1 The Incredible Lightness of Water Vapor ∗ 2 Da Yang and Seth Seidel 3 University of California, Davis 4 Lawrence Berkeley National Laboratory, Berkeley ∗ 5 Corresponding author address: Da Yang, 253 Hoagland Hall, Davis, CA 95616. 6 E-mail:
[email protected] Generated using v4.3.2 of the AMS LATEX template 1 ABSTRACT 7 The molar mass of water vapor is significantly less than that of dry air. This 8 makes a moist parcel lighter than a dry parcel of the same temperature and 9 pressure. This effect is referred to as the vapor buoyancy effect and has of- 10 ten been overlooked in climate studies. We propose that this effect increases 11 Earth’s outgoing longwave radiation (OLR) and stabilizes Earth’s climate. 12 We illustrate this mechanism in an idealized tropical atmosphere, where there 13 is no horizontal buoyancy gradient in the free troposphere. To maintain the 14 uniform buoyancy distribution, temperature increases toward dry atmosphere 15 columns to compensate reduction of vapor buoyancy. The temperature differ- 16 ence between moist and dry columns would increase with climate warming 17 due to increasing atmospheric water vapor, leading to enhanced OLR and 18 thereby stabilizing Earth’s climate. We estimate that this feedback strength 2 19 is about O(0.2 W/m /K), which compares with cloud feedbacks and surface 20 albedo feedbacks in current climate. 2 21 1. Introduction 22 How fast would Earth’s climate respond to increasing CO2 (Manabe and Wetherald 1975; Flato 23 et al. 2013; Collins et al. 2013)? Why is tropical climate more stable than extratropical climate 24 (Holland and Bitz 2003; Polyakov et al.