesday, March 5th GFDL 2014 Hurricane Model Upgrade • Increased horizontal resolution of inner nest from 1/12th to 1/18th degree with reduced damping of gravity waves in advection scheme • Improved specification of surface exchange coefficients (ch, cd) and surface stress computation in surface physics • Improved specification of surface roughness and wetness over land. • Modified PBL with variable Critical Richardson Number. • Advection of individual micro-physics species. (Yet to test impact of Rime Factor Advection) • Improved targeting of initial storm maximum wind and storm structure in initialization. (Reduces negative intensity bias in vortex specification) • Remove vortex specification in Atlantic for storms of 40 knots and less • Upgrade ocean model to 1/12th degree MPI POM with unified trans-Atlantic basin and 3D ocean for Eastern Pacific basin • Remove global_chgres in analysis step (direct interpolation from hybrid to sigma coordinates) New Cd and Ch formulation New Ch New Cd Current HWRF and GFDL Cd Current HWRF Ch Comparison of New cd and ch with Recent Referenced Studies Cd Ch Impact of Bogusing on Intensity Errors For Storms 40 knots or less Bogus No Bogus Bogusing Significantly Atlantic Degraded performance in Atlantic for weak systems No Bogus Bogus Bogusing Eastern Significantly Improved Pacific -
Product Guide
ProductsProducts && ServicesServices GuideGuide National Weather Service Corpus Christi, Texas November 2010 Products & Services Guide Page i Products & Services Guide Page ii ACKNOWLEDGMENTS This guide is intended to provide the news media and emergency services agencies with information and examples of the products issued by the National Weather Service in Corpus Christi, Texas. Armando Garza, former Meteorologist in Charge, initiated the development of this guide. Former meteorologists Bob Burton and current meteorologist Jason Runyen created most of the content for this guide. Warning Coordination Meteorologist John Metz directed the production of this guide. Recognition is also given to the entire staff of WFO Corpus Christi for valuable information and suggestions that were essential in the prepara- tion of this guide. If you have any suggestions for improving this guide, please contact the Warning Coordination Meteorologist or the Meteorologist in Charge at the National Weather Service in Corpus Christi, Texas. The 2010 version of this guide was compiled and updated by Matthew Grantham, Meteorolo- gist Intern and Alex Tardy, Science and Operations Officer. The following forecasters and program leaders updated parts of the guide: Mike Gittinger, Tim Tinsley, Jason Runyen, Roger Gass and Greg Wilk. Products & Services Guide Page iii PRECAUTIONARY NOTE The examples used in this guide are fictional and should not be taken as factual events. These examples are meant to illustrate the format and content of each product produced by your local National Weather Service office. In some cases the examples were cut short and limited to one page. However, the information provided should be adequate to understand the product. -
Hurricane Names: a Bunch of Hot Air?
Weather and Climate Extremes 12 (2016) 80–84 Contents lists available at ScienceDirect Weather and Climate Extremes journal homepage: www.elsevier.com/locate/wace Hurricane names: A bunch of hot air? Gary Smith n Department of Economics, Pomona College, United States article info abstract Article history: It has been argued that female-named hurricanes are deadlier because people do not take them ser- Received 7 July 2015 iously. However, this conclusion is based on a questionable statistical analysis of a narrowly defined data Received in revised form set. The reported relationship is not robust in that it is not confirmed by a straightforward analysis of 10 November 2015 more inclusive data or different data. Accepted 22 November 2015 & 2015 Elsevier B.V. This is an open access article under the CC BY-NC-ND license Available online 28 November 2015 (http://creativecommons.org/licenses/by-nc-nd/4.0/). Keywords: Hurricanes Data grubbing Sexism Jung, Shavitt, Viswanathan, and Hilbe (2014) argue that people depression (less than 39 mph), tropical storm (39–73 mph), hur- do not take hurricanes with female names seriously and are con- ricane (more than 73 mph), and major hurricane (more than sequently underprepared and more likely to be killed. The authors 110 mph). Tropical storms and hurricanes are generally given report that this “hazardous form of implicit sexism” is supported names like Hurricane Sandy, but tropical depressions are not. by their analysis of 92 hurricanes that hit the United States be- Jung et al. (2014) examine a narrowly defined dataset: U.S. tween 1950 and 2012.