Walker, JJ., Terry, JR., Tsaneva-Atanasova, KT., Armstrong, SP., McArdle, CA., & Lightman, SL. (Accepted/In press). Encoding and decoding mechanisms of pulsatile hormone secretion. http://hdl.handle.net/1983/1617 Early version, also known as pre-print Link to publication record in Explore Bristol Research PDF-document University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Encoding and decoding mechanisms of pulsatile hormone secretion Jamie J. Walker a, †, John R. Terry a, Krasimira Tsaneva-Atanasova a, Stephen P. Armstrong b, Craig A. McArdle b and Stafford L. Lightman b aBristol Centre for Applied Nonlinear Mathematics, Department of Engineering Mathematics, University of Bristol, Bristol, UK. bHenry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK. †
[email protected] June 2010 Abstract Ultradian pulsatile hormone secretion underlies the activity of most neuroendocrine sys- tems, including the hypothalamo-pituitary adrenal (HPA) and gonadal (HPG) axes, and this pulsatile mode of signalling permits the encoding of information through both amplitude and frequency modulation. Thus in the HPA axis, glucocorticoid pulse ampli- tude increases in anticipation of waking, and in the HPG axis changing gonadotrophin- releasing hormone (GnRH) pulse frequency is the primary means by which the body alters its reproductive status during development. The prevalence of hormone pulsatility raises two crucial questions: how are ultradian pulses encoded (or generated) by these systems, and how are these pulses decoded (or interpreted) at their target sites? We have looked at mechanisms within the HPA axis responsible for encoding the pulsatile mode of glucocorticoid signalling that we observe in vivo.