Identification of a Core Functional and Structural Domain of the V-Ski

Total Page:16

File Type:pdf, Size:1020Kb

Identification of a Core Functional and Structural Domain of the V-Ski Oncogene (1997) 15, 459 ± 471 1997 Stockton Press All rights reserved 0950 ± 9232/97 $12.00 Identi®cation of a core functional and structural domain of the v-Ski oncoprotein responsible for both transformation and myogenesis Guoxing Zheng1, Jerey Teumer2, Clemencia Colmenares3, Craig Richmond4,5 and Edward Stavnezer1 1Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106; 2Organogenesis, Canton, Massachusetts; 3Department of Cancer Biology, Cleveland Clinic Foundation Research Institute, Cleveland, Ohio 44195; 4Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, USA The v-ski oncogene promotes cellular transformation and growth. In QEFs but not CEFs, v-ski also induces myogenic dierentiation. In quail embryo ®broblasts the myogenic dierentiation among cells that it has already two properties are displayed simultaneously and terminal transformed (Colmenares and Stavnezer, 1989). This muscle dierentiation occurs only among cells already phenotype involves the expression of myogenic transformed by v-ski. To understand how the two regulatory genes (myoD and myogenin), and the phenotypes are derived from a single gene, we have subsequent expression of terminal dierentiation undertaken to identify functionally important regions in markers and formation of myotubes when the cells v-ski and to test whether these regions can promote one are shifted into low-growth dierentiation medium phenotype without the other. We have generated both (Colmenares and Stavnezer, 1989). The dual action of random and targeted mutations in v-ski and evaluated v-Ski could be due either to its possession of two the eects of these mutations on expression, intracellular separate functional domains (one responsible for each location, transformation, and myogenesis. Among a total of the observed phenotypes), or alternatively to a single of 26 mutants analysed, we have not found complete domain which functions dierently depending on both separation of the myogenic and transforming properties. cell type and external stimuli. Mutations in the region of v-Ski encoded by exon 1 of c- v-ski contains the ®rst ®ve of eight coding exons of ski frequently abolish both its transformation and muscle the proto-oncogene, c-ski (Stavnezer et al., 1989; dierentiation activities, whereas mutations outside of Sutrave and Hughes, 1989; Grimes et al., 1992). this region are always tolerated. When expressed in cells However, oncogenic and myogenic activation of c-ski from a minigene containing only the exon 1 sequence, the has been shown to result from viral over-expression protein displays the transforming and myogenic activities (Colmenares et al., 1991) and not from the truncation similar to v-Ski. These results argue that the amino acid of its coding sequences that occurred upon transduc- sequence encoded by exon 1 contains the core functional tion of v-ski. Both v-ski and c-ski encode nuclear domain of the oncoprotein. To determine whether this proteins (Barkas et al., 1986; Sutrave et al., 1990) and functional domain has a structural counterpart, we have appear to be transcriptional regulators (Colmenares fragmented the v-Ski protein by limited proteolysis and and Stavnezer, 1990; Engert et al., 1995). Primary found a single proteolytically stable domain spanning the sequence analysis indicates that the amino terminal entire exon 1-encoded region. Physical studies of the two-thirds of v-Ski contains several potentially polypeptide encoded by exon 1 con®rms that it folds into important motifs typical of transcription factors a compact, globular protein. The ®nding that both the (Stavnezer et al., 1989). These include a proline-rich transforming and myogenic properties of v-Ski are region, a putative nuclear localization signal, Cys-His- inseparable by mutation and are contained in a single rich metal-binding motifs, and paired amphipathic domain suggests that they are derived from the same alpha-helices (Colmenares and Stavnezer, 1990). This function. region of the protein is derived from the ®rst coding exon of c-ski and is the most highly conserved region Keywords: oncogene; v-Ski; mutagenesis; proteolysis between Ski and the Ski-related gene product, SnoN (Nomura et al., 1989; Boyer et al., 1993). Consistent with the idea that conservation suggests functional importance, chicken SnoN has been shown to have Introduction Ski-like transforming and myogenic activities (Boyer et al., 1993). However, the actual functional regions of The v-ski oncogene of the Sloan-Kettering viruses neither ski nor sno have been de®ned. (SKVs) causes transformation of embryonic ®broblasts The present report describes a mutational analysis of of both chickens (CEFs) and quails (QEFs) (Stavnezer v-ski to identify functional regions and to determine et al., 1981; Colmenares and Stavnezer, 1989). In both whether its myogenic and transforming properties can cell types the transformed phenotype includes morpho- be disassociated. We have made insertion, frameshift, logical transformation and anchorage-independent deletion and substitution mutations to disrupt various regions of the gene and evaluated the eects of these mutations on protein expression, intracellular location, Correspondence: E Stavnezer transformation, and myogenesis. We also present 5 Present address: Department of Microbiology, University of Wisconsin, Madison, Winsconsin, USA results of studies aimed at determining whether the Received 27 December 1995; revised 7 April 1997; accepted 17 April functional regions de®ned by the mutational analysis 1997 constitute distinct protein structural domains. Our Core domain of v-Ski GZhenget al 460 approach was to subject the v-Ski protein to limited activities of these non-defective viruses are indistin- proteolysis and search for regions in the protein that guishable from those of SKV 5.7 (RAV-SKV). Both are relatively resistant to digestion. We chose this viruses induce morphological transformation and method because it has been successfully used to anchorage independent growth of CEFs (3 ± 5% of identify functional domains in several transcription cells form macroscopic colonies in soft agar). In factors. The two approaches have led to the addition, greater than 75% of QEFs infected by these identi®cation of the amino terminal region of v-ski, viruses form multinucleated myotubes within 3 days of which is derived from the ®rst coding exon of c-ski,as transfer into dierentiation medium. Thus neither the a distinct structural and functional unit required for removal of gag sequences from the amino- and both transformation and myogenesis. carboxyl-terminal ends of v-Ski nor the deletion of codons 4 ± 6 or 427 ± 457 from within the gene have any eect on either its transforming or myogenic potential. In both tc-d9S and dHC-d9S, three codons (Ser24, Results Met25, Ser26) that separate two neighboring SstI sites are deleted from the 5' end of v-ski. These three amino Activity of non-defective SKV acids have proven dispensable for Ski function, In the original SKV (SKV 5.7), v-ski is inserted into allowing use of an SstI fragment extending 1.2 kb the MA coding region of the gag gene (Figure 1) downstream of these sites to a site in the exon 4 without deletion of viral sequences at the insertion site sequence as a convenient target for subsequent linker (Stavnezer et al., 1989). Its translational reading frame insertion mutagenesis (see Materials and methods). is in register with gag sequences at both ends of the insertion. The P110 Ski polyprotein encoded by this Frameshift, deletion, and insertion mutations de®ne the virus uses the gag initiation codon and terminates at region of v-ski necessary for transformation the stop codon of the pol gene (Stavnezer et al., 1981). To assess the role of virus-derived sequences in P110 Having established that the deletions in the dHC-d9S function, we have excised v-ski from SKV5.7 along virus do not reduce its activity relative to SKV5.7, we with a small segment of downstream gag sequence, next examined the activities of a series of frameshift provided it with a translation initiation signal, and mutations within v-ski that resulted from oligonucleo- inserted it into avian retroviral vectors (Hughes et al., tide insertions (Table 1). These frameshifts essentially 1987; Foster and Hanafusa, 1983) downstream of an represent a set of progressive deletions from the 3' end acceptor splice site (Figure 1, tC-d9S). To test the role of v-ski, thereby allowing an assessment of the 3' of the remaining gag sequence at the 3' end of v-ski in boundary of the v-ski sequence necessary for full tc-d9S, we have generated the construct, dHC-d9S, in transforming ability (Table 1). Most informative in this which these sequences are deleted along with the 3'- terminal 30 codons of v-ski (Figure 1). The tc-d9S and dHC-d9S plasmids were transfected Table 1 Eect of frameshift and deletion mutations into CEFs and the viruses produced were used to infect fresh CEFs and QEFs to assess their transforming and myogenic abilities, respectively. We ®nd that the Figure 1 Construction of non-defective v-ski proviruses. The v- ski gene of SKV5.7 encodes a 110 kDa viral/ski fusion protein a Morphologies were compared to RAV-SKV infected, and are (P110), as indicated. A fragment containing v-ski (except codons expressed in a scale ranging from normal CEF morphology (±) to 24 ± 26) plus ®ve upstream and 49 downstream codons derived the RAV-SKV transformed morphology (++++). b Colony from gag was provided with a synthetic initiation codon to formation in soft agar is expressed as a percent of the colony generate the tc-d9S gene which encodes a 54 kDa v-Ski protein. forming eciency induced by RAV-SKV (see text), which is averaged Further deletion of the entire downstream gag region plus the c- about 5% of infected cells. c Myogenesis measured as the number of terminal 30 amino acids of v-Ski produces the dHC-d9S gene nuclei contained in myotubes compared to the total number of nuclei which encodes a 46 kDa protein.
Recommended publications
  • The Ski Oncoprotein Interacts with Skip, the Human Homolog of Drosophila Bx42
    Oncogene (1998) 16, 1579 ± 1586 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 The Ski oncoprotein interacts with Skip, the human homolog of Drosophila Bx42 Richard Dahl, Bushra Wani and Michael J Hayman Department of Microbiology, State University of New York, Stony Brook, New York 11794, USA The v-Ski avian retroviral oncogene is postulated to act Little is known about how Ski functions. Both the as a transcription factor. Since protein ± protein interac- cellular and the viral genes share transforming and tions have been shown to play an important role in the muscle inducing ability. Ski localizes to the nucleus and transcription process, we attempted to identify Ski is observed to associate with chromatin (Barkas et al., protein partners with the yeast two-hybrid system. Using 1986; Sutrave et al., 1990a). Because of its nuclear v-Ski sequence as bait, the human gene skip (Ski localization and its ability to induce expression of Interacting Protein) was identi®ed as encoding a protein muscle speci®c genes in quail cells (Colmenares and which interacts with both the cellular and viral forms of Stavnezer, 1989), Ski has been assumed to be a Ski in the two-hybrid system. Skip is highly homologous transcription factor. Consistent with this assumption, to the Drosophila melanogaster protein Bx42 which is c-Ski has been shown to bind DNA in vitro with the found associated with chromatin in transcriptionally help of an unknown protein factor (Nagase et al., active pus of salivary glands. The Ski-Skip interaction 1990), and has been recently shown to enhance MyoD is potentially important in Ski's transforming activity dependent transactivation of a myosin light chain since Skip was demonstrated to interact with a highly enhancer linked reporter gene in muscle cells (Engert conserved region of Ski required for transforming et al., 1995).
    [Show full text]
  • Mutations in SKI in Shprintzen–Goldberg Syndrome Lead to Attenuated TGF-B Responses Through SKI Stabilization
    RESEARCH ARTICLE Mutations in SKI in Shprintzen–Goldberg syndrome lead to attenuated TGF-b responses through SKI stabilization Ilaria Gori1, Roger George2, Andrew G Purkiss2, Stephanie Strohbuecker3, Rebecca A Randall1, Roksana Ogrodowicz2, Virginie Carmignac4, Laurence Faivre4, Dhira Joshi5, Svend Kjær2, Caroline S Hill1* 1Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom; 2Structural Biology Facility, The Francis Crick Institute, London, United Kingdom; 3Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, United Kingdom; 4INSERM - Universite´ de Bourgogne UMR1231 GAD, FHU-TRANSLAD, Dijon, France; 5Peptide Chemistry Facility, The Francis Crick Institute, London, United Kingdom Abstract Shprintzen–Goldberg syndrome (SGS) is a multisystemic connective tissue disorder, with considerable clinical overlap with Marfan and Loeys–Dietz syndromes. These syndromes have commonly been associated with enhanced TGF-b signaling. In SGS patients, heterozygous point mutations have been mapped to the transcriptional co-repressor SKI, which is a negative regulator of TGF-b signaling that is rapidly degraded upon ligand stimulation. The molecular consequences of these mutations, however, are not understood. Here we use a combination of structural biology, genome editing, and biochemistry to show that SGS mutations in SKI abolish its binding to phosphorylated SMAD2 and SMAD3. This results in stabilization of SKI and consequently attenuation of TGF-b responses, both in knockin cells expressing an SGS mutation and in fibroblasts from SGS patients. Thus, we reveal that SGS is associated with an attenuation of TGF-b- *For correspondence: induced transcriptional responses, and not enhancement, which has important implications for [email protected] other Marfan-related syndromes. Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • The New Melanoma: a Novel Model for Disease Progression
    DISS. ETH NO. 17606 The new melanoma: A novel model for disease progression A dissertation submitted to SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZÜRICH for the degree of DOCTOR OF SCIENCES presented by Natalie Schlegel Master of Science, Otago University (New Zealand) born on January 20th 1976 citizen of Zürich (ZH) accepted on the recommendation of Professor Sabine Werner, examinor Professor Reinhard Dummer, co-examinor Professor Josef Jiricny, co-examinor 2008 22 Table of Contents Abstract ...................................................................................................................................... 6 Résumé....................................................................................................................................... 8 Abbreviations ........................................................................................................................... 10 1. Introduction ...................................................................................................................... 13 1.1 Definition ................................................................................................................. 14 1.2 Clinical features........................................................................................................ 14 1.3 Pathological features and staging............................................................................. 16 1.3.2 Clark’s level of invasion and Breslow’s thickness........................................... 16 1.3.3 TNM staging ...................................................................................................
    [Show full text]
  • The Role of Drosophila Bx42/SKIP in Cell Cycle
    The Role of Drosophila Bx42/SKIP in Cell Cycle D i s s e r t a t i o n zur Erlangung des akademischen Grades d o c t o r r e r u m n a t u r a l i u m (Dr. rer. nat.) im Fach Biologie eingereicht an der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin von Diplom-Biologin Shaza Dehne Präsidentin der Humboldt-Universität zu Berlin Prof. Dr.-Ing. Dr. Sabine Kunst Dekanin/Dekan der Lebenswissenschaftlichen Fakultät Prof. Dr. Richard Lucius Gutachter/innen: 1. Prof. Dr. Harald Saumweber 2. Prof. Dr. Christian Schmitz-Linneweber 3. Prof. Dr. Achim Leutz Tag der mündlichen Prüfung: 30.11.2016 Contents Abstract Abstrakt 1 Introduction .................................................................. 10 1.1 Bx42: Identification, protein structure and function .................................................. 11 1.2 Bx42/SNW/SKIP is an essential protein family, conserved in evolution and involved in several biological processes ............................................................................................ 13 1.2.1 Involvement of Bx42/SNW/SKIP in signaling pathways ................................ 16 1.2.1.1 Involvement in nuclear receptor pathways ................................................ 16 1.2.1.2 Involvement in the Notch signaling pathway ............................................ 17 1.2.1.3 Involvement in the TGF-ß/Dpp signal pathway ........................................ 19 1.2.2 Involvement of Bx42/SNW/SKIP in RNA splicing ......................................... 20 1.2.3 Bx42/SNW/SKIP protein family and cell cycle regulation .............................. 22 1.2.3.1 Short overview on cell cycle regulation. ................................................... 22 1.2.3.2 Evidence for Bx42/SNW/SKIP contribution to cell cycle regulation ....... 24 1.3 Drosophila eye imaginal disc: a model to study proliferation and cell cycle regulation during development.
    [Show full text]
  • (Cxxc5) a Thesis Submitted to the Graduate
    STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF THE CXXC-TYPE ZINC FINGER PROTEIN 5 (CXXC5) A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY GAMZE AYAZ ŞEN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGY NOVEMBER 2018 Approval of the thesis: STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF THE CXXC-TYPE ZINC FINGER PROTEIN 5 (CXXC5) submitted by GAMZE AYAZ ŞEN in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology Department, Middle East Technical University by, Prof. Dr. Halil Kalıpçılar Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Orhan Adalı Head of Department, Biological Sciences Prof. Dr. Mesut Muyan Supervisor, Biological Sciences Dept., METU Examining Committee Members: Prof. Dr. A. Elif Erson Bensan Biological Sciences Dept., METU Prof. Dr. Mesut Muyan Biological Sciences Dept., METU Asst. Prof. Dr. Murat Alper Cevher Molecular Biology and Genetics Dept., Bilkent University Assoc. Prof. Dr. Nurcan Tunçbağ Informatics Institute, METU Asst. Prof. Dr. Onur Çizmecioğlu Molecular Biology and Genetics Dept., Bilkent University Date: 16.11.2018 I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name: Gamze Ayaz Şen Signature: iv To All Women Who Pursue Their Dreams In Science v ABSTRACT STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF THE CXXC-TYPE ZINC FINGER PROTEIN 5 (CXXC5) Ayaz Şen, Gamze Ph.D., Biology Department Supervisor: Prof.
    [Show full text]
  • The SMAD-Binding Domain of SKI: a Hotspot for De Novo Mutations Causing Shprintzen&Ndash
    European Journal of Human Genetics (2015) 23, 224–228 & 2015 Macmillan Publishers Limited All rights reserved 1018-4813/15 www.nature.com/ejhg ARTICLE The SMAD-binding domain of SKI: a hotspot for de novo mutations causing Shprintzen–Goldberg syndrome Dorien Schepers1,20, Alexander J Doyle2,3,20,GretchenOswald2, Elizabeth Sparks2,LorethaMyers2,PatrickJWillems4, Sahar Mansour5, Michael A Simpson6,HelenaFrysira7, Anneke Maat-Kievit8,RickVanMinkelen8, Jeanette M Hoogeboom8, Geert R Mortier1, Hannah Titheradge9,LouiseBrueton9,LoisStarr10, Zornitza Stark11, Charlotte Ockeloen12, Charles Marques Lourenco13,EdBlair14, Emma Hobson15,JaneHurst16, Isabelle Maystadt17, Anne Destre´e17, Katta M Girisha18, Michelle Miller19,HarryCDietz2,3,BartLoeys1,20 and Lut Van Laer*,1,20 Shprintzen–Goldberg syndrome (SGS) is a rare, systemic connective tissue disorder characterized by craniofacial, skeletal, and cardiovascular manifestations that show a significant overlap with the features observed in the Marfan (MFS) and Loeys–Dietz syndrome (LDS). A distinguishing observation in SGS patients is the presence of intellectual disability, although not all patients in this series present this finding. Recently, SGS was shown to be due to mutations in the SKI gene, encoding the oncoprotein SKI, a repressor of TGFb activity. Here, we report eight recurrent and three novel SKI mutations in eleven SGS patients. All were heterozygous missense mutations located in the R-SMAD binding domain, except for one novel in-frame deletion affecting the DHD domain. Adding our new findings to the existing data clearly reveals a mutational hotspot, with 73% (24 out of 33) of the hitherto described unrelated patients having mutations in a stretch of five SKI residues (from p.(Ser31) to p.(Pro35)).
    [Show full text]
  • Uva-DARE (Digital Academic Repository)
    UvA-DARE (Digital Academic Repository) Inside out Behavioral phenotyping in genetic syndromes Mulder, P.A. Publication date 2020 Document Version Other version License Other Link to publication Citation for published version (APA): Mulder, P. A. (2020). Inside out: Behavioral phenotyping in genetic syndromes. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:25 Sep 2021 6 Further delineation of Malan syndrome Authors: Priolo M, Schanze D, Tatton-Brown K, Mulder PA, Tenorio J, Kooblall K, Acero IH, Alkuraya FS, Arias P, Bernardini L, Bijlsma EK, Cole T, Coubes C, Dapia I, Davies S, Di Donato N, Elcioglu NH, Fahrner JA, Foster A, González NG, Huber I, Iascone M, Kaiser AS, Kamath A, Liebelt J, Lynch SA, Maas SM, Mammì C, Mathijssen IB, McKee S, Menke LA, Mirzaa GM, Montgomery T, Neubauer D, Neumann TE, Pintomalli L, Pisanti MA, Plomp AS, Price S, Salter C, Santos-Simarro F, Sarda P, Segovia M, Shaw-Smith C, Smithson S, Suri M, Valdez RM, Van Haeringen A, Van Hagen JM, Zollino M, Lapunzina P, Thakker RV, Zenker M, Hennekam RC.
    [Show full text]
  • Roles of the NFI/CTF Gene Family in Transcription and Development
    Gene 249 (2000) 31–45 www.elsevier.com/locate/gene Review Roles of the NFI/CTF gene family in transcription and development Richard M. Gronostajski * Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation and Department of Biochemistry, 9500 Euclid Ave., Case Western Reserve University, Cleveland, OH 44195, USA Received 20 December 1999; received in revised form 15 February 2000; accepted 13 March 2000 Received by A.J. van Wijnen Abstract The Nuclear Factor I (NFI) family of site-specific DNA-binding proteins (also known as CTF or CAAT box transcription factor) functions both in viral DNA replication and in the regulation of gene expression. The classes of genes whose expression is modulated by NFI include those that are ubiquitously expressed, as well as those that are hormonally, nutritionally, and developmentally regulated. The NFI family is composed of four members in vertebrates (NFI-A, NFI-B, NFI-C and NFI-X ), and the four NFI genes are expressed in unique, but overlapping, patterns during mouse embryogenesis and in the adult. Transcripts of each NFI gene are diVerentially spliced, yielding as many as nine distinct proteins from a single gene. Products of the four NFI genes diVer in their abilities to either activate or repress transcription, likely through fundamentally diVerent mechanisms. Here, we will review the properties of the NFI genes and proteins and their known functions in gene expression and development. © 2000 Elsevier Science B.V. All rights reserved. Keywords: CAAT box transcription factor; Cancer; CTD; Gene expression; Nuclear Factor I 1. Introduction 2. Discovery of viral and cellular NFI-binding sites The Nuclear Factor I (NFI) family of site-specific After the initial observation that NFI protein isolated DNA-binding proteins plays wide reaching roles in from nuclear extracts of human HeLa cells greatly animal physiology, biochemistry and pathology.
    [Show full text]
  • Exosome-Mediated Recognition and Degradation of Mrnas Lacking A
    R EPORTS wild-type PGK1 mRNA was synthesized with a poly(A) tail of approximately 70 residues and Exosome-Mediated Recognition was subsequently deadenylated slowly (Fig. 2A) (12). In contrast, nonstop-PGK1 transcripts dis- and Degradation of mRNAs appeared rapidly without any detectable dead- enylation intermediates (Fig. 2B). In addition, in Lacking a Termination Codon a ski7⌬ strain, the nonstop mRNA persisted as a fully polyadenylated species for 8 to 10 min Ambro van Hoof,1,2* Pamela A. Frischmeyer,1,3 Harry C. Dietz,1,3 before disappearing (Fig. 2C). These data indi- Roy Parker1,2* cate that exosome function is required for rapid degradation of both the poly(A) tail and the One role of messenger RNA (mRNA) degradation is to maintain the fidelity of body of the mRNA. Based on these observa- gene expression by degrading aberrant transcripts. Recent results show that tions, we suggest that nonstop mRNAs are rap- mRNAs without translation termination codons are unstable in eukaryotic cells. idly degraded in a 3Ј-to-5Ј direction by the We used yeast mutants to demonstrate that these “nonstop” mRNAs are exosome, beginning at the 3Ј end of the poly(A) degraded by the exosome in a 3Ј-to-5Ј direction. The degradation of nonstop tail (13). transcripts requires the exosome-associated protein Ski7p. Ski7p is closely Two observations suggest a mechanism by related to the translation elongation factor EF1A and the translation termi- which nonstop mRNAs are specifically recog- nation factor eRF3. This suggests that the recognition of nonstop mRNAs nized and targeted for destruction by the exo- involves the binding of Ski7p to an empty aminoacyl-(RNA-binding) site (A site) some.
    [Show full text]
  • Mecp2 Nuclear Dynamics in Live Neurons Results from Low and High
    RESEARCH ARTICLE MeCP2 nuclear dynamics in live neurons results from low and high affinity chromatin interactions Francesco M Piccolo1*, Zhe Liu2, Peng Dong2, Ching-Lung Hsu2, Elitsa I Stoyanova1, Anjana Rao3, Robert Tjian4, Nathaniel Heintz1* 1Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States; 2Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States; 3La Jolla Institute for Allergy and Immunology, La Jolla, United States; 4Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Howard Hughes Medical Institute, Berkeley, United States Abstract Methyl-CpG-binding-Protein 2 (MeCP2) is an abundant nuclear protein highly enriched in neurons. Here we report live-cell single-molecule imaging studies of the kinetic features of mouse MeCP2 at high spatial-temporal resolution. MeCP2 displays dynamic features that are distinct from both highly mobile transcription factors and immobile histones. Stable binding of MeCP2 in living neurons requires its methyl-binding domain and is sensitive to DNA modification levels. Diffusion of unbound MeCP2 is strongly constrained by weak, transient interactions mediated primarily by its AT-hook domains, and varies with the level of chromatin compaction and cell type. These findings extend previous studies of the role of the MeCP2 MBD in high affinity DNA binding to living neurons, and identify a new role for its AT-hooks domains as critical determinants of its kinetic behavior. They suggest that limited nuclear diffusion of MeCP2 in live neurons contributes to its local impact on chromatin structure and gene expression.
    [Show full text]
  • The Role of Mecp2 in Learning and Memory
    Downloaded from learnmem.cshlp.org on August 21, 2019 - Published by Cold Spring Harbor Laboratory Press Review The role of MeCP2 in learning and memory Holly A. Robinson and Lucas Pozzo-Miller Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA Gene transcription is a crucial step in the sequence of molecular, synaptic, cellular, and systems mechanisms underlying learning and memory. Here, we review the experimental evidence demonstrating that alterations in the levels and function- ality of the methylated DNA-binding transcriptional regulator MeCP2 are implicated in the learning and memory deficits present in mouse models of Rett syndrome and MECP2 duplication syndrome. The significant impact that MeCP2 has on gene transcription through a variety of mechanisms, combined with well-defined models of learning and memory, make MeCP2 an excellent candidate to exemplify the role of gene transcription in learning and memory. Together, these studies have strengthened the concept that precise control of activity-dependent gene transcription is a fundamental mech- anism that ensures long-term adaptive behaviors necessary for the survival of individuals interacting with their congeners in an ever-changing environment. The roles of gene transcription and mRNA translation in learning DNA-associated histones, which leads to transient or enduring and memory throughout the animal kingdom have been exten- regulation of gene transcription without changes in the gene cod- sively and very well defined over the past five decades. Studies in- ing sequence itself. The most common occurrence of epigenetic hibiting gene transcription demonstrate its necessity for learning modification is during the differentiation of specific cell types by and memory in both invertebrates and vertebrates (Brink et al.
    [Show full text]
  • Elucidation of the Pathogenesis
    ELUCIDATION OF THE PATHOGENESIS OF TGF-BETA VASCULOPATHIES IDENTIFIES NOVEL THERAPEUTIC STRATEGIES by Jefferson J. Doyle A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland October 2015 © 2015 Jefferson J. Doyle All Rights Reserved ABSTRACT Marfan syndrome (MFS) is one of several related disorders that is driven by increased TGFβ signaling. While TGFβ can stimulate both canonical (Smad2/3) and noncanonical (MAPK; ERK, JNK, p38) cascades, this work has identified a novel and critical role for ERK1/2 activation in aortic aneurysm pathogenesis in Marfan mice, while inhibition of ERK1/2 activation represents a novel therapeutic strategy for the disorder. Angiotensin II influences aortic growth in Marfan mice, but the contribution of its type 1 receptor (AT1R) and type 2 receptor (AT2R) was unknown. This has direct clinical relevance, as the relative therapeutic merits of selective AT1R blockade using losartan versus inhibition of signaling through both receptors using the ACE inhibitor enalapril remained unknown. We find that losartan shows superior efficacy to enalapril in Marfan mice, this is mediated by their differential effects on ERK1/2 activation, and losartan’s full protective effect requires intact AT2R signaling. Calcium channel blockers (CCBs) are used in Marfan patients, although evidence for their efficacy is limited. Surprisingly, we find that CCBs accelerate aortic growth, dissection and premature lethality in Marfan mice, while Marfan patients taking CCBs show increased odds for aortic dissection and need for aortic surgery. CCBs enhance ERK1/2 activation via PKCβ, while PKCβ inhibition using enzastaurin or the clinically available agent hydralazine rescues aortic growth and ERK1/2 activation in Marfan mice, and hence represents a novel therapeutic strategy for the disorder.
    [Show full text]