Activation energy spectrum for relaxation and polyamorphism in an ultra-viscous metallic glass former Isabella Gallino1,*, Daniele Cangialosi2, Zach Evenson3, Lisa Schmitt1,4, Simon Hechler1,5, Moritz Stolpe1, and Beatrice Ruta5,6 1 Chair of Metallic Materials, Saarland University, Campus C6.3, 66123 Saarbrücken, Germany 2 Materials Physics Center (CFM/MPC), Paseo Lardizabal 5, 20018 San Sebastian, Spain 3 Heinz Maier-Leibnitz Zentrum (MLZ) and Physik Department, Technische Universität München, Lichtenbergstrasse 1, 85748 Garching, Germany 4 fem Research Institute for Precious Metals & Metals Chemistry, Katharinenstrasse 17, 73525 Schwäbisch Gmünd, Germany 5 ESRF—The European Synchrotron, CS40220, 38043 Grenoble, France 6 Institute of Light and Matter, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France. *corresponding author: Isabella Gallino. E-mail address:
[email protected]. Tel: +49 (0)681 302 2052 Abstract: Many glass-formers exhibit phase transitions between two distinct liquid states. For some metallic glass-formers, the liquid-liquid transition is experimentally found in the supercooled liquid at intermediate temperature between the melting point and the glass transition temperature Tg. We report here on a liquid-liquid transition in an ultra-viscous metallic glass-former, accessed during long-time annealing. This study is conducted on the Au49Cu26.9Si16.3Ag5.5Pd2.3 composition with a liquid-liquid transition temperature slightly lower than Tg. The consequence is that the high-temperature kinetically fragile liquid freezes into the glass during conventional processing and the underlying liquid-liquid transition is thus accessed by the system during annealing below Tg. Upon reheating, the reverse transformation is observed by calorimetry.