Article The Water Polymorphism and the Liquid–Liquid Transition from Transport Data Francesco Mallamace 1,2,* , Domenico Mallamace 3 , Giuseppe Mensitieri 4 , Sow-Hsin Chen 1 , Paola Lanzafame 3 and Georgia Papanikolaou 3 1 Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
[email protected] 2 CNR ISC, UOS Roma Sapienza, Physics Department, Sapienza University of Rome, 00185 Roma, Italy 3 Departments of ChiBioFarAm Section of Industrial Chemistry, University of Messina, CASPE-INSTM, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy;
[email protected] (D.M.);
[email protected] (P.L.);
[email protected] (G.P.) 4 Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli, Italy;
[email protected] * Correspondence:
[email protected]; Tel.: +39-340-233-5213 Abstract: NMR spectroscopic literature data are used, in a wide temperature-pressure range (180–350 K and 0.1–400 MPa), to study the water polymorphism and the validity of the liquid–liquid transition (LLT) hypothesis. We have considered the self-diffusion coefficient DS and the reorientational correlation time tq (obtained from spin-lattice T1 relaxation times), measured, respectively, in bulk and emulsion liquid water from the stable to well inside the metastable supercooled region. As an effect of the hydrogen bond (HB) networking, the isobars of both these transport functions evolve with T by changing by several orders of magnitude, whereas their pressure dependence Citation: Mallamace, F.; Mallamace, become more and more pronounced at lower temperatures. Both these transport functions were D.; Mensitieri, G.; Chen, S.-H.; Lanzafame, P.; Papanikolaou, G.