SKI Activates Hippo Signalling to Modulate Cardiac Fibroblast Function and Activation

Total Page:16

File Type:pdf, Size:1020Kb

SKI Activates Hippo Signalling to Modulate Cardiac Fibroblast Function and Activation SKI Activates Hippo Signalling to Modulate Cardiac Fibroblast Function and Activation by Natalie M. Landry A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Physiology & Pathophysiology Rady Faculty of Health Sciences University of Manitoba Copyright © 2020 by Natalie Mireille Landry II Abstract Even with ongoing improvements in cardiac patient treatment and outcomes, current therapies for cardiac fibrosis only alleviate the symptoms of heart failure, rather than treating the underlying cause of the disease. Furthermore, the ability to study cardiac fibroblast activation and pro-fibrotic signalling in vitro is complicated by the cells’ phenotypic plasticity and sensitivity to mechanical input. Our lab has previously established that SKI, an endogenous TGF-β1 signalling inhibitor, halts fibroblast activation and deactivates the myofibroblast phenotype. We have also determined that conventional cell culture does not lend itself to accurate physiological studies of primary cardiac fibroblasts, in vitro. The thesis presented herein establishes a method of maintaining primary cardiac fibroblasts in a resting state in two-dimensional cell culture. In addition, this improved technique is applied to test the hypothesis that SKI is a multi-functional protein that can act independently of TGF-β to specifically activate Hippo signalling, and in turn inhibit the cardiac myofibroblast phenotype. In order to study cardiac fibroblast activation in vitro, we developed cell culture conditions which better maintain the native phenotype of primary cells by limiting mechanical, hormonal, and nutritional input. Both rat and mouse primary cardiac fibroblasts could be maintained in a quiescent state for up to ten days post-isolation, which is sufficient for most commonly-used cellular and molecular assays. Using this optimized method, we first sought to determine the role of the primary nuclear effectors of the Hippo pathway, Yes-Associated Protein (YAP) and Transcriptional co-Activator with PDZ-binding motif (TAZ, or WWTR1), in cardiac fibroblast activation. Constitutively-active forms of YAP and TAZ were overexpressed in primary rat cardiac fibroblasts, and demonstrated their ability to overcome external stimuli to promote fibroblast activation and pro-fibrotic gene expression. However, III TAZ demonstrated greater activation of the Collagen 1αI and 3α1 promoters. Subsequently, YAP and TAZ expression were examined in a rat post-myocardial infarction (post-MI) model of fibrosis. It was found that TAZ expression increases and translocates to the nucleus, while YAP expression was relatively unchanged in the infarcted left ventricle. Taken together, these data suggest that TAZ has a greater role in the pathogenesis of cardiac fibrosis. Ensuing studies used first-passage (P1) primary cardiac myofibroblasts to examine the effects of SKI on YAP/TAZ signalling. Overexpression of SKI induced the degradation of endogenous TAZ, but not YAP. Moreover, loss-of-function studies suggested that the Large Tumor-Suppressor kinase 2 (LATS2) is required for SKI’s specific effects on TAZ, but not its homolog, LATS1. To better understand the SKI-TAZ link, and whether it results from direct interaction with the Hippo pathway, the human cardiac fibroblast-specific SKI interactome was elucidated by using BioID2 and novel interactors were identified by tandem mass spectrometry. We identified the focal adhesion-associated protein, LIMD1, as a mediator between LATS2 and SKI. Additionally, knockdown of Limd1 in myofibroblasts resulted in the proteasomal degradation of TAZ, but not YAP, recapitulating the TAZ-specific effects of SKI overexpression. Overall, our data suggest that LIMD1 is an important component of the regulatory effects between SKI and TAZ/LATS2, and presents a novel point of crosstalk among pro- and anti-fibrotic pathways. This study is the first report of the role of TAZ-Hippo signalling in post-MI remodelling and fibrogenesis using optimized in vitro and in vivo models of fibrotic disease. The findings described herein postulate that the SKI-LIMD1-TAZ signalling axis as a novel and selective therapeutic target for consideration in future treatments for cardiac fibrosis. IV Acknowledgements First and foremost, I must thank my supervisor, Dr. Ian Dixon, for his support and encouragement during my graduate studies. I am so grateful to have had an advisor that allowed me to take risks and “follow the data” with respect to my project. I will miss our morning chats, armchair quarterback analyses of Blue Bombers games, and hearing about your latest adventures in astrophotography. I am proud to have been part of your lab, and even prouder to call you a friend and colleague. Many thanks are extended to my advisory committee members, Drs. Barbara Triggs- Raine and Andrew Halayko, who have been invaluable sources of insight through every iteration of my project. Thank you for never letting me rest on my laurels and challenging me to better myself as a scientist. I am grateful to have had you both as mentors during the formative years of my academic career. I must also acknowledge Dr. Peter Cattini, whose unwavering support from day one has truly been invaluable in my success as a graduate student. I would like to thank the members of the Dixon lab, past and present. A special thanks to Sunil Rattan, whose technical expertise and steadfast friendship I consider to be second to none. To my “work wife,” Krista Filomeno, whose legendary sneezes and wicked sense of humour made long days in the lab feel much shorter. I am also indebted to the incomparable Dr. Mark Hnatowich, whose meticulousness and supernatural skills in everything DNA-related made all the difference in completing my project. I will especially miss your ability to conjure up the most interesting conversation topics and your devilish sense of humour. I consider you a dear friend, and will continue to hope that one day, your “Math and Cheese” dreams will come true. I must also thank Dixon lab members, Drs. Matthew Zeglinski, Morvarid Kavosh, Shivika Gupta, Jared Davies, and Rebeca de Oliveira Camargo for their friendship and support throughout my time at ICS. Finally, I am eternally grateful to all the summer students that helped me complete (too) many Western blots and qPCR assays for my project: Sarah Foran, Thomas Meier, Simon Meier, Nikita Sarangal, Ken Xing, Jooyeon Seung, and Claire Meier. As we say in French, “mille mercis, mes amis”! I would be remiss to not recognize my extended ICS family for all their help during my graduate studies. To all the PI’s who have mentored and encouraged me to better my skills as a scientist and communicator, I thank you for your dedication to student development and to the culture of success at ICS. To the members of Dr. Elissavet Kardami’s lab: thank you for all your technical help and your comradery. A special thanks to Dr. Navid Koleini, whose friendship I will always hold dear, and whose infectious laugh was always a welcome sound in the hallways of the Albrechtsen Research Centre. I am also thankful to all the friendships I have made with the other graduate students of ICS. A special thanks to the members of the ICS “Cheese Club,” Matthew Guberman and Cameron Eekhoudt—thank you for all the great conversations, laughs, and I wish you all the best in your future endeavours. I must also thank my other work family, the team at the Youth BIOlab Jeunesse. To Steve Jones: thank you for taking a risk on a shy French-Canadian when you hired me nine V years ago and giving me the opportunity to better myself as a scientist, communicator, and teacher. To Meghan Kynoch, I am so thankful for your friendship and positive attitude, even when things get tough. I am so grateful to have met both of you, and wish you continued success in everything you do. I gratefully acknowledge all the funding agencies which made the contents of this thesis possible. Thank you to the Canadian Institutes of Health Research, the Heart & Stroke Foundation of Canada, the American Heart Association, Keystone Symposia Future of Science Fund, Research Manitoba, and the Bank of Montreal for the funding which allowed me to complete and share the results of my project. Many thanks are also extended to the administrative staff in the Department of Physiology & Pathophysiology. To the angels in the Department office, Gail McIndless, Judy Olfert, and Sharon McCartney, thank you for being endless wells of knowledge and wisdom, and for being so patient with all the lost paperwork, award deadlines, and committee meeting mix-ups. I would not have survived graduate studies without you! Last, but definitely not least, I am so thankful for the support provided by my dear friends and family, who have been endlessly understanding and generous cheerleaders throughout my graduate studies. A giant merci to my parents, Lise & Normand, who have unconditionally supported me my entire life. To Marc, Sylvie, Janelle, and Kim: thank you for always knowing how to make me laugh—there is no better cure for the dejection from a failed experiment than a reminder of how weird our pets are. And to my SMA family, Ashley, Mai, Chelsea, Alison, Lauren and Sabrina: despite not seeing you all as often as I would like, our quarterly “Meetings of the Minds” are a great reminder of how lucky I am to have such strong, independent women in my life. I am also grateful for my chosen family, Ray & Ann, and Debbie & Gregg, with whom I have been so fortunate to share my triumphs and failures. Finally, I must thank my incredibly loving and patient husband, Cameron, who saw me through all the highs and lows with unwavering positivity and constant encouragement. I am so lucky to have had my best friend by my side through this incredible journey.
Recommended publications
  • The Ski Oncoprotein Interacts with Skip, the Human Homolog of Drosophila Bx42
    Oncogene (1998) 16, 1579 ± 1586 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 The Ski oncoprotein interacts with Skip, the human homolog of Drosophila Bx42 Richard Dahl, Bushra Wani and Michael J Hayman Department of Microbiology, State University of New York, Stony Brook, New York 11794, USA The v-Ski avian retroviral oncogene is postulated to act Little is known about how Ski functions. Both the as a transcription factor. Since protein ± protein interac- cellular and the viral genes share transforming and tions have been shown to play an important role in the muscle inducing ability. Ski localizes to the nucleus and transcription process, we attempted to identify Ski is observed to associate with chromatin (Barkas et al., protein partners with the yeast two-hybrid system. Using 1986; Sutrave et al., 1990a). Because of its nuclear v-Ski sequence as bait, the human gene skip (Ski localization and its ability to induce expression of Interacting Protein) was identi®ed as encoding a protein muscle speci®c genes in quail cells (Colmenares and which interacts with both the cellular and viral forms of Stavnezer, 1989), Ski has been assumed to be a Ski in the two-hybrid system. Skip is highly homologous transcription factor. Consistent with this assumption, to the Drosophila melanogaster protein Bx42 which is c-Ski has been shown to bind DNA in vitro with the found associated with chromatin in transcriptionally help of an unknown protein factor (Nagase et al., active pus of salivary glands. The Ski-Skip interaction 1990), and has been recently shown to enhance MyoD is potentially important in Ski's transforming activity dependent transactivation of a myosin light chain since Skip was demonstrated to interact with a highly enhancer linked reporter gene in muscle cells (Engert conserved region of Ski required for transforming et al., 1995).
    [Show full text]
  • Mutations in SKI in Shprintzen–Goldberg Syndrome Lead to Attenuated TGF-B Responses Through SKI Stabilization
    RESEARCH ARTICLE Mutations in SKI in Shprintzen–Goldberg syndrome lead to attenuated TGF-b responses through SKI stabilization Ilaria Gori1, Roger George2, Andrew G Purkiss2, Stephanie Strohbuecker3, Rebecca A Randall1, Roksana Ogrodowicz2, Virginie Carmignac4, Laurence Faivre4, Dhira Joshi5, Svend Kjær2, Caroline S Hill1* 1Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom; 2Structural Biology Facility, The Francis Crick Institute, London, United Kingdom; 3Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, United Kingdom; 4INSERM - Universite´ de Bourgogne UMR1231 GAD, FHU-TRANSLAD, Dijon, France; 5Peptide Chemistry Facility, The Francis Crick Institute, London, United Kingdom Abstract Shprintzen–Goldberg syndrome (SGS) is a multisystemic connective tissue disorder, with considerable clinical overlap with Marfan and Loeys–Dietz syndromes. These syndromes have commonly been associated with enhanced TGF-b signaling. In SGS patients, heterozygous point mutations have been mapped to the transcriptional co-repressor SKI, which is a negative regulator of TGF-b signaling that is rapidly degraded upon ligand stimulation. The molecular consequences of these mutations, however, are not understood. Here we use a combination of structural biology, genome editing, and biochemistry to show that SGS mutations in SKI abolish its binding to phosphorylated SMAD2 and SMAD3. This results in stabilization of SKI and consequently attenuation of TGF-b responses, both in knockin cells expressing an SGS mutation and in fibroblasts from SGS patients. Thus, we reveal that SGS is associated with an attenuation of TGF-b- *For correspondence: induced transcriptional responses, and not enhancement, which has important implications for [email protected] other Marfan-related syndromes. Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • The New Melanoma: a Novel Model for Disease Progression
    DISS. ETH NO. 17606 The new melanoma: A novel model for disease progression A dissertation submitted to SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZÜRICH for the degree of DOCTOR OF SCIENCES presented by Natalie Schlegel Master of Science, Otago University (New Zealand) born on January 20th 1976 citizen of Zürich (ZH) accepted on the recommendation of Professor Sabine Werner, examinor Professor Reinhard Dummer, co-examinor Professor Josef Jiricny, co-examinor 2008 22 Table of Contents Abstract ...................................................................................................................................... 6 Résumé....................................................................................................................................... 8 Abbreviations ........................................................................................................................... 10 1. Introduction ...................................................................................................................... 13 1.1 Definition ................................................................................................................. 14 1.2 Clinical features........................................................................................................ 14 1.3 Pathological features and staging............................................................................. 16 1.3.2 Clark’s level of invasion and Breslow’s thickness........................................... 16 1.3.3 TNM staging ...................................................................................................
    [Show full text]
  • The Role of Drosophila Bx42/SKIP in Cell Cycle
    The Role of Drosophila Bx42/SKIP in Cell Cycle D i s s e r t a t i o n zur Erlangung des akademischen Grades d o c t o r r e r u m n a t u r a l i u m (Dr. rer. nat.) im Fach Biologie eingereicht an der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin von Diplom-Biologin Shaza Dehne Präsidentin der Humboldt-Universität zu Berlin Prof. Dr.-Ing. Dr. Sabine Kunst Dekanin/Dekan der Lebenswissenschaftlichen Fakultät Prof. Dr. Richard Lucius Gutachter/innen: 1. Prof. Dr. Harald Saumweber 2. Prof. Dr. Christian Schmitz-Linneweber 3. Prof. Dr. Achim Leutz Tag der mündlichen Prüfung: 30.11.2016 Contents Abstract Abstrakt 1 Introduction .................................................................. 10 1.1 Bx42: Identification, protein structure and function .................................................. 11 1.2 Bx42/SNW/SKIP is an essential protein family, conserved in evolution and involved in several biological processes ............................................................................................ 13 1.2.1 Involvement of Bx42/SNW/SKIP in signaling pathways ................................ 16 1.2.1.1 Involvement in nuclear receptor pathways ................................................ 16 1.2.1.2 Involvement in the Notch signaling pathway ............................................ 17 1.2.1.3 Involvement in the TGF-ß/Dpp signal pathway ........................................ 19 1.2.2 Involvement of Bx42/SNW/SKIP in RNA splicing ......................................... 20 1.2.3 Bx42/SNW/SKIP protein family and cell cycle regulation .............................. 22 1.2.3.1 Short overview on cell cycle regulation. ................................................... 22 1.2.3.2 Evidence for Bx42/SNW/SKIP contribution to cell cycle regulation ....... 24 1.3 Drosophila eye imaginal disc: a model to study proliferation and cell cycle regulation during development.
    [Show full text]
  • (Cxxc5) a Thesis Submitted to the Graduate
    STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF THE CXXC-TYPE ZINC FINGER PROTEIN 5 (CXXC5) A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY GAMZE AYAZ ŞEN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGY NOVEMBER 2018 Approval of the thesis: STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF THE CXXC-TYPE ZINC FINGER PROTEIN 5 (CXXC5) submitted by GAMZE AYAZ ŞEN in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology Department, Middle East Technical University by, Prof. Dr. Halil Kalıpçılar Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Orhan Adalı Head of Department, Biological Sciences Prof. Dr. Mesut Muyan Supervisor, Biological Sciences Dept., METU Examining Committee Members: Prof. Dr. A. Elif Erson Bensan Biological Sciences Dept., METU Prof. Dr. Mesut Muyan Biological Sciences Dept., METU Asst. Prof. Dr. Murat Alper Cevher Molecular Biology and Genetics Dept., Bilkent University Assoc. Prof. Dr. Nurcan Tunçbağ Informatics Institute, METU Asst. Prof. Dr. Onur Çizmecioğlu Molecular Biology and Genetics Dept., Bilkent University Date: 16.11.2018 I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name: Gamze Ayaz Şen Signature: iv To All Women Who Pursue Their Dreams In Science v ABSTRACT STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF THE CXXC-TYPE ZINC FINGER PROTEIN 5 (CXXC5) Ayaz Şen, Gamze Ph.D., Biology Department Supervisor: Prof.
    [Show full text]
  • The SMAD-Binding Domain of SKI: a Hotspot for De Novo Mutations Causing Shprintzen&Ndash
    European Journal of Human Genetics (2015) 23, 224–228 & 2015 Macmillan Publishers Limited All rights reserved 1018-4813/15 www.nature.com/ejhg ARTICLE The SMAD-binding domain of SKI: a hotspot for de novo mutations causing Shprintzen–Goldberg syndrome Dorien Schepers1,20, Alexander J Doyle2,3,20,GretchenOswald2, Elizabeth Sparks2,LorethaMyers2,PatrickJWillems4, Sahar Mansour5, Michael A Simpson6,HelenaFrysira7, Anneke Maat-Kievit8,RickVanMinkelen8, Jeanette M Hoogeboom8, Geert R Mortier1, Hannah Titheradge9,LouiseBrueton9,LoisStarr10, Zornitza Stark11, Charlotte Ockeloen12, Charles Marques Lourenco13,EdBlair14, Emma Hobson15,JaneHurst16, Isabelle Maystadt17, Anne Destre´e17, Katta M Girisha18, Michelle Miller19,HarryCDietz2,3,BartLoeys1,20 and Lut Van Laer*,1,20 Shprintzen–Goldberg syndrome (SGS) is a rare, systemic connective tissue disorder characterized by craniofacial, skeletal, and cardiovascular manifestations that show a significant overlap with the features observed in the Marfan (MFS) and Loeys–Dietz syndrome (LDS). A distinguishing observation in SGS patients is the presence of intellectual disability, although not all patients in this series present this finding. Recently, SGS was shown to be due to mutations in the SKI gene, encoding the oncoprotein SKI, a repressor of TGFb activity. Here, we report eight recurrent and three novel SKI mutations in eleven SGS patients. All were heterozygous missense mutations located in the R-SMAD binding domain, except for one novel in-frame deletion affecting the DHD domain. Adding our new findings to the existing data clearly reveals a mutational hotspot, with 73% (24 out of 33) of the hitherto described unrelated patients having mutations in a stretch of five SKI residues (from p.(Ser31) to p.(Pro35)).
    [Show full text]
  • Uva-DARE (Digital Academic Repository)
    UvA-DARE (Digital Academic Repository) Inside out Behavioral phenotyping in genetic syndromes Mulder, P.A. Publication date 2020 Document Version Other version License Other Link to publication Citation for published version (APA): Mulder, P. A. (2020). Inside out: Behavioral phenotyping in genetic syndromes. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:25 Sep 2021 6 Further delineation of Malan syndrome Authors: Priolo M, Schanze D, Tatton-Brown K, Mulder PA, Tenorio J, Kooblall K, Acero IH, Alkuraya FS, Arias P, Bernardini L, Bijlsma EK, Cole T, Coubes C, Dapia I, Davies S, Di Donato N, Elcioglu NH, Fahrner JA, Foster A, González NG, Huber I, Iascone M, Kaiser AS, Kamath A, Liebelt J, Lynch SA, Maas SM, Mammì C, Mathijssen IB, McKee S, Menke LA, Mirzaa GM, Montgomery T, Neubauer D, Neumann TE, Pintomalli L, Pisanti MA, Plomp AS, Price S, Salter C, Santos-Simarro F, Sarda P, Segovia M, Shaw-Smith C, Smithson S, Suri M, Valdez RM, Van Haeringen A, Van Hagen JM, Zollino M, Lapunzina P, Thakker RV, Zenker M, Hennekam RC.
    [Show full text]
  • Roles of the NFI/CTF Gene Family in Transcription and Development
    Gene 249 (2000) 31–45 www.elsevier.com/locate/gene Review Roles of the NFI/CTF gene family in transcription and development Richard M. Gronostajski * Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation and Department of Biochemistry, 9500 Euclid Ave., Case Western Reserve University, Cleveland, OH 44195, USA Received 20 December 1999; received in revised form 15 February 2000; accepted 13 March 2000 Received by A.J. van Wijnen Abstract The Nuclear Factor I (NFI) family of site-specific DNA-binding proteins (also known as CTF or CAAT box transcription factor) functions both in viral DNA replication and in the regulation of gene expression. The classes of genes whose expression is modulated by NFI include those that are ubiquitously expressed, as well as those that are hormonally, nutritionally, and developmentally regulated. The NFI family is composed of four members in vertebrates (NFI-A, NFI-B, NFI-C and NFI-X ), and the four NFI genes are expressed in unique, but overlapping, patterns during mouse embryogenesis and in the adult. Transcripts of each NFI gene are diVerentially spliced, yielding as many as nine distinct proteins from a single gene. Products of the four NFI genes diVer in their abilities to either activate or repress transcription, likely through fundamentally diVerent mechanisms. Here, we will review the properties of the NFI genes and proteins and their known functions in gene expression and development. © 2000 Elsevier Science B.V. All rights reserved. Keywords: CAAT box transcription factor; Cancer; CTD; Gene expression; Nuclear Factor I 1. Introduction 2. Discovery of viral and cellular NFI-binding sites The Nuclear Factor I (NFI) family of site-specific After the initial observation that NFI protein isolated DNA-binding proteins plays wide reaching roles in from nuclear extracts of human HeLa cells greatly animal physiology, biochemistry and pathology.
    [Show full text]
  • Exosome-Mediated Recognition and Degradation of Mrnas Lacking A
    R EPORTS wild-type PGK1 mRNA was synthesized with a poly(A) tail of approximately 70 residues and Exosome-Mediated Recognition was subsequently deadenylated slowly (Fig. 2A) (12). In contrast, nonstop-PGK1 transcripts dis- and Degradation of mRNAs appeared rapidly without any detectable dead- enylation intermediates (Fig. 2B). In addition, in Lacking a Termination Codon a ski7⌬ strain, the nonstop mRNA persisted as a fully polyadenylated species for 8 to 10 min Ambro van Hoof,1,2* Pamela A. Frischmeyer,1,3 Harry C. Dietz,1,3 before disappearing (Fig. 2C). These data indi- Roy Parker1,2* cate that exosome function is required for rapid degradation of both the poly(A) tail and the One role of messenger RNA (mRNA) degradation is to maintain the fidelity of body of the mRNA. Based on these observa- gene expression by degrading aberrant transcripts. Recent results show that tions, we suggest that nonstop mRNAs are rap- mRNAs without translation termination codons are unstable in eukaryotic cells. idly degraded in a 3Ј-to-5Ј direction by the We used yeast mutants to demonstrate that these “nonstop” mRNAs are exosome, beginning at the 3Ј end of the poly(A) degraded by the exosome in a 3Ј-to-5Ј direction. The degradation of nonstop tail (13). transcripts requires the exosome-associated protein Ski7p. Ski7p is closely Two observations suggest a mechanism by related to the translation elongation factor EF1A and the translation termi- which nonstop mRNAs are specifically recog- nation factor eRF3. This suggests that the recognition of nonstop mRNAs nized and targeted for destruction by the exo- involves the binding of Ski7p to an empty aminoacyl-(RNA-binding) site (A site) some.
    [Show full text]
  • Mecp2 Nuclear Dynamics in Live Neurons Results from Low and High
    RESEARCH ARTICLE MeCP2 nuclear dynamics in live neurons results from low and high affinity chromatin interactions Francesco M Piccolo1*, Zhe Liu2, Peng Dong2, Ching-Lung Hsu2, Elitsa I Stoyanova1, Anjana Rao3, Robert Tjian4, Nathaniel Heintz1* 1Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States; 2Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States; 3La Jolla Institute for Allergy and Immunology, La Jolla, United States; 4Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Howard Hughes Medical Institute, Berkeley, United States Abstract Methyl-CpG-binding-Protein 2 (MeCP2) is an abundant nuclear protein highly enriched in neurons. Here we report live-cell single-molecule imaging studies of the kinetic features of mouse MeCP2 at high spatial-temporal resolution. MeCP2 displays dynamic features that are distinct from both highly mobile transcription factors and immobile histones. Stable binding of MeCP2 in living neurons requires its methyl-binding domain and is sensitive to DNA modification levels. Diffusion of unbound MeCP2 is strongly constrained by weak, transient interactions mediated primarily by its AT-hook domains, and varies with the level of chromatin compaction and cell type. These findings extend previous studies of the role of the MeCP2 MBD in high affinity DNA binding to living neurons, and identify a new role for its AT-hooks domains as critical determinants of its kinetic behavior. They suggest that limited nuclear diffusion of MeCP2 in live neurons contributes to its local impact on chromatin structure and gene expression.
    [Show full text]
  • The Role of Mecp2 in Learning and Memory
    Downloaded from learnmem.cshlp.org on August 21, 2019 - Published by Cold Spring Harbor Laboratory Press Review The role of MeCP2 in learning and memory Holly A. Robinson and Lucas Pozzo-Miller Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA Gene transcription is a crucial step in the sequence of molecular, synaptic, cellular, and systems mechanisms underlying learning and memory. Here, we review the experimental evidence demonstrating that alterations in the levels and function- ality of the methylated DNA-binding transcriptional regulator MeCP2 are implicated in the learning and memory deficits present in mouse models of Rett syndrome and MECP2 duplication syndrome. The significant impact that MeCP2 has on gene transcription through a variety of mechanisms, combined with well-defined models of learning and memory, make MeCP2 an excellent candidate to exemplify the role of gene transcription in learning and memory. Together, these studies have strengthened the concept that precise control of activity-dependent gene transcription is a fundamental mech- anism that ensures long-term adaptive behaviors necessary for the survival of individuals interacting with their congeners in an ever-changing environment. The roles of gene transcription and mRNA translation in learning DNA-associated histones, which leads to transient or enduring and memory throughout the animal kingdom have been exten- regulation of gene transcription without changes in the gene cod- sively and very well defined over the past five decades. Studies in- ing sequence itself. The most common occurrence of epigenetic hibiting gene transcription demonstrate its necessity for learning modification is during the differentiation of specific cell types by and memory in both invertebrates and vertebrates (Brink et al.
    [Show full text]
  • Elucidation of the Pathogenesis
    ELUCIDATION OF THE PATHOGENESIS OF TGF-BETA VASCULOPATHIES IDENTIFIES NOVEL THERAPEUTIC STRATEGIES by Jefferson J. Doyle A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland October 2015 © 2015 Jefferson J. Doyle All Rights Reserved ABSTRACT Marfan syndrome (MFS) is one of several related disorders that is driven by increased TGFβ signaling. While TGFβ can stimulate both canonical (Smad2/3) and noncanonical (MAPK; ERK, JNK, p38) cascades, this work has identified a novel and critical role for ERK1/2 activation in aortic aneurysm pathogenesis in Marfan mice, while inhibition of ERK1/2 activation represents a novel therapeutic strategy for the disorder. Angiotensin II influences aortic growth in Marfan mice, but the contribution of its type 1 receptor (AT1R) and type 2 receptor (AT2R) was unknown. This has direct clinical relevance, as the relative therapeutic merits of selective AT1R blockade using losartan versus inhibition of signaling through both receptors using the ACE inhibitor enalapril remained unknown. We find that losartan shows superior efficacy to enalapril in Marfan mice, this is mediated by their differential effects on ERK1/2 activation, and losartan’s full protective effect requires intact AT2R signaling. Calcium channel blockers (CCBs) are used in Marfan patients, although evidence for their efficacy is limited. Surprisingly, we find that CCBs accelerate aortic growth, dissection and premature lethality in Marfan mice, while Marfan patients taking CCBs show increased odds for aortic dissection and need for aortic surgery. CCBs enhance ERK1/2 activation via PKCβ, while PKCβ inhibition using enzastaurin or the clinically available agent hydralazine rescues aortic growth and ERK1/2 activation in Marfan mice, and hence represents a novel therapeutic strategy for the disorder.
    [Show full text]