THE EFFECT of STEAM INJECTION on the ELECTRICAL CONDUCTIVITY of SAND and CLAY by DAVID BUCHANAN BUTLER

Total Page:16

File Type:pdf, Size:1020Kb

THE EFFECT of STEAM INJECTION on the ELECTRICAL CONDUCTIVITY of SAND and CLAY by DAVID BUCHANAN BUTLER THE EFFECT OF STEAM INJECTION ON THE ELECTRICAL CONDUCTIVITY OF SAND AND CLAY by DAVID BUCHANAN BUTLER B. Sc., Applied Science, Queen's University, 1986 M. Sc., Geophysics, University of British Columbia, 1990 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF GEOPHYSICS AND ASTRONOMY We accept this thesis as conforming to the required standards UNIVERSITY OF BRITISH COLUMBIA November 1995 © David Buchanan Buder, 1995 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia Vancouver, Canada Date DE-6 (2/88) ABSTRACT To interpret electrical surveys used to monitor subsurface steam-injection projects, one needs to know whether steam zones are resistive or conductive relative to initial conditions. This can be determined through laboratory measurements of the effects of steam injection on the electrical conductivity of sand. Experiments presented in chapter 2 measured the combined effects of the salinity of the boiler feedwaters and the steam quality - the fraction of the injected flux that is vapour. The injection of low quality steam, boiled from a saline solution, into clean sand saturated with the same solution, resulted in a net de• crease in conductivity, and a constant equilibrium conductivity in the steam zone. The in• jection of high-quality steam, using the same solutions, resulted in conductivity dropping first to a minimum, and then increasing to an equilibrium value similar to that seen in the low quality injection. This localized conductivity minimum became progressively less conductive with time, and travelled with the steam front. The appearance of the conductivity minimum at the steam front can be attributed to the formation of a dilution bank, which temporarily decreases the local salinity. This suggests that many steam injections will create steam zones with electrically resistive fronts, which can be used to track the steam. The effects of clay on the electrical conductivity of steam zones is further investigated in chapter 3. Experimental and numerical results indicate that clay-bearing steam zones can be electrically conductive relative to initial conditions, in part due to water saturations in the steam zones that are higher than those in comparably steam-flooded clean sands. However, it is still likely that high quality steam injections will result in resistive leading edges of the steam zones. In low quality steam injections, where dilution banks do not form around the front, it is more likely that steam zones are entirely conductive relative to initial conditions, particularly in fresh water environments. ii TABLE OF CONTENTS Abstract ii List of figures V List of tables vii Acknowledgements viii Chapter 1: Introduction 1 Motivation 1 The definition of steam 2 The physical effects of steam injection 3 The electrical effects of steam injection 3 Overview of the thesis 6 Chapter 2: The effects of saline steam liquid and steam quality on the electrical conductivity of steam-flooded sands 9 Introduction 9 Parameters affecting electrical conductivity 10 Experimental apparatus 15 Procedure 17 Results 18 Discussion 21 Interpretation of the measured data 22 Numerical test of the high steam-quality interpretation 29 Summary 34 Chapter 3: The effect of clay content on the electrical conductivity of steam-flooded sands 55 Introduction 55 The electrical conductivity of clay 56 iii Experimental apparatus and procedures 59 Experimental results 62 Discussion 66 Numerical investigation of experimental data 69 Numerical extension of results to higher clay contents and higher salinities 73 Summary 80 Chapter 4: Conclusions 95 References 99 Appendix A: Details of experimental apparatus 104 Fluid system 104 Temperature measurement and control system 106 Electrical measurement system 107 iv LIST OF FIGURES 1.1 Schematic of an idealized steam flood 8 2.1 Electrical conductivity as a function of sodium chloride concentration 36 2.2 The effect of temperature on electrical conductivity 37 2.3 Laboratory steam-flood apparatus 38 2.4 Measurement locations within the conductivity cell 39 2.5 Temperature and conductivity records from experiment #1 40 2.6 Selected conductivity profiles from experiment #1 41 2.7 Surface plots of temperature and conductivity data from experiment #1 42 2.8 Temperature and conductivity records from experiment #2 43 2.9 Selected conductivity profiles from experiment #2 44 2.10 Surface plots of temperature and conductivity data from experiment #2 45 2.11 Temperature and conductivity records from experiment #3 46 2.12 Selected conductivity profiles from experiment #3 47 2.13 Surface plots of temperature and conductivity data from experiment #3 48 2.14 Interpreted physical property changes occurring in experiment #1 49 2.15 Interpreted physical property changes occurring in experiment #2 50 2.16 Interpreted physical property changes occurring in experiment #3 51 2.17 Approach used to simulate electrical conductivity response 52 2.18 Comparison of measured and modelled conductivity records 53 2.19 Comparison of measured and modelled conductivity profiles 54 3.1 Electrical conductivity of sand and clay, versus pore-fluid conductivity 81 3.2 Distribution of sand and clay inside conductivity cell 82 3.3 Effect of temperature on measured conductivity values in sand and clay 83 v 3.4 Temperature and conductivity records from steam-flood experiment 84 3.5 Selected conductivity profiles from steam-flood experiment 85 3.6 Surface plots of temperature and conductivity data from experiment 86 3.7 Calculated and observed conductivities of sand and clay, versus salinity 87 3.8 Effect of high quality steam injection on clean sand 8 8 3.9 Comparison of measured and modelled temperature records 89 3.10 Comparison of measured and modelled conductivity records in clean sand 89 3.11 Comparison of measured and modelled conductivity profiles from cell 90 3.12 Comparison of measured and modelled conductivity records in clay layer 91 3.13 Simulated conductivity responses of representative reservoirs during high quality steam injection 92 3.14 Schematic of temperature, salinity, water saturation, and conductivity changes that are observed during high quality injections 93 3.15 Simulated conductivity responses of representative reservoirs during low quality steam injection 94 A.l Schematics of thermocouple feedthroughs 109 A.2 External thermocouple multiplexer 110 A.3 External heating coil control circuit 111 A.4 Conductivity multiplexer circuit 112 vi LIST OF TABLES 2.1 Experimental parameters for three steam injections into clean sand 18 2.2 Input parameters for numerical simulation of high quality injection 33 3.1 Experimental parameters for a steam injection into sand and clay 61 3.2 Input parameters for numerical simulation of injection 71 3.3 Parameters used to simulate electrical responses of example reservoirs 74 3.4 Summary of electrical and reservoir parameters for nine simulations of high quality injections 76 3.5 Summary of electrical and reservoir parameters for six simulations of low quality injections 79 vii ACKNOWLEDGEMENTS There are many people without whom it would have been impossible to finish this thesis. The most important of these is my wife, Sandy Stewart. She has put up with my work-related absences for many years, spending many evenings, most weekends, and even some vacations on her own, so that I could puzzle my way through my work. She has been a great source of encouragement and equanimity, keeping me on a reasonably even keel throughout my time here. She has even listened to me whenever I prattle on about steam, sand, or any other work-related topic of dubious entertainment value. I am of course grateful to my supervisor, Rosemary Knight. Her insight, guidance, optimism, and boundless enthusiasm have all been very helpful. Perhaps the aspect I appreciated the most was her ability to remain calm as I broke, melted, fried, vaporized, contaminated, or otherwise destroyed numerous integral pieces of laboratory equipment. I have been lucky to have as pleasant a place to work as the Rock Physics Lab. In " particular, Paulette Tercier, Jane Rea, and Kevin Jarvis have been a invaluable for their technical expertise, and their senses of humour. Financial support was provided by an NSERC postgraduate scholarship, and a Tri- Council (NSERC, MRC, SSHRC) Eco-Research fellowship. Funding for the laboratory research was provided initially by Mobil Exploration and Production Services, and Mobil Research and Development. Additional funding was obtained from an NSERC operating grant to Rosemary Knight. Finally, I would like to thank Guiseppe Marinoni. I have benefitted greatly from his expertise. viii CHAPTER 1: INTRODUCTION Motivation Subsurface steam injection has been used for over 30 years in enhanced-oil- recovery operations (Doscher and Ghassemi, 1981). In recent years it has also proven to be a very effective technique for the removal of certain types of nonaqueous-phase-liquid contaminants from the near surface (Stewart and Udell, 1988). Despite its long history of use, however, it is not yet possible to predict how steam will travel through a rock or soil. Since the overall effectiveness of an injection depends on how much of the subsurface is treated, it is necessary to track the motion of the steam. Monitoring wells provide accurate information at isolated positions, but do not usually provide the necessary density of coverage. Thus, to ensure that all oil- or contaminant-bearing regions are treated, a reliable remote mapping technique is required.
Recommended publications
  • Vibrational Spectra of Light and Heavy Water with Application to Neutron Cross Section Calculations J
    CORE Metadata, citation and similar papers at core.ac.uk Provided by CONICET Digital Vibrational spectra of light and heavy water with application to neutron cross section calculations J. I. Marquez Damian, D. C. Malaspina, and J. R. Granada Citation: J. Chem. Phys. 139, 024504 (2013); doi: 10.1063/1.4812828 View online: http://dx.doi.org/10.1063/1.4812828 View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v139/i2 Published by the AIP Publishing LLC. Additional information on J. Chem. Phys. Journal Homepage: http://jcp.aip.org/ Journal Information: http://jcp.aip.org/about/about_the_journal Top downloads: http://jcp.aip.org/features/most_downloaded Information for Authors: http://jcp.aip.org/authors Downloaded 11 Jul 2013 to 200.0.233.52. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions THE JOURNAL OF CHEMICAL PHYSICS 139, 024504 (2013) Vibrational spectra of light and heavy water with application to neutron cross section calculations J. I. Marquez Damian,1,a) D. C. Malaspina,2 and J. R. Granada1,b) 1Neutron Physics Department and Instituto Balseiro, Centro Atómico Bariloche, CNEA, Argentina 2Department of Biomedical Engineering and Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA (Received 4 June 2013; accepted 19 June 2013; published online 11 July 2013) The design of nuclear reactors and neutron moderators require a good representation of the interac- tion of low energy (E < 1 eV) neutrons with hydrogen and deuterium containing materials. These models are based on the dynamics of the material, represented by its vibrational spectrum.
    [Show full text]
  • The Incredible Lightness of Water Vapor
    1 The Incredible Lightness of Water Vapor ∗ 2 Da Yang and Seth Seidel 3 University of California, Davis 4 Lawrence Berkeley National Laboratory, Berkeley ∗ 5 Corresponding author address: Da Yang, 253 Hoagland Hall, Davis, CA 95616. 6 E-mail: [email protected] Generated using v4.3.2 of the AMS LATEX template 1 ABSTRACT 7 The molar mass of water vapor is significantly less than that of dry air. This 8 makes a moist parcel lighter than a dry parcel of the same temperature and 9 pressure. This effect is referred to as the vapor buoyancy effect and has of- 10 ten been overlooked in climate studies. We propose that this effect increases 11 Earth’s outgoing longwave radiation (OLR) and stabilizes Earth’s climate. 12 We illustrate this mechanism in an idealized tropical atmosphere, where there 13 is no horizontal buoyancy gradient in the free troposphere. To maintain the 14 uniform buoyancy distribution, temperature increases toward dry atmosphere 15 columns to compensate reduction of vapor buoyancy. The temperature differ- 16 ence between moist and dry columns would increase with climate warming 17 due to increasing atmospheric water vapor, leading to enhanced OLR and 18 thereby stabilizing Earth’s climate. We estimate that this feedback strength 2 19 is about O(0.2 W/m /K), which compares with cloud feedbacks and surface 20 albedo feedbacks in current climate. 2 21 1. Introduction 22 How fast would Earth’s climate respond to increasing CO2 (Manabe and Wetherald 1975; Flato 23 et al. 2013; Collins et al. 2013)? Why is tropical climate more stable than extratropical climate 24 (Holland and Bitz 2003; Polyakov et al.
    [Show full text]
  • Computational Investigation of Surface Freezing in a Molecular Model Of
    Computational investigation of surface freezing in a molecular model of water Amir Haji-Akbari ( )a,1 and Pablo G. Debenedettia,2 aDepartment of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 Contributed by Pablo G. Debenedetti, February 17, 2017 (sent for review December 21, 2016; reviewed by Christoph Dellago and Angelos Michaelides) Water freezes in a wide variety of low-temperature environ- is therefore one of the major open challenges of atmospheric ments, from meteors and atmospheric clouds to soil and bio- sciences. logical cells. In nature, ice usually nucleates at or near inter- One major difficulty in constructing such predictive frame- faces, because homogenous nucleation in the bulk can only be works is the inability to determine the proper scaling of observed at deep supercoolings. Although the effect of proximal volumetric nucleation rates with the size of microdroplets and surfaces on freezing has been extensively studied, major gaps in nanodroplets that constitute clouds. This is practically impor- understanding remain regarding freezing near vapor–liquid inter- tant because atmospheric clouds are composed of droplets of faces, with earlier experimental studies being mostly inconclu- different sizes. This scaling is determined by whether freezing is sive. The question of how a vapor–liquid interface affects freez- enhanced or suppressed near vapor–liquid interfaces. If freezing ing in its vicinity is therefore still a major open question in ice is suppressed at a free interface, the effective volumetric nucle- physics. Here, we address this question computationally by using ation rate will be independent of r, the droplet radius, and bulk the forward-flux sampling algorithm to compute the nucleation freezing will be dominant at all sizes.
    [Show full text]
  • Case Study: Water and Ice
    Case Study: Water and Ice Timothy A. Isgro, Marcos Sotomayor, and Eduardo Cruz-Chu 1 The Universal Solvent Water is essential for sustaining life on Earth. Almost 75% of the Earth’s surface is covered by it. It composes roughly 70% of the human body by mass [1]. It is the medium associated with nearly all microscopic life pro- cesses. Much of the reason that water can sustain life is due to its unique properties. Among the most essential and extreme properties of water is its capabil- ity to absorb large amounts of heat. The heat capacity of water, which is the highest for compounds of its type in the liquid state, measures the amount of heat which needs to be added to water to change its temperature by a given amount. Water, thus, is able to effectively maintain its temperature even 1 when disturbed by great amounts of heat. This property serves to main- tain ocean temperatures, as well as the atmospheric temperature around the oceans. For example, when the sun rises in the morning and a large amount of heat strikes the surface of the Earth, the vast majority of it is absorbed by the ocean. The ocean water, however, does not exhibit a drastic increase in temperature that could make it inhospitable to life. In constrast, when the sun sets in the evening and that heat is taken away, the oceans do not become too cold to harbor life. Water also has high latent heats of vapor- ization and melting, which measure the amount of heat needed to change a certain amount of liquid water to vapor and ice to liquid, respectively.
    [Show full text]
  • Hydrated Sulfate Clusters SO4^2
    Article Cite This: J. Phys. Chem. B 2019, 123, 4065−4069 pubs.acs.org/JPCB 2− n − Hydrated Sulfate Clusters SO4 (H2O)n ( =1 40): Charge Distribution Through Solvation Shells and Stabilization Maksim Kulichenko,† Nikita Fedik,† Konstantin V. Bozhenko,‡,§ and Alexander I. Boldyrev*,† † Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322-0300, United States ‡ Department of Physical and Colloid Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russian Federation § Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation *S Supporting Information 2− ABSTRACT: Investigations of inorganic anion SO4 interactions with water are crucial 2− for understanding the chemistry of its aqueous solutions. It is known that the isolated SO4 dianion is unstable, and three H2O molecules are required for its stabilization. In the 2− current work, we report our computational study of hydrated sulfate clusters SO4 (H2O)n (n =1−40) in order to understand the nature of stabilization of this important anion by fi 2− water molecules. We showed that the most signi cant charge transfer from dianion SO4 ≤ 2− to H2O takes place at a number of H2O molecules n 7. The SO4 directly donates its charge only to the first solvation shell and surprisingly, a small amount of electron density of 0.15|e| is enough to be transferred in order to stabilize the dianion. Upon further addition of ff ≤ H2O molecules, we found that the cage e ect played an essential role at n 12, where the fi 2− | | rst solvation shell closes.
    [Show full text]
  • Use of Models for Water Resources Management, Planning, and Policy
    Use of Models for Water Resources Management, Planning, and Policy August 1982 NTIS order #PB83-103655 Library of Congress Catalog Card Number 82-600556 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Foreword. The Nation'. water resource policies, affect many problem. in the ~$tates today-food production, energy, regional economic development, enviro:,"qual­ ity, and even our international balance of trade. As the country grows, and ~. ,. _"'I water supplies diminish, it becomes increasingly important to manage existing sup~th the greatest possible efficiency. In re~ent years, successfull11anagement andplanniag of water resources has increasingly been based on the results ,of mathematical~~.: ~~; Leaving aside the mystique of computers and ~pl~_ mathe~atics, mltematical models are simply tools used for understaIJ.ding w~~f~8odIc. and ",at~ re_e man­ agement activities. This part of water resource manaFm.~~ii thou~ not as apparent as dams and reservoirs or pipes and sewers, is a vital cOlripcmetif inIDetltiJ;lg tlriW'l ation' s water resource needs. Sophisticated analysis, through the ute of models, can improve our understanding of water resources and wat~r resource activities, and helpprev~ wasting both water and money. - This assessment of water resource models is therefore 'DOt an assessment Of_'$tical equations or computers, but of the Nation's ability t~ Use models to more e.·' tly and effectively analyze and solve our water resource prob~,m.. :, I •. ~rn-.' .. :", ',.,e ~ a:'~e, ssment :',.,' •.,:. rs not only the usefulness of the technology-the models-but _ability of Feder -,.,.' State water resource agencies to apply these analytic too1a ~~ly ....
    [Show full text]
  • Ice–Water Interfacial Free Energy for the TIP4P, TIP4P/2005, TIP4P/Ice
    Article pubs.acs.org/JPCC Ice−Water Interfacial Free Energy for the TIP4P, TIP4P/2005, TIP4P/ Ice, and mW Models As Obtained from the Mold Integration Technique Jorge R. Espinosa, Carlos Vega, and Eduardo Sanz* Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain ABSTRACT: The freezing of water is greatly influenced by the ice−water interfacial free energy. Yet, no consistent experimental measures of this thermodynamic parameter can be found. In this work we provide estimates for the ice Ih− water interfacial free energy at the normal melting temperature for different crystal planes (basal, primary prismatic, and secondary prismatic) using some widely used water models: TIP4P, TIP4P/2005, TIP4P/Ice, and mW. To compute the interfacial free energy, we use the mold integration method. It consists in calculating the work needed to induce the formation of a crystal slab in the fluid at coexistence conditions with the aid of a mold of potential energy wells whose structure is that of the crystal plane under study. The basal plane has the lowest interfacial free energy in all models of the TIP4P family. For the mW model we could not resolve differences in interfacial free energy between different orientations. The interfacial free energies averaged over all crystal orientations we obtain are 27.2(8), 28.9(8), 29.8(8), and 34.9(8) mJ/m2 for the TIP4P, TIP4P/2005, TIP4P/Ice, and mW models, respectively. The averaged interfacial free energy increases with both the melting temperature and melting enthalpy of the model. Moreover, we compute the interfacial free energy for several crystal orientation of ice Ic using the TIP4P/Ice model and obtain within the accuracy of our calculations the same orientationally averaged interfacial free energy as that of ice Ih.
    [Show full text]
  • Signature Properties of Water: Their Molecular Electronic Origins
    Signature properties of water: Their molecular electronic origins Vlad P. Sokhana,1, Andrew P. Jonesb, Flaviu S. Cipciganb, Jason Craina,b, and Glenn J. Martynab,c aNational Physical Laboratory, Teddington, Middlesex TW11 0LW, United Kingdom; bSchool of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom; and cIBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598 Edited by Paul Madden, University of Oxford, Oxford, United Kingdom, and accepted by the Editorial Board March 31, 2015 (received for review October 1, 2014) Water challenges our fundamental understanding of emergent combination of multiscale descriptions and statistical sampling have materials properties from a molecular perspective. It exhibits a led to insights into physical phenomena across biology, chemistry, uniquely rich phenomenology including dramatic variations in physics, materials science, and engineering (14). Significant progress behavior over the wide temperature range of the liquid into water’s now requires novel predictive models with reduced empirical input crystalline phases and amorphous states. We show that many-body that are rich enough to embody the essential physics of emergent responses arising from water’s electronic structure are essential mech- systems and yet simple enough to retain intuitive features (14). anisms harnessed by the molecule to encode for the distinguishing Typically, atomistic models of materials are derived from a features of its condensed states. We treat the complete set of these common strategy. Interactions are described via a fixed functional many-body responses nonperturbatively within a coarse-grained elec- form with long-range terms taken from low orders of perturbation tronic structure derived exclusively from single-molecule properties.
    [Show full text]
  • Nhdplus and the National Water Model
    NHDPlus and the National Water Model David R. Maidment Center for Research in Water Resources University of Texas at Austin Edward P. Clark Office of Water Prediction National Weather Service AWRA GIS in Water Resources Specialty Conference, Sacramento CA, 11 July 2016 Acknowledgements: UT Austin Colleagues and Students, National Weather Service, NCAR City of Austin, ESRI, Kisters, Microsoft Research, Yan Liu, David Tarboton This research is supported in part by NSF EarthCube grant 1343785 NHDPlus Version 2 Geospatial foundation for a national water data infrastructure NHDPlus 2.67 million reach catchments in US average area 3 km2 reach length 2 km National Elevation Dataset Watershed Boundary Dataset National Hydrography Dataset National Land Cover Dataset The Opportunity New National Water Center established on the Tuscaloosa campus of University of Alabama by the National Weather Service and federal agency partners Has a mission to assess hydrology in a new way at the continental scale for the United States National Water Center FY15 Centralized Water Forecasting • Centralized Data Archive – all RFC data • Modeling Evaluation Service • RFC and NWC modeling and forecasts • Modeling Testbed – new NWC capabilities • Centralized Water Forecasting Demonstration Continental Scale Flood Forecasting Meteorology Mapping and Impacts 2.7 million catchments Hydrology Hydraulics Combining Grid and Vector Modeling Forcing: Runoff and reservoir releases NHDPlus Catchment Flow Legend Dam Junction Catchment National Water Prediction Model Configurations Four Forecasting Horizons for National Water Model Analysis & Short-Range Medium Range Long Range Assimilation ‘Flood Prediction’ ‘Flow Prediction’ ‘Water Resources’ Cycling Frequency Hourly 3-Hourly Daily ~Daily (x16) Forecast Duration - 3 hrs 0-2 days 0-10 days 0-30 days Spatial Discretization & Routing 1km/250m/NHDPlus 1km/250m/NHDPlus 1km/250m/NHDPlus 1 km/catchment Reach Reach Reach /NHDPlus Reach Meteorological Forcing MRMS blend/ Downscaled HRRR Short-range + Downscaled & HRRR-NAM bkgnd.
    [Show full text]
  • DRAFT Groundwater Flow & Solute Transport Modeling Report
    DRAFT Groundwater Flow & Solute Transport Modeling Report Allen Fossil Plant Memphis, Tennessee July 12, 2019 Prepared for: Tennessee Valley Authority Chattanooga, Tennessee Prepared by: Stantec Consulting Services Inc. Revision Description Author Quality Check Independent Review DRAFT GROUNDWATER FLOW & SOLUTE TRANSPORT MODELING REPORT This document entitled DRAFT Groundwater Flow & Solute Transport Modeling Report was prepared by Stantec Consulting Services Inc. (“Stantec”) for the account of Tennessee Valley Authority (TVA). Prepared by Alexis Harkins, PG Joel RK Thompson, PG Hydrogeologist Senior Hydrogeologist Reviewed by John Griggs, PhD, TN PG No. 5966 John W. Jengo, TN PG No. Patrick Dunne Senior Principal Principal Senior Hydrogeologist Approved by Kim Kesler-Arnold, TN PG No. 5969 Vice President DRAFT GROUNDWATER FLOW & SOLUTE TRANSPORT MODELING REPORT Table of Contents ABBREVIATIONS ........................................................................................................................................ V 1.0 INTRODUCTION ........................................................................................................................... 1.1 1.1 SITE HISTORY ............................................................................................................................. 1.1 1.2 GROUNDWATER FLOW MODEL OBJECTIVES AND USAGE .................................................. 1.1 1.3 REPORT ORGANIZATION ..........................................................................................................
    [Show full text]
  • Modeling Water Vapor Transport at Liquid/Membrane Interfaces For
    Modeling Water Vapor Transport at Liquid/Membrane Interfaces for Applications in Liquid Desiccant Air Conditioners Cooperative Research and Development Final Report CRADA Number: CRD-17-679 NREL Technical Contact: Jason Woods NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-5500-77201 Operated by the Alliance for Sustainable Energy, LLC July 2020 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 Modeling Water Vapor Transport at Liquid/Membrane Interfaces for Applications in Liquid Desiccant Air Conditioners Cooperative Research and Development Final Report CRADA Number: CRD-17-679 NREL Technical Contact: Jason Woods Suggested Citation Woods, Jason. 2020. Modeling Water Vapor Transport at Liquid/Membrane Interfaces for Applications in Liquid Desiccant Air Conditioners: Cooperative Research and Development Final Report, CRADA Number CRD-17-679. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5500-77201. https://www.nrel.gov/docs/fy20osti/77201.pdf. NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-5500-77201 Operated by the Alliance for Sustainable Energy, LLC July 2020 This report is available at no cost from the National Renewable Energy National Renewable Energy Laboratory Laboratory (NREL) at www.nrel.gov/publications. 15013 Denver West Parkway Golden, CO 80401 Contract No. DE-AC36-08GO28308 303-275-3000 • www.nrel.gov NOTICE This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S.
    [Show full text]
  • The Comparison Between Water Models in Predicting Water Thermal and Dynamic Properties from Molecular Dynamics
    INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 08, AUGUST 2020 ISSN 2277-8616 The Comparison Between Water Models In Predicting Water Thermal And Dynamic Properties From Molecular Dynamics Abdusalam Alkhwaji, Salem Elbahloul, Khairil Fadzli Bin Abu Bakar, Mohd Zulkifly Abdullah Abstract: This molecular dynamic simulation study is made using Lammps software to compare outcome results of thermal properties of most known five rigid water models. The water has received special attention because it is commonly used base-fluid in heat transfer application. This study focuses on computing water thermal conductivity, dynamic viscosity, density, specific isobaric heat capacity, specific isochoric heat capacity. A significant outcome of this study is to compare results and suggest an optimal model which can be used to evaluate water thermal properties. Lammps, a powerful molecular dynamics software, is used to do the molecular dynamics calculation in this study. Atomic initial position, intermolecular forces, etc., are prepared using Moltemplate. Atomistic model types of water used in this study are the simple point charge (SPC) model, The extended simple point charge (SPC/E) model, The TIP-type models (TIP3PEW, TIP4PEW andTIP4-2005). This study investigates efficiency of five water types in predicting thermal properties at four temperatures. A comparison between these five models is made by calculating thermal conductivity, viscosity, density, specific isochoric heat capacity, and specific isobaric heat capacity. Results were verified against reference thermal properties at 288, 300, 312 and 324 K. Results of this research indicate that values of thermal properties were very accurate and close to known values, that could make this study very useful in helping researchers to pick up the right water model when calculating any of the studied properties.
    [Show full text]